1 //
2 // Copyright 2019 Miral Shah <miralshah2211@gmail.com>
3 //
4 // Use, modification and distribution are subject to the Boost Software License,
5 // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
6 // http://www.boost.org/LICENSE_1_0.txt)
7 //
8 #ifndef BOOST_GIL_IMAGE_PROCESSING_THRESHOLD_HPP
9 #define BOOST_GIL_IMAGE_PROCESSING_THRESHOLD_HPP
10
11 #include <limits>
12 #include <array>
13 #include <type_traits>
14 #include <cstddef>
15 #include <algorithm>
16 #include <vector>
17 #include <cmath>
18
19 #include <boost/assert.hpp>
20
21 #include <boost/gil/image.hpp>
22 #include <boost/gil/extension/numeric/kernel.hpp>
23 #include <boost/gil/extension/numeric/convolve.hpp>
24 #include <boost/gil/image_processing/numeric.hpp>
25
26 namespace boost { namespace gil {
27
28 namespace detail {
29
30 template
31 <
32 typename SourceChannelT,
33 typename ResultChannelT,
34 typename SrcView,
35 typename DstView,
36 typename Operator
37 >
threshold_impl(SrcView const & src_view,DstView const & dst_view,Operator const & threshold_op)38 void threshold_impl(SrcView const& src_view, DstView const& dst_view, Operator const& threshold_op)
39 {
40 gil_function_requires<ImageViewConcept<SrcView>>();
41 gil_function_requires<MutableImageViewConcept<DstView>>();
42 static_assert(color_spaces_are_compatible
43 <
44 typename color_space_type<SrcView>::type,
45 typename color_space_type<DstView>::type
46 >::value, "Source and destination views must have pixels with the same color space");
47
48 //iterate over the image checking each pixel value for the threshold
49 for (std::ptrdiff_t y = 0; y < src_view.height(); y++)
50 {
51 typename SrcView::x_iterator src_it = src_view.row_begin(y);
52 typename DstView::x_iterator dst_it = dst_view.row_begin(y);
53
54 for (std::ptrdiff_t x = 0; x < src_view.width(); x++)
55 {
56 static_transform(src_it[x], dst_it[x], threshold_op);
57 }
58 }
59 }
60
61 } //namespace boost::gil::detail
62
63 /// \addtogroup ImageProcessing
64 /// @{
65 ///
66 /// \brief Direction of image segmentation.
67 /// The direction specifies which pixels are considered as corresponding to object
68 /// and which pixels correspond to background.
69 enum class threshold_direction
70 {
71 regular, ///< Consider values greater than threshold value
72 inverse ///< Consider values less than or equal to threshold value
73 };
74
75 /// \ingroup ImageProcessing
76 /// \brief Method of optimal threshold value calculation.
77 enum class threshold_optimal_value
78 {
79 otsu ///< \todo TODO
80 };
81
82 /// \ingroup ImageProcessing
83 /// \brief TODO
84 enum class threshold_truncate_mode
85 {
86 threshold, ///< \todo TODO
87 zero ///< \todo TODO
88 };
89
90 enum class threshold_adaptive_method
91 {
92 mean,
93 gaussian
94 };
95
96 /// \ingroup ImageProcessing
97 /// \brief Applies fixed threshold to each pixel of image view.
98 /// Performs image binarization by thresholding channel value of each
99 /// pixel of given image view.
100 /// \param src_view - TODO
101 /// \param dst_view - TODO
102 /// \param threshold_value - TODO
103 /// \param max_value - TODO
104 /// \param threshold_direction - if regular, values greater than threshold_value are
105 /// set to max_value else set to 0; if inverse, values greater than threshold_value are
106 /// set to 0 else set to max_value.
107 template <typename SrcView, typename DstView>
threshold_binary(SrcView const & src_view,DstView const & dst_view,typename channel_type<DstView>::type threshold_value,typename channel_type<DstView>::type max_value,threshold_direction direction=threshold_direction::regular)108 void threshold_binary(
109 SrcView const& src_view,
110 DstView const& dst_view,
111 typename channel_type<DstView>::type threshold_value,
112 typename channel_type<DstView>::type max_value,
113 threshold_direction direction = threshold_direction::regular
114 )
115 {
116 //deciding output channel type and creating functor
117 using source_channel_t = typename channel_type<SrcView>::type;
118 using result_channel_t = typename channel_type<DstView>::type;
119
120 if (direction == threshold_direction::regular)
121 {
122 detail::threshold_impl<source_channel_t, result_channel_t>(src_view, dst_view,
123 [threshold_value, max_value](source_channel_t px) -> result_channel_t {
124 return px > threshold_value ? max_value : 0;
125 });
126 }
127 else
128 {
129 detail::threshold_impl<source_channel_t, result_channel_t>(src_view, dst_view,
130 [threshold_value, max_value](source_channel_t px) -> result_channel_t {
131 return px > threshold_value ? 0 : max_value;
132 });
133 }
134 }
135
136 /// \ingroup ImageProcessing
137 /// \brief Applies fixed threshold to each pixel of image view.
138 /// Performs image binarization by thresholding channel value of each
139 /// pixel of given image view.
140 /// This variant of threshold_binary automatically deduces maximum value for each channel
141 /// of pixel based on channel type.
142 /// If direction is regular, values greater than threshold_value will be set to maximum
143 /// numeric limit of channel else 0.
144 /// If direction is inverse, values greater than threshold_value will be set to 0 else maximum
145 /// numeric limit of channel.
146 template <typename SrcView, typename DstView>
threshold_binary(SrcView const & src_view,DstView const & dst_view,typename channel_type<DstView>::type threshold_value,threshold_direction direction=threshold_direction::regular)147 void threshold_binary(
148 SrcView const& src_view,
149 DstView const& dst_view,
150 typename channel_type<DstView>::type threshold_value,
151 threshold_direction direction = threshold_direction::regular
152 )
153 {
154 //deciding output channel type and creating functor
155 using result_channel_t = typename channel_type<DstView>::type;
156
157 result_channel_t max_value = (std::numeric_limits<result_channel_t>::max)();
158 threshold_binary(src_view, dst_view, threshold_value, max_value, direction);
159 }
160
161 /// \ingroup ImageProcessing
162 /// \brief Applies truncating threshold to each pixel of image view.
163 /// Takes an image view and performs truncating threshold operation on each chennel.
164 /// If mode is threshold and direction is regular:
165 /// values greater than threshold_value will be set to threshold_value else no change
166 /// If mode is threshold and direction is inverse:
167 /// values less than or equal to threshold_value will be set to threshold_value else no change
168 /// If mode is zero and direction is regular:
169 /// values less than or equal to threshold_value will be set to 0 else no change
170 /// If mode is zero and direction is inverse:
171 /// values more than threshold_value will be set to 0 else no change
172 template <typename SrcView, typename DstView>
threshold_truncate(SrcView const & src_view,DstView const & dst_view,typename channel_type<DstView>::type threshold_value,threshold_truncate_mode mode=threshold_truncate_mode::threshold,threshold_direction direction=threshold_direction::regular)173 void threshold_truncate(
174 SrcView const& src_view,
175 DstView const& dst_view,
176 typename channel_type<DstView>::type threshold_value,
177 threshold_truncate_mode mode = threshold_truncate_mode::threshold,
178 threshold_direction direction = threshold_direction::regular
179 )
180 {
181 //deciding output channel type and creating functor
182 using source_channel_t = typename channel_type<SrcView>::type;
183 using result_channel_t = typename channel_type<DstView>::type;
184
185 std::function<result_channel_t(source_channel_t)> threshold_logic;
186
187 if (mode == threshold_truncate_mode::threshold)
188 {
189 if (direction == threshold_direction::regular)
190 {
191 detail::threshold_impl<source_channel_t, result_channel_t>(src_view, dst_view,
192 [threshold_value](source_channel_t px) -> result_channel_t {
193 return px > threshold_value ? threshold_value : px;
194 });
195 }
196 else
197 {
198 detail::threshold_impl<source_channel_t, result_channel_t>(src_view, dst_view,
199 [threshold_value](source_channel_t px) -> result_channel_t {
200 return px > threshold_value ? px : threshold_value;
201 });
202 }
203 }
204 else
205 {
206 if (direction == threshold_direction::regular)
207 {
208 detail::threshold_impl<source_channel_t, result_channel_t>(src_view, dst_view,
209 [threshold_value](source_channel_t px) -> result_channel_t {
210 return px > threshold_value ? px : 0;
211 });
212 }
213 else
214 {
215 detail::threshold_impl<source_channel_t, result_channel_t>(src_view, dst_view,
216 [threshold_value](source_channel_t px) -> result_channel_t {
217 return px > threshold_value ? 0 : px;
218 });
219 }
220 }
221 }
222
223 namespace detail{
224
225 template <typename SrcView, typename DstView>
otsu_impl(SrcView const & src_view,DstView const & dst_view,threshold_direction direction)226 void otsu_impl(SrcView const& src_view, DstView const& dst_view, threshold_direction direction)
227 {
228 //deciding output channel type and creating functor
229 using source_channel_t = typename channel_type<SrcView>::type;
230
231 std::array<std::size_t, 256> histogram{};
232 //initial value of min is set to maximum possible value to compare histogram data
233 //initial value of max is set to minimum possible value to compare histogram data
234 auto min = (std::numeric_limits<source_channel_t>::max)(),
235 max = (std::numeric_limits<source_channel_t>::min)();
236
237 if (sizeof(source_channel_t) > 1 || std::is_signed<source_channel_t>::value)
238 {
239 //iterate over the image to find the min and max pixel values
240 for (std::ptrdiff_t y = 0; y < src_view.height(); y++)
241 {
242 typename SrcView::x_iterator src_it = src_view.row_begin(y);
243 for (std::ptrdiff_t x = 0; x < src_view.width(); x++)
244 {
245 if (src_it[x] < min) min = src_it[x];
246 if (src_it[x] > min) min = src_it[x];
247 }
248 }
249
250 //making histogram
251 for (std::ptrdiff_t y = 0; y < src_view.height(); y++)
252 {
253 typename SrcView::x_iterator src_it = src_view.row_begin(y);
254
255 for (std::ptrdiff_t x = 0; x < src_view.width(); x++)
256 {
257 histogram[((src_it[x] - min) * 255) / (max - min)]++;
258 }
259 }
260 }
261 else
262 {
263 //making histogram
264 for (std::ptrdiff_t y = 0; y < src_view.height(); y++)
265 {
266 typename SrcView::x_iterator src_it = src_view.row_begin(y);
267
268 for (std::ptrdiff_t x = 0; x < src_view.width(); x++)
269 {
270 histogram[src_it[x]]++;
271 }
272 }
273 }
274
275 //histData = histogram data
276 //sum = total (background + foreground)
277 //sumB = sum background
278 //wB = weight background
279 //wf = weight foreground
280 //varMax = tracking the maximum known value of between class variance
281 //mB = mu background
282 //mF = mu foreground
283 //varBeetween = between class variance
284 //http://www.labbookpages.co.uk/software/imgProc/otsuThreshold.html
285 //https://www.ipol.im/pub/art/2016/158/
286 std::ptrdiff_t total_pixel = src_view.height() * src_view.width();
287 std::ptrdiff_t sum_total = 0, sum_back = 0;
288 std::size_t weight_back = 0, weight_fore = 0, threshold = 0;
289 double var_max = 0, mean_back, mean_fore, var_intra_class;
290
291 for (std::size_t t = 0; t < 256; t++)
292 {
293 sum_total += t * histogram[t];
294 }
295
296 for (int t = 0; t < 256; t++)
297 {
298 weight_back += histogram[t]; // Weight Background
299 if (weight_back == 0) continue;
300
301 weight_fore = total_pixel - weight_back; // Weight Foreground
302 if (weight_fore == 0) break;
303
304 sum_back += t * histogram[t];
305
306 mean_back = sum_back / weight_back; // Mean Background
307 mean_fore = (sum_total - sum_back) / weight_fore; // Mean Foreground
308
309 // Calculate Between Class Variance
310 var_intra_class = weight_back * weight_fore * (mean_back - mean_fore) * (mean_back - mean_fore);
311
312 // Check if new maximum found
313 if (var_intra_class > var_max) {
314 var_max = var_intra_class;
315 threshold = t;
316 }
317 }
318 if (sizeof(source_channel_t) > 1 && std::is_unsigned<source_channel_t>::value)
319 {
320 threshold_binary(src_view, dst_view, (threshold * (max - min) / 255) + min, direction);
321 }
322 else {
323 threshold_binary(src_view, dst_view, threshold, direction);
324 }
325 }
326 } //namespace detail
327
328 template <typename SrcView, typename DstView>
threshold_optimal(SrcView const & src_view,DstView const & dst_view,threshold_optimal_value mode=threshold_optimal_value::otsu,threshold_direction direction=threshold_direction::regular)329 void threshold_optimal
330 (
331 SrcView const& src_view,
332 DstView const& dst_view,
333 threshold_optimal_value mode = threshold_optimal_value::otsu,
334 threshold_direction direction = threshold_direction::regular
335 )
336 {
337 if (mode == threshold_optimal_value::otsu)
338 {
339 for (std::size_t i = 0; i < src_view.num_channels(); i++)
340 {
341 detail::otsu_impl
342 (nth_channel_view(src_view, i), nth_channel_view(dst_view, i), direction);
343 }
344 }
345 }
346
347 namespace detail {
348
349 template
350 <
351 typename SourceChannelT,
352 typename ResultChannelT,
353 typename SrcView,
354 typename DstView,
355 typename Operator
356 >
adaptive_impl(SrcView const & src_view,SrcView const & convolved_view,DstView const & dst_view,Operator const & threshold_op)357 void adaptive_impl
358 (
359 SrcView const& src_view,
360 SrcView const& convolved_view,
361 DstView const& dst_view,
362 Operator const& threshold_op
363 )
364 {
365 //template argument validation
366 gil_function_requires<ImageViewConcept<SrcView>>();
367 gil_function_requires<MutableImageViewConcept<DstView>>();
368
369 static_assert(color_spaces_are_compatible
370 <
371 typename color_space_type<SrcView>::type,
372 typename color_space_type<DstView>::type
373 >::value, "Source and destination views must have pixels with the same color space");
374
375 //iterate over the image checking each pixel value for the threshold
376 for (std::ptrdiff_t y = 0; y < src_view.height(); y++)
377 {
378 typename SrcView::x_iterator src_it = src_view.row_begin(y);
379 typename SrcView::x_iterator convolved_it = convolved_view.row_begin(y);
380 typename DstView::x_iterator dst_it = dst_view.row_begin(y);
381
382 for (std::ptrdiff_t x = 0; x < src_view.width(); x++)
383 {
384 static_transform(src_it[x], convolved_it[x], dst_it[x], threshold_op);
385 }
386 }
387 }
388 } //namespace boost::gil::detail
389
390 template <typename SrcView, typename DstView>
threshold_adaptive(SrcView const & src_view,DstView const & dst_view,typename channel_type<DstView>::type max_value,std::size_t kernel_size,threshold_adaptive_method method=threshold_adaptive_method::mean,threshold_direction direction=threshold_direction::regular,typename channel_type<DstView>::type constant=0)391 void threshold_adaptive
392 (
393 SrcView const& src_view,
394 DstView const& dst_view,
395 typename channel_type<DstView>::type max_value,
396 std::size_t kernel_size,
397 threshold_adaptive_method method = threshold_adaptive_method::mean,
398 threshold_direction direction = threshold_direction::regular,
399 typename channel_type<DstView>::type constant = 0
400 )
401 {
402 BOOST_ASSERT_MSG((kernel_size % 2 != 0), "Kernel size must be an odd number");
403
404 typedef typename channel_type<SrcView>::type source_channel_t;
405 typedef typename channel_type<DstView>::type result_channel_t;
406
407 image<typename SrcView::value_type> temp_img(src_view.width(), src_view.height());
408 typename image<typename SrcView::value_type>::view_t temp_view = view(temp_img);
409 SrcView temp_conv(temp_view);
410
411 if (method == threshold_adaptive_method::mean)
412 {
413 std::vector<float> mean_kernel_values(kernel_size, 1.0f/kernel_size);
414 kernel_1d<float> kernel(mean_kernel_values.begin(), kernel_size, kernel_size/2);
415
416 detail::convolve_1d
417 <
418 pixel<float, typename SrcView::value_type::layout_t>
419 >(src_view, kernel, temp_view);
420 }
421 else if (method == threshold_adaptive_method::gaussian)
422 {
423 detail::kernel_2d<float> kernel = generate_gaussian_kernel(kernel_size, 1.0);
424 convolve_2d(src_view, kernel, temp_view);
425 }
426
427 if (direction == threshold_direction::regular)
428 {
429 detail::adaptive_impl<source_channel_t, result_channel_t>(src_view, temp_conv, dst_view,
430 [max_value, constant](source_channel_t px, source_channel_t threshold) -> result_channel_t
431 { return px > (threshold - constant) ? max_value : 0; });
432 }
433 else
434 {
435 detail::adaptive_impl<source_channel_t, result_channel_t>(src_view, temp_conv, dst_view,
436 [max_value, constant](source_channel_t px, source_channel_t threshold) -> result_channel_t
437 { return px > (threshold - constant) ? 0 : max_value; });
438 }
439 }
440
441 template <typename SrcView, typename DstView>
threshold_adaptive(SrcView const & src_view,DstView const & dst_view,std::size_t kernel_size,threshold_adaptive_method method=threshold_adaptive_method::mean,threshold_direction direction=threshold_direction::regular,int constant=0)442 void threshold_adaptive
443 (
444 SrcView const& src_view,
445 DstView const& dst_view,
446 std::size_t kernel_size,
447 threshold_adaptive_method method = threshold_adaptive_method::mean,
448 threshold_direction direction = threshold_direction::regular,
449 int constant = 0
450 )
451 {
452 //deciding output channel type and creating functor
453 typedef typename channel_type<DstView>::type result_channel_t;
454
455 result_channel_t max_value = (std::numeric_limits<result_channel_t>::max)();
456
457 threshold_adaptive(src_view, dst_view, max_value, kernel_size, method, direction, constant);
458 }
459
460 /// @}
461
462 }} //namespace boost::gil
463
464 #endif //BOOST_GIL_IMAGE_PROCESSING_THRESHOLD_HPP
465