1# Copyright 2020 Huawei Technologies Co., Ltd 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14 15import numpy as np 16 17import mindspore as ms 18import mindspore.nn as nn 19from mindspore import Tensor 20from mindspore import context 21from mindspore.common.api import _cell_graph_executor 22from mindspore.ops import composite as C 23from mindspore.ops import operations as P 24from tests.ut.python.ops.test_math_ops import VirtualLoss 25 26 27grad_all = C.GradOperation(get_all=True) 28 29 30class NetWithLoss(nn.Cell): 31 def __init__(self, network): 32 super(NetWithLoss, self).__init__() 33 self.loss = VirtualLoss() 34 self.network = network 35 36 def construct(self, x, y): 37 predict = self.network(x, y) 38 return self.loss(predict) 39 40 41class GradWrap(nn.Cell): 42 def __init__(self, network): 43 super(GradWrap, self).__init__() 44 self.network = network 45 46 def construct(self, x, y): 47 return grad_all(self.network)(x, y) 48 49 50class Net(nn.Cell): 51 def __init__(self, strategy): 52 super().__init__() 53 self.reshape = P.Reshape() 54 self.mul = P.Mul().shard(strategy) 55 self.relu = P.ReLU() 56 57 def construct(self, x, y): 58 out = self.reshape(x, (10000, 36, 1)) 59 out = self.mul(out, y) 60 out = self.relu(out) 61 return out 62 63 64def compile_net(net, x, y): 65 net.set_auto_parallel() 66 net.set_train() 67 _cell_graph_executor.compile(net, x, y) 68 69 70def test_reshape_parameter_data_parallel(): 71 context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") 72 strategy = ((8, 1, 1), (8, 1, 1)) 73 net = GradWrap(NetWithLoss(Net(strategy))) 74 x = Tensor(np.ones([10000, 36]), dtype=ms.float32) 75 y = Tensor(np.ones([10000, 36, 1]), dtype=ms.float32) 76 compile_net(net, x, y) 77 78 79def test_reshape_parameter_model_parallel(): 80 context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") 81 strategy = ((4, 2, 1), (4, 2, 1)) 82 net = GradWrap(NetWithLoss(Net(strategy))) 83 x = Tensor(np.ones([10000, 36]), dtype=ms.float32) 84 y = Tensor(np.ones([10000, 36, 1]), dtype=ms.float32) 85 compile_net(net, x, y) 86