1 //===- yaml2elf - Convert YAML to a ELF object file -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// The ELF component of yaml2obj.
11 ///
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/StringSet.h"
17 #include "llvm/BinaryFormat/ELF.h"
18 #include "llvm/MC/StringTableBuilder.h"
19 #include "llvm/Object/ELFObjectFile.h"
20 #include "llvm/ObjectYAML/ELFYAML.h"
21 #include "llvm/ObjectYAML/yaml2obj.h"
22 #include "llvm/Support/EndianStream.h"
23 #include "llvm/Support/LEB128.h"
24 #include "llvm/Support/MemoryBuffer.h"
25 #include "llvm/Support/WithColor.h"
26 #include "llvm/Support/YAMLTraits.h"
27 #include "llvm/Support/raw_ostream.h"
28
29 using namespace llvm;
30
31 // This class is used to build up a contiguous binary blob while keeping
32 // track of an offset in the output (which notionally begins at
33 // `InitialOffset`).
34 namespace {
35 class ContiguousBlobAccumulator {
36 const uint64_t InitialOffset;
37 SmallVector<char, 128> Buf;
38 raw_svector_ostream OS;
39
40 public:
ContiguousBlobAccumulator(uint64_t InitialOffset_)41 ContiguousBlobAccumulator(uint64_t InitialOffset_)
42 : InitialOffset(InitialOffset_), Buf(), OS(Buf) {}
43
44 template <class Integer>
getOSAndAlignedOffset(Integer & Offset,unsigned Align)45 raw_ostream &getOSAndAlignedOffset(Integer &Offset, unsigned Align) {
46 Offset = padToAlignment(Align);
47 return OS;
48 }
49
50 /// \returns The new offset.
padToAlignment(unsigned Align)51 uint64_t padToAlignment(unsigned Align) {
52 if (Align == 0)
53 Align = 1;
54 uint64_t CurrentOffset = InitialOffset + OS.tell();
55 uint64_t AlignedOffset = alignTo(CurrentOffset, Align);
56 OS.write_zeros(AlignedOffset - CurrentOffset);
57 return AlignedOffset; // == CurrentOffset;
58 }
59
writeBlobToStream(raw_ostream & Out)60 void writeBlobToStream(raw_ostream &Out) { Out << OS.str(); }
61 };
62
63 // Used to keep track of section and symbol names, so that in the YAML file
64 // sections and symbols can be referenced by name instead of by index.
65 class NameToIdxMap {
66 StringMap<unsigned> Map;
67
68 public:
69 /// \Returns false if name is already present in the map.
addName(StringRef Name,unsigned Ndx)70 bool addName(StringRef Name, unsigned Ndx) {
71 return Map.insert({Name, Ndx}).second;
72 }
73 /// \Returns false if name is not present in the map.
lookup(StringRef Name,unsigned & Idx) const74 bool lookup(StringRef Name, unsigned &Idx) const {
75 auto I = Map.find(Name);
76 if (I == Map.end())
77 return false;
78 Idx = I->getValue();
79 return true;
80 }
81 /// Asserts if name is not present in the map.
get(StringRef Name) const82 unsigned get(StringRef Name) const {
83 unsigned Idx;
84 if (lookup(Name, Idx))
85 return Idx;
86 assert(false && "Expected section not found in index");
87 return 0;
88 }
size() const89 unsigned size() const { return Map.size(); }
90 };
91
92 namespace {
93 struct Fragment {
94 uint64_t Offset;
95 uint64_t Size;
96 uint32_t Type;
97 uint64_t AddrAlign;
98 };
99 } // namespace
100
101 /// "Single point of truth" for the ELF file construction.
102 /// TODO: This class still has a ways to go before it is truly a "single
103 /// point of truth".
104 template <class ELFT> class ELFState {
105 typedef typename ELFT::Ehdr Elf_Ehdr;
106 typedef typename ELFT::Phdr Elf_Phdr;
107 typedef typename ELFT::Shdr Elf_Shdr;
108 typedef typename ELFT::Sym Elf_Sym;
109 typedef typename ELFT::Rel Elf_Rel;
110 typedef typename ELFT::Rela Elf_Rela;
111 typedef typename ELFT::Relr Elf_Relr;
112 typedef typename ELFT::Dyn Elf_Dyn;
113 typedef typename ELFT::uint uintX_t;
114
115 enum class SymtabType { Static, Dynamic };
116
117 /// The future ".strtab" section.
118 StringTableBuilder DotStrtab{StringTableBuilder::ELF};
119
120 /// The future ".shstrtab" section.
121 StringTableBuilder DotShStrtab{StringTableBuilder::ELF};
122
123 /// The future ".dynstr" section.
124 StringTableBuilder DotDynstr{StringTableBuilder::ELF};
125
126 NameToIdxMap SN2I;
127 NameToIdxMap SymN2I;
128 NameToIdxMap DynSymN2I;
129 ELFYAML::Object &Doc;
130
131 bool HasError = false;
132 yaml::ErrorHandler ErrHandler;
133 void reportError(const Twine &Msg);
134
135 std::vector<Elf_Sym> toELFSymbols(ArrayRef<ELFYAML::Symbol> Symbols,
136 const StringTableBuilder &Strtab);
137 unsigned toSectionIndex(StringRef S, StringRef LocSec, StringRef LocSym = "");
138 unsigned toSymbolIndex(StringRef S, StringRef LocSec, bool IsDynamic);
139
140 void buildSectionIndex();
141 void buildSymbolIndexes();
142 void initProgramHeaders(std::vector<Elf_Phdr> &PHeaders);
143 bool initImplicitHeader(ContiguousBlobAccumulator &CBA, Elf_Shdr &Header,
144 StringRef SecName, ELFYAML::Section *YAMLSec);
145 void initSectionHeaders(std::vector<Elf_Shdr> &SHeaders,
146 ContiguousBlobAccumulator &CBA);
147 void initSymtabSectionHeader(Elf_Shdr &SHeader, SymtabType STType,
148 ContiguousBlobAccumulator &CBA,
149 ELFYAML::Section *YAMLSec);
150 void initStrtabSectionHeader(Elf_Shdr &SHeader, StringRef Name,
151 StringTableBuilder &STB,
152 ContiguousBlobAccumulator &CBA,
153 ELFYAML::Section *YAMLSec);
154 void setProgramHeaderLayout(std::vector<Elf_Phdr> &PHeaders,
155 std::vector<Elf_Shdr> &SHeaders);
156
157 std::vector<Fragment>
158 getPhdrFragments(const ELFYAML::ProgramHeader &Phdr,
159 ArrayRef<typename ELFT::Shdr> SHeaders);
160
161 void finalizeStrings();
162 void writeELFHeader(ContiguousBlobAccumulator &CBA, raw_ostream &OS);
163 void writeSectionContent(Elf_Shdr &SHeader,
164 const ELFYAML::RawContentSection &Section,
165 ContiguousBlobAccumulator &CBA);
166 void writeSectionContent(Elf_Shdr &SHeader,
167 const ELFYAML::RelocationSection &Section,
168 ContiguousBlobAccumulator &CBA);
169 void writeSectionContent(Elf_Shdr &SHeader,
170 const ELFYAML::RelrSection &Section,
171 ContiguousBlobAccumulator &CBA);
172 void writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::Group &Group,
173 ContiguousBlobAccumulator &CBA);
174 void writeSectionContent(Elf_Shdr &SHeader,
175 const ELFYAML::SymtabShndxSection &Shndx,
176 ContiguousBlobAccumulator &CBA);
177 void writeSectionContent(Elf_Shdr &SHeader,
178 const ELFYAML::SymverSection &Section,
179 ContiguousBlobAccumulator &CBA);
180 void writeSectionContent(Elf_Shdr &SHeader,
181 const ELFYAML::VerneedSection &Section,
182 ContiguousBlobAccumulator &CBA);
183 void writeSectionContent(Elf_Shdr &SHeader,
184 const ELFYAML::VerdefSection &Section,
185 ContiguousBlobAccumulator &CBA);
186 void writeSectionContent(Elf_Shdr &SHeader,
187 const ELFYAML::MipsABIFlags &Section,
188 ContiguousBlobAccumulator &CBA);
189 void writeSectionContent(Elf_Shdr &SHeader,
190 const ELFYAML::DynamicSection &Section,
191 ContiguousBlobAccumulator &CBA);
192 void writeSectionContent(Elf_Shdr &SHeader,
193 const ELFYAML::StackSizesSection &Section,
194 ContiguousBlobAccumulator &CBA);
195 void writeSectionContent(Elf_Shdr &SHeader,
196 const ELFYAML::HashSection &Section,
197 ContiguousBlobAccumulator &CBA);
198 void writeSectionContent(Elf_Shdr &SHeader,
199 const ELFYAML::AddrsigSection &Section,
200 ContiguousBlobAccumulator &CBA);
201 void writeSectionContent(Elf_Shdr &SHeader,
202 const ELFYAML::NoteSection &Section,
203 ContiguousBlobAccumulator &CBA);
204 void writeSectionContent(Elf_Shdr &SHeader,
205 const ELFYAML::GnuHashSection &Section,
206 ContiguousBlobAccumulator &CBA);
207 void writeSectionContent(Elf_Shdr &SHeader,
208 const ELFYAML::LinkerOptionsSection &Section,
209 ContiguousBlobAccumulator &CBA);
210 void writeSectionContent(Elf_Shdr &SHeader,
211 const ELFYAML::DependentLibrariesSection &Section,
212 ContiguousBlobAccumulator &CBA);
213
214 void writeFill(ELFYAML::Fill &Fill, ContiguousBlobAccumulator &CBA);
215
216 ELFState(ELFYAML::Object &D, yaml::ErrorHandler EH);
217
218 public:
219 static bool writeELF(raw_ostream &OS, ELFYAML::Object &Doc,
220 yaml::ErrorHandler EH);
221 };
222 } // end anonymous namespace
223
arrayDataSize(ArrayRef<T> A)224 template <class T> static size_t arrayDataSize(ArrayRef<T> A) {
225 return A.size() * sizeof(T);
226 }
227
writeArrayData(raw_ostream & OS,ArrayRef<T> A)228 template <class T> static void writeArrayData(raw_ostream &OS, ArrayRef<T> A) {
229 OS.write((const char *)A.data(), arrayDataSize(A));
230 }
231
zero(T & Obj)232 template <class T> static void zero(T &Obj) { memset(&Obj, 0, sizeof(Obj)); }
233
234 template <class ELFT>
ELFState(ELFYAML::Object & D,yaml::ErrorHandler EH)235 ELFState<ELFT>::ELFState(ELFYAML::Object &D, yaml::ErrorHandler EH)
236 : Doc(D), ErrHandler(EH) {
237 std::vector<ELFYAML::Section *> Sections = Doc.getSections();
238 StringSet<> DocSections;
239 for (const ELFYAML::Section *Sec : Sections)
240 if (!Sec->Name.empty())
241 DocSections.insert(Sec->Name);
242
243 // Insert SHT_NULL section implicitly when it is not defined in YAML.
244 if (Sections.empty() || Sections.front()->Type != ELF::SHT_NULL)
245 Doc.Chunks.insert(
246 Doc.Chunks.begin(),
247 std::make_unique<ELFYAML::Section>(
248 ELFYAML::Chunk::ChunkKind::RawContent, /*IsImplicit=*/true));
249
250 std::vector<StringRef> ImplicitSections;
251 if (Doc.Symbols)
252 ImplicitSections.push_back(".symtab");
253 ImplicitSections.insert(ImplicitSections.end(), {".strtab", ".shstrtab"});
254
255 if (Doc.DynamicSymbols)
256 ImplicitSections.insert(ImplicitSections.end(), {".dynsym", ".dynstr"});
257
258 // Insert placeholders for implicit sections that are not
259 // defined explicitly in YAML.
260 for (StringRef SecName : ImplicitSections) {
261 if (DocSections.count(SecName))
262 continue;
263
264 std::unique_ptr<ELFYAML::Chunk> Sec = std::make_unique<ELFYAML::Section>(
265 ELFYAML::Chunk::ChunkKind::RawContent, true /*IsImplicit*/);
266 Sec->Name = SecName;
267 Doc.Chunks.push_back(std::move(Sec));
268 }
269 }
270
271 template <class ELFT>
writeELFHeader(ContiguousBlobAccumulator & CBA,raw_ostream & OS)272 void ELFState<ELFT>::writeELFHeader(ContiguousBlobAccumulator &CBA, raw_ostream &OS) {
273 using namespace llvm::ELF;
274
275 Elf_Ehdr Header;
276 zero(Header);
277 Header.e_ident[EI_MAG0] = 0x7f;
278 Header.e_ident[EI_MAG1] = 'E';
279 Header.e_ident[EI_MAG2] = 'L';
280 Header.e_ident[EI_MAG3] = 'F';
281 Header.e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32;
282 Header.e_ident[EI_DATA] = Doc.Header.Data;
283 Header.e_ident[EI_VERSION] = EV_CURRENT;
284 Header.e_ident[EI_OSABI] = Doc.Header.OSABI;
285 Header.e_ident[EI_ABIVERSION] = Doc.Header.ABIVersion;
286 Header.e_type = Doc.Header.Type;
287 Header.e_machine = Doc.Header.Machine;
288 Header.e_version = EV_CURRENT;
289 Header.e_entry = Doc.Header.Entry;
290 Header.e_phoff = Doc.ProgramHeaders.size() ? sizeof(Header) : 0;
291 Header.e_flags = Doc.Header.Flags;
292 Header.e_ehsize = sizeof(Elf_Ehdr);
293 Header.e_phentsize = Doc.ProgramHeaders.size() ? sizeof(Elf_Phdr) : 0;
294 Header.e_phnum = Doc.ProgramHeaders.size();
295
296 Header.e_shentsize =
297 Doc.Header.SHEntSize ? (uint16_t)*Doc.Header.SHEntSize : sizeof(Elf_Shdr);
298 // Immediately following the ELF header and program headers.
299 // Align the start of the section header and write the ELF header.
300 uint64_t SHOff;
301 CBA.getOSAndAlignedOffset(SHOff, sizeof(typename ELFT::uint));
302 Header.e_shoff =
303 Doc.Header.SHOff ? typename ELFT::uint(*Doc.Header.SHOff) : SHOff;
304 Header.e_shnum =
305 Doc.Header.SHNum ? (uint16_t)*Doc.Header.SHNum : Doc.getSections().size();
306 Header.e_shstrndx = Doc.Header.SHStrNdx ? (uint16_t)*Doc.Header.SHStrNdx
307 : SN2I.get(".shstrtab");
308
309 OS.write((const char *)&Header, sizeof(Header));
310 }
311
312 template <class ELFT>
initProgramHeaders(std::vector<Elf_Phdr> & PHeaders)313 void ELFState<ELFT>::initProgramHeaders(std::vector<Elf_Phdr> &PHeaders) {
314 for (const auto &YamlPhdr : Doc.ProgramHeaders) {
315 Elf_Phdr Phdr;
316 Phdr.p_type = YamlPhdr.Type;
317 Phdr.p_flags = YamlPhdr.Flags;
318 Phdr.p_vaddr = YamlPhdr.VAddr;
319 Phdr.p_paddr = YamlPhdr.PAddr;
320 PHeaders.push_back(Phdr);
321 }
322 }
323
324 template <class ELFT>
toSectionIndex(StringRef S,StringRef LocSec,StringRef LocSym)325 unsigned ELFState<ELFT>::toSectionIndex(StringRef S, StringRef LocSec,
326 StringRef LocSym) {
327 unsigned Index;
328 if (SN2I.lookup(S, Index) || to_integer(S, Index))
329 return Index;
330
331 assert(LocSec.empty() || LocSym.empty());
332 if (!LocSym.empty())
333 reportError("unknown section referenced: '" + S + "' by YAML symbol '" +
334 LocSym + "'");
335 else
336 reportError("unknown section referenced: '" + S + "' by YAML section '" +
337 LocSec + "'");
338 return 0;
339 }
340
341 template <class ELFT>
toSymbolIndex(StringRef S,StringRef LocSec,bool IsDynamic)342 unsigned ELFState<ELFT>::toSymbolIndex(StringRef S, StringRef LocSec,
343 bool IsDynamic) {
344 const NameToIdxMap &SymMap = IsDynamic ? DynSymN2I : SymN2I;
345 unsigned Index;
346 // Here we try to look up S in the symbol table. If it is not there,
347 // treat its value as a symbol index.
348 if (!SymMap.lookup(S, Index) && !to_integer(S, Index)) {
349 reportError("unknown symbol referenced: '" + S + "' by YAML section '" +
350 LocSec + "'");
351 return 0;
352 }
353 return Index;
354 }
355
356 template <class ELFT>
overrideFields(ELFYAML::Section * From,typename ELFT::Shdr & To)357 static void overrideFields(ELFYAML::Section *From, typename ELFT::Shdr &To) {
358 if (!From)
359 return;
360 if (From->ShFlags)
361 To.sh_flags = *From->ShFlags;
362 if (From->ShName)
363 To.sh_name = *From->ShName;
364 if (From->ShOffset)
365 To.sh_offset = *From->ShOffset;
366 if (From->ShSize)
367 To.sh_size = *From->ShSize;
368 }
369
370 template <class ELFT>
initImplicitHeader(ContiguousBlobAccumulator & CBA,Elf_Shdr & Header,StringRef SecName,ELFYAML::Section * YAMLSec)371 bool ELFState<ELFT>::initImplicitHeader(ContiguousBlobAccumulator &CBA,
372 Elf_Shdr &Header, StringRef SecName,
373 ELFYAML::Section *YAMLSec) {
374 // Check if the header was already initialized.
375 if (Header.sh_offset)
376 return false;
377
378 if (SecName == ".symtab")
379 initSymtabSectionHeader(Header, SymtabType::Static, CBA, YAMLSec);
380 else if (SecName == ".strtab")
381 initStrtabSectionHeader(Header, SecName, DotStrtab, CBA, YAMLSec);
382 else if (SecName == ".shstrtab")
383 initStrtabSectionHeader(Header, SecName, DotShStrtab, CBA, YAMLSec);
384 else if (SecName == ".dynsym")
385 initSymtabSectionHeader(Header, SymtabType::Dynamic, CBA, YAMLSec);
386 else if (SecName == ".dynstr")
387 initStrtabSectionHeader(Header, SecName, DotDynstr, CBA, YAMLSec);
388 else
389 return false;
390
391 // Override section fields if requested.
392 overrideFields<ELFT>(YAMLSec, Header);
393 return true;
394 }
395
dropUniqueSuffix(StringRef S)396 StringRef llvm::ELFYAML::dropUniqueSuffix(StringRef S) {
397 size_t SuffixPos = S.rfind(" [");
398 if (SuffixPos == StringRef::npos)
399 return S;
400 return S.substr(0, SuffixPos);
401 }
402
403 template <class ELFT>
initSectionHeaders(std::vector<Elf_Shdr> & SHeaders,ContiguousBlobAccumulator & CBA)404 void ELFState<ELFT>::initSectionHeaders(std::vector<Elf_Shdr> &SHeaders,
405 ContiguousBlobAccumulator &CBA) {
406 // Ensure SHN_UNDEF entry is present. An all-zero section header is a
407 // valid SHN_UNDEF entry since SHT_NULL == 0.
408 SHeaders.resize(Doc.getSections().size());
409
410 size_t SecNdx = -1;
411 for (const std::unique_ptr<ELFYAML::Chunk> &D : Doc.Chunks) {
412 if (auto S = dyn_cast<ELFYAML::Fill>(D.get())) {
413 writeFill(*S, CBA);
414 continue;
415 }
416
417 ++SecNdx;
418 ELFYAML::Section *Sec = cast<ELFYAML::Section>(D.get());
419 if (SecNdx == 0 && Sec->IsImplicit)
420 continue;
421
422 // We have a few sections like string or symbol tables that are usually
423 // added implicitly to the end. However, if they are explicitly specified
424 // in the YAML, we need to write them here. This ensures the file offset
425 // remains correct.
426 Elf_Shdr &SHeader = SHeaders[SecNdx];
427 if (initImplicitHeader(CBA, SHeader, Sec->Name,
428 Sec->IsImplicit ? nullptr : Sec))
429 continue;
430
431 assert(Sec && "It can't be null unless it is an implicit section. But all "
432 "implicit sections should already have been handled above.");
433
434 SHeader.sh_name =
435 DotShStrtab.getOffset(ELFYAML::dropUniqueSuffix(Sec->Name));
436 SHeader.sh_type = Sec->Type;
437 if (Sec->Flags)
438 SHeader.sh_flags = *Sec->Flags;
439 SHeader.sh_addr = Sec->Address;
440 SHeader.sh_addralign = Sec->AddressAlign;
441
442 if (!Sec->Link.empty())
443 SHeader.sh_link = toSectionIndex(Sec->Link, Sec->Name);
444
445 if (SecNdx == 0) {
446 if (auto RawSec = dyn_cast<ELFYAML::RawContentSection>(Sec)) {
447 // We do not write any content for special SHN_UNDEF section.
448 if (RawSec->Size)
449 SHeader.sh_size = *RawSec->Size;
450 if (RawSec->Info)
451 SHeader.sh_info = *RawSec->Info;
452 }
453 if (Sec->EntSize)
454 SHeader.sh_entsize = *Sec->EntSize;
455 } else if (auto S = dyn_cast<ELFYAML::RawContentSection>(Sec)) {
456 writeSectionContent(SHeader, *S, CBA);
457 } else if (auto S = dyn_cast<ELFYAML::SymtabShndxSection>(Sec)) {
458 writeSectionContent(SHeader, *S, CBA);
459 } else if (auto S = dyn_cast<ELFYAML::RelocationSection>(Sec)) {
460 writeSectionContent(SHeader, *S, CBA);
461 } else if (auto S = dyn_cast<ELFYAML::RelrSection>(Sec)) {
462 writeSectionContent(SHeader, *S, CBA);
463 } else if (auto S = dyn_cast<ELFYAML::Group>(Sec)) {
464 writeSectionContent(SHeader, *S, CBA);
465 } else if (auto S = dyn_cast<ELFYAML::MipsABIFlags>(Sec)) {
466 writeSectionContent(SHeader, *S, CBA);
467 } else if (auto S = dyn_cast<ELFYAML::NoBitsSection>(Sec)) {
468 SHeader.sh_entsize = 0;
469 SHeader.sh_size = S->Size;
470 // SHT_NOBITS section does not have content
471 // so just to setup the section offset.
472 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign);
473 } else if (auto S = dyn_cast<ELFYAML::DynamicSection>(Sec)) {
474 writeSectionContent(SHeader, *S, CBA);
475 } else if (auto S = dyn_cast<ELFYAML::SymverSection>(Sec)) {
476 writeSectionContent(SHeader, *S, CBA);
477 } else if (auto S = dyn_cast<ELFYAML::VerneedSection>(Sec)) {
478 writeSectionContent(SHeader, *S, CBA);
479 } else if (auto S = dyn_cast<ELFYAML::VerdefSection>(Sec)) {
480 writeSectionContent(SHeader, *S, CBA);
481 } else if (auto S = dyn_cast<ELFYAML::StackSizesSection>(Sec)) {
482 writeSectionContent(SHeader, *S, CBA);
483 } else if (auto S = dyn_cast<ELFYAML::HashSection>(Sec)) {
484 writeSectionContent(SHeader, *S, CBA);
485 } else if (auto S = dyn_cast<ELFYAML::AddrsigSection>(Sec)) {
486 writeSectionContent(SHeader, *S, CBA);
487 } else if (auto S = dyn_cast<ELFYAML::LinkerOptionsSection>(Sec)) {
488 writeSectionContent(SHeader, *S, CBA);
489 } else if (auto S = dyn_cast<ELFYAML::NoteSection>(Sec)) {
490 writeSectionContent(SHeader, *S, CBA);
491 } else if (auto S = dyn_cast<ELFYAML::GnuHashSection>(Sec)) {
492 writeSectionContent(SHeader, *S, CBA);
493 } else if (auto S = dyn_cast<ELFYAML::DependentLibrariesSection>(Sec)) {
494 writeSectionContent(SHeader, *S, CBA);
495 } else {
496 llvm_unreachable("Unknown section type");
497 }
498
499 // Override section fields if requested.
500 overrideFields<ELFT>(Sec, SHeader);
501 }
502 }
503
findFirstNonGlobal(ArrayRef<ELFYAML::Symbol> Symbols)504 static size_t findFirstNonGlobal(ArrayRef<ELFYAML::Symbol> Symbols) {
505 for (size_t I = 0; I < Symbols.size(); ++I)
506 if (Symbols[I].Binding.value != ELF::STB_LOCAL)
507 return I;
508 return Symbols.size();
509 }
510
writeContent(raw_ostream & OS,const Optional<yaml::BinaryRef> & Content,const Optional<llvm::yaml::Hex64> & Size)511 static uint64_t writeContent(raw_ostream &OS,
512 const Optional<yaml::BinaryRef> &Content,
513 const Optional<llvm::yaml::Hex64> &Size) {
514 size_t ContentSize = 0;
515 if (Content) {
516 Content->writeAsBinary(OS);
517 ContentSize = Content->binary_size();
518 }
519
520 if (!Size)
521 return ContentSize;
522
523 OS.write_zeros(*Size - ContentSize);
524 return *Size;
525 }
526
527 template <class ELFT>
528 std::vector<typename ELFT::Sym>
toELFSymbols(ArrayRef<ELFYAML::Symbol> Symbols,const StringTableBuilder & Strtab)529 ELFState<ELFT>::toELFSymbols(ArrayRef<ELFYAML::Symbol> Symbols,
530 const StringTableBuilder &Strtab) {
531 std::vector<Elf_Sym> Ret;
532 Ret.resize(Symbols.size() + 1);
533
534 size_t I = 0;
535 for (const ELFYAML::Symbol &Sym : Symbols) {
536 Elf_Sym &Symbol = Ret[++I];
537
538 // If NameIndex, which contains the name offset, is explicitly specified, we
539 // use it. This is useful for preparing broken objects. Otherwise, we add
540 // the specified Name to the string table builder to get its offset.
541 if (Sym.NameIndex)
542 Symbol.st_name = *Sym.NameIndex;
543 else if (!Sym.Name.empty())
544 Symbol.st_name = Strtab.getOffset(ELFYAML::dropUniqueSuffix(Sym.Name));
545
546 Symbol.setBindingAndType(Sym.Binding, Sym.Type);
547 if (!Sym.Section.empty())
548 Symbol.st_shndx = toSectionIndex(Sym.Section, "", Sym.Name);
549 else if (Sym.Index)
550 Symbol.st_shndx = *Sym.Index;
551
552 Symbol.st_value = Sym.Value;
553 Symbol.st_other = Sym.Other ? *Sym.Other : 0;
554 Symbol.st_size = Sym.Size;
555 }
556
557 return Ret;
558 }
559
560 template <class ELFT>
initSymtabSectionHeader(Elf_Shdr & SHeader,SymtabType STType,ContiguousBlobAccumulator & CBA,ELFYAML::Section * YAMLSec)561 void ELFState<ELFT>::initSymtabSectionHeader(Elf_Shdr &SHeader,
562 SymtabType STType,
563 ContiguousBlobAccumulator &CBA,
564 ELFYAML::Section *YAMLSec) {
565
566 bool IsStatic = STType == SymtabType::Static;
567 ArrayRef<ELFYAML::Symbol> Symbols;
568 if (IsStatic && Doc.Symbols)
569 Symbols = *Doc.Symbols;
570 else if (!IsStatic && Doc.DynamicSymbols)
571 Symbols = *Doc.DynamicSymbols;
572
573 ELFYAML::RawContentSection *RawSec =
574 dyn_cast_or_null<ELFYAML::RawContentSection>(YAMLSec);
575 if (RawSec && (RawSec->Content || RawSec->Size)) {
576 bool HasSymbolsDescription =
577 (IsStatic && Doc.Symbols) || (!IsStatic && Doc.DynamicSymbols);
578 if (HasSymbolsDescription) {
579 StringRef Property = (IsStatic ? "`Symbols`" : "`DynamicSymbols`");
580 if (RawSec->Content)
581 reportError("cannot specify both `Content` and " + Property +
582 " for symbol table section '" + RawSec->Name + "'");
583 if (RawSec->Size)
584 reportError("cannot specify both `Size` and " + Property +
585 " for symbol table section '" + RawSec->Name + "'");
586 return;
587 }
588 }
589
590 zero(SHeader);
591 SHeader.sh_name = DotShStrtab.getOffset(IsStatic ? ".symtab" : ".dynsym");
592
593 if (YAMLSec)
594 SHeader.sh_type = YAMLSec->Type;
595 else
596 SHeader.sh_type = IsStatic ? ELF::SHT_SYMTAB : ELF::SHT_DYNSYM;
597
598 if (RawSec && !RawSec->Link.empty()) {
599 // If the Link field is explicitly defined in the document,
600 // we should use it.
601 SHeader.sh_link = toSectionIndex(RawSec->Link, RawSec->Name);
602 } else {
603 // When we describe the .dynsym section in the document explicitly, it is
604 // allowed to omit the "DynamicSymbols" tag. In this case .dynstr is not
605 // added implicitly and we should be able to leave the Link zeroed if
606 // .dynstr is not defined.
607 unsigned Link = 0;
608 if (IsStatic)
609 Link = SN2I.get(".strtab");
610 else
611 SN2I.lookup(".dynstr", Link);
612 SHeader.sh_link = Link;
613 }
614
615 if (YAMLSec && YAMLSec->Flags)
616 SHeader.sh_flags = *YAMLSec->Flags;
617 else if (!IsStatic)
618 SHeader.sh_flags = ELF::SHF_ALLOC;
619
620 // If the symbol table section is explicitly described in the YAML
621 // then we should set the fields requested.
622 SHeader.sh_info = (RawSec && RawSec->Info) ? (unsigned)(*RawSec->Info)
623 : findFirstNonGlobal(Symbols) + 1;
624 SHeader.sh_entsize = (YAMLSec && YAMLSec->EntSize)
625 ? (uint64_t)(*YAMLSec->EntSize)
626 : sizeof(Elf_Sym);
627 SHeader.sh_addralign = YAMLSec ? (uint64_t)YAMLSec->AddressAlign : 8;
628 SHeader.sh_addr = YAMLSec ? (uint64_t)YAMLSec->Address : 0;
629
630 auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign);
631 if (RawSec && (RawSec->Content || RawSec->Size)) {
632 assert(Symbols.empty());
633 SHeader.sh_size = writeContent(OS, RawSec->Content, RawSec->Size);
634 return;
635 }
636
637 std::vector<Elf_Sym> Syms =
638 toELFSymbols(Symbols, IsStatic ? DotStrtab : DotDynstr);
639 writeArrayData(OS, makeArrayRef(Syms));
640 SHeader.sh_size = arrayDataSize(makeArrayRef(Syms));
641 }
642
643 template <class ELFT>
initStrtabSectionHeader(Elf_Shdr & SHeader,StringRef Name,StringTableBuilder & STB,ContiguousBlobAccumulator & CBA,ELFYAML::Section * YAMLSec)644 void ELFState<ELFT>::initStrtabSectionHeader(Elf_Shdr &SHeader, StringRef Name,
645 StringTableBuilder &STB,
646 ContiguousBlobAccumulator &CBA,
647 ELFYAML::Section *YAMLSec) {
648 zero(SHeader);
649 SHeader.sh_name = DotShStrtab.getOffset(Name);
650 SHeader.sh_type = YAMLSec ? YAMLSec->Type : ELF::SHT_STRTAB;
651 SHeader.sh_addralign = YAMLSec ? (uint64_t)YAMLSec->AddressAlign : 1;
652
653 ELFYAML::RawContentSection *RawSec =
654 dyn_cast_or_null<ELFYAML::RawContentSection>(YAMLSec);
655
656 auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign);
657 if (RawSec && (RawSec->Content || RawSec->Size)) {
658 SHeader.sh_size = writeContent(OS, RawSec->Content, RawSec->Size);
659 } else {
660 STB.write(OS);
661 SHeader.sh_size = STB.getSize();
662 }
663
664 if (YAMLSec && YAMLSec->EntSize)
665 SHeader.sh_entsize = *YAMLSec->EntSize;
666
667 if (RawSec && RawSec->Info)
668 SHeader.sh_info = *RawSec->Info;
669
670 if (YAMLSec && YAMLSec->Flags)
671 SHeader.sh_flags = *YAMLSec->Flags;
672 else if (Name == ".dynstr")
673 SHeader.sh_flags = ELF::SHF_ALLOC;
674
675 // If the section is explicitly described in the YAML
676 // then we want to use its section address.
677 if (YAMLSec)
678 SHeader.sh_addr = YAMLSec->Address;
679 }
680
reportError(const Twine & Msg)681 template <class ELFT> void ELFState<ELFT>::reportError(const Twine &Msg) {
682 ErrHandler(Msg);
683 HasError = true;
684 }
685
686 template <class ELFT>
687 std::vector<Fragment>
getPhdrFragments(const ELFYAML::ProgramHeader & Phdr,ArrayRef<typename ELFT::Shdr> SHeaders)688 ELFState<ELFT>::getPhdrFragments(const ELFYAML::ProgramHeader &Phdr,
689 ArrayRef<typename ELFT::Shdr> SHeaders) {
690 DenseMap<StringRef, ELFYAML::Fill *> NameToFill;
691 for (const std::unique_ptr<ELFYAML::Chunk> &D : Doc.Chunks)
692 if (auto S = dyn_cast<ELFYAML::Fill>(D.get()))
693 NameToFill[S->Name] = S;
694
695 std::vector<Fragment> Ret;
696 for (const ELFYAML::SectionName &SecName : Phdr.Sections) {
697 unsigned Index;
698 if (SN2I.lookup(SecName.Section, Index)) {
699 const typename ELFT::Shdr &H = SHeaders[Index];
700 Ret.push_back({H.sh_offset, H.sh_size, H.sh_type, H.sh_addralign});
701 continue;
702 }
703
704 if (ELFYAML::Fill *Fill = NameToFill.lookup(SecName.Section)) {
705 Ret.push_back({Fill->ShOffset, Fill->Size, llvm::ELF::SHT_PROGBITS,
706 /*ShAddrAlign=*/1});
707 continue;
708 }
709
710 reportError("unknown section or fill referenced: '" + SecName.Section +
711 "' by program header");
712 }
713
714 return Ret;
715 }
716
717 template <class ELFT>
setProgramHeaderLayout(std::vector<Elf_Phdr> & PHeaders,std::vector<Elf_Shdr> & SHeaders)718 void ELFState<ELFT>::setProgramHeaderLayout(std::vector<Elf_Phdr> &PHeaders,
719 std::vector<Elf_Shdr> &SHeaders) {
720 uint32_t PhdrIdx = 0;
721 for (auto &YamlPhdr : Doc.ProgramHeaders) {
722 Elf_Phdr &PHeader = PHeaders[PhdrIdx++];
723 std::vector<Fragment> Fragments = getPhdrFragments(YamlPhdr, SHeaders);
724
725 if (YamlPhdr.Offset) {
726 PHeader.p_offset = *YamlPhdr.Offset;
727 } else {
728 if (YamlPhdr.Sections.size())
729 PHeader.p_offset = UINT32_MAX;
730 else
731 PHeader.p_offset = 0;
732
733 // Find the minimum offset for the program header.
734 for (const Fragment &F : Fragments)
735 PHeader.p_offset = std::min((uint64_t)PHeader.p_offset, F.Offset);
736 }
737
738 // Find the maximum offset of the end of a section in order to set p_filesz
739 // and p_memsz. When setting p_filesz, trailing SHT_NOBITS sections are not
740 // counted.
741 uint64_t FileOffset = PHeader.p_offset, MemOffset = PHeader.p_offset;
742 for (const Fragment &F : Fragments) {
743 uint64_t End = F.Offset + F.Size;
744 MemOffset = std::max(MemOffset, End);
745
746 if (F.Type != llvm::ELF::SHT_NOBITS)
747 FileOffset = std::max(FileOffset, End);
748 }
749
750 // Set the file size and the memory size if not set explicitly.
751 PHeader.p_filesz = YamlPhdr.FileSize ? uint64_t(*YamlPhdr.FileSize)
752 : FileOffset - PHeader.p_offset;
753 PHeader.p_memsz = YamlPhdr.MemSize ? uint64_t(*YamlPhdr.MemSize)
754 : MemOffset - PHeader.p_offset;
755
756 if (YamlPhdr.Align) {
757 PHeader.p_align = *YamlPhdr.Align;
758 } else {
759 // Set the alignment of the segment to be the maximum alignment of the
760 // sections so that by default the segment has a valid and sensible
761 // alignment.
762 PHeader.p_align = 1;
763 for (const Fragment &F : Fragments)
764 PHeader.p_align = std::max((uint64_t)PHeader.p_align, F.AddrAlign);
765 }
766 }
767 }
768
769 template <class ELFT>
writeSectionContent(Elf_Shdr & SHeader,const ELFYAML::RawContentSection & Section,ContiguousBlobAccumulator & CBA)770 void ELFState<ELFT>::writeSectionContent(
771 Elf_Shdr &SHeader, const ELFYAML::RawContentSection &Section,
772 ContiguousBlobAccumulator &CBA) {
773 raw_ostream &OS =
774 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign);
775 SHeader.sh_size = writeContent(OS, Section.Content, Section.Size);
776
777 if (Section.EntSize)
778 SHeader.sh_entsize = *Section.EntSize;
779
780 if (Section.Info)
781 SHeader.sh_info = *Section.Info;
782 }
783
isMips64EL(const ELFYAML::Object & Doc)784 static bool isMips64EL(const ELFYAML::Object &Doc) {
785 return Doc.Header.Machine == ELFYAML::ELF_EM(llvm::ELF::EM_MIPS) &&
786 Doc.Header.Class == ELFYAML::ELF_ELFCLASS(ELF::ELFCLASS64) &&
787 Doc.Header.Data == ELFYAML::ELF_ELFDATA(ELF::ELFDATA2LSB);
788 }
789
790 template <class ELFT>
writeSectionContent(Elf_Shdr & SHeader,const ELFYAML::RelocationSection & Section,ContiguousBlobAccumulator & CBA)791 void ELFState<ELFT>::writeSectionContent(
792 Elf_Shdr &SHeader, const ELFYAML::RelocationSection &Section,
793 ContiguousBlobAccumulator &CBA) {
794 assert((Section.Type == llvm::ELF::SHT_REL ||
795 Section.Type == llvm::ELF::SHT_RELA) &&
796 "Section type is not SHT_REL nor SHT_RELA");
797
798 bool IsRela = Section.Type == llvm::ELF::SHT_RELA;
799 SHeader.sh_entsize = IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
800 SHeader.sh_size = SHeader.sh_entsize * Section.Relocations.size();
801
802 // For relocation section set link to .symtab by default.
803 unsigned Link = 0;
804 if (Section.Link.empty() && SN2I.lookup(".symtab", Link))
805 SHeader.sh_link = Link;
806
807 if (!Section.RelocatableSec.empty())
808 SHeader.sh_info = toSectionIndex(Section.RelocatableSec, Section.Name);
809
810 auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign);
811 for (const auto &Rel : Section.Relocations) {
812 unsigned SymIdx = Rel.Symbol ? toSymbolIndex(*Rel.Symbol, Section.Name,
813 Section.Link == ".dynsym")
814 : 0;
815 if (IsRela) {
816 Elf_Rela REntry;
817 zero(REntry);
818 REntry.r_offset = Rel.Offset;
819 REntry.r_addend = Rel.Addend;
820 REntry.setSymbolAndType(SymIdx, Rel.Type, isMips64EL(Doc));
821 OS.write((const char *)&REntry, sizeof(REntry));
822 } else {
823 Elf_Rel REntry;
824 zero(REntry);
825 REntry.r_offset = Rel.Offset;
826 REntry.setSymbolAndType(SymIdx, Rel.Type, isMips64EL(Doc));
827 OS.write((const char *)&REntry, sizeof(REntry));
828 }
829 }
830 }
831
832 template <class ELFT>
writeSectionContent(Elf_Shdr & SHeader,const ELFYAML::RelrSection & Section,ContiguousBlobAccumulator & CBA)833 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
834 const ELFYAML::RelrSection &Section,
835 ContiguousBlobAccumulator &CBA) {
836 raw_ostream &OS =
837 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign);
838 SHeader.sh_entsize =
839 Section.EntSize ? uint64_t(*Section.EntSize) : sizeof(Elf_Relr);
840
841 if (Section.Content) {
842 SHeader.sh_size = writeContent(OS, Section.Content, None);
843 return;
844 }
845
846 if (!Section.Entries)
847 return;
848
849 for (llvm::yaml::Hex64 E : *Section.Entries) {
850 if (!ELFT::Is64Bits && E > UINT32_MAX)
851 reportError(Section.Name + ": the value is too large for 32-bits: 0x" +
852 Twine::utohexstr(E));
853 support::endian::write<uintX_t>(OS, E, ELFT::TargetEndianness);
854 }
855
856 SHeader.sh_size = sizeof(uintX_t) * Section.Entries->size();
857 }
858
859 template <class ELFT>
writeSectionContent(Elf_Shdr & SHeader,const ELFYAML::SymtabShndxSection & Shndx,ContiguousBlobAccumulator & CBA)860 void ELFState<ELFT>::writeSectionContent(
861 Elf_Shdr &SHeader, const ELFYAML::SymtabShndxSection &Shndx,
862 ContiguousBlobAccumulator &CBA) {
863 raw_ostream &OS =
864 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign);
865
866 for (uint32_t E : Shndx.Entries)
867 support::endian::write<uint32_t>(OS, E, ELFT::TargetEndianness);
868
869 SHeader.sh_entsize = Shndx.EntSize ? (uint64_t)*Shndx.EntSize : 4;
870 SHeader.sh_size = Shndx.Entries.size() * SHeader.sh_entsize;
871 }
872
873 template <class ELFT>
writeSectionContent(Elf_Shdr & SHeader,const ELFYAML::Group & Section,ContiguousBlobAccumulator & CBA)874 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
875 const ELFYAML::Group &Section,
876 ContiguousBlobAccumulator &CBA) {
877 assert(Section.Type == llvm::ELF::SHT_GROUP &&
878 "Section type is not SHT_GROUP");
879
880 unsigned Link = 0;
881 if (Section.Link.empty() && SN2I.lookup(".symtab", Link))
882 SHeader.sh_link = Link;
883
884 SHeader.sh_entsize = 4;
885 SHeader.sh_size = SHeader.sh_entsize * Section.Members.size();
886
887 if (Section.Signature)
888 SHeader.sh_info =
889 toSymbolIndex(*Section.Signature, Section.Name, /*IsDynamic=*/false);
890
891 raw_ostream &OS =
892 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign);
893
894 for (const ELFYAML::SectionOrType &Member : Section.Members) {
895 unsigned int SectionIndex = 0;
896 if (Member.sectionNameOrType == "GRP_COMDAT")
897 SectionIndex = llvm::ELF::GRP_COMDAT;
898 else
899 SectionIndex = toSectionIndex(Member.sectionNameOrType, Section.Name);
900 support::endian::write<uint32_t>(OS, SectionIndex, ELFT::TargetEndianness);
901 }
902 }
903
904 template <class ELFT>
writeSectionContent(Elf_Shdr & SHeader,const ELFYAML::SymverSection & Section,ContiguousBlobAccumulator & CBA)905 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
906 const ELFYAML::SymverSection &Section,
907 ContiguousBlobAccumulator &CBA) {
908 raw_ostream &OS =
909 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign);
910 for (uint16_t Version : Section.Entries)
911 support::endian::write<uint16_t>(OS, Version, ELFT::TargetEndianness);
912
913 SHeader.sh_entsize = Section.EntSize ? (uint64_t)*Section.EntSize : 2;
914 SHeader.sh_size = Section.Entries.size() * SHeader.sh_entsize;
915 }
916
917 template <class ELFT>
writeSectionContent(Elf_Shdr & SHeader,const ELFYAML::StackSizesSection & Section,ContiguousBlobAccumulator & CBA)918 void ELFState<ELFT>::writeSectionContent(
919 Elf_Shdr &SHeader, const ELFYAML::StackSizesSection &Section,
920 ContiguousBlobAccumulator &CBA) {
921 raw_ostream &OS =
922 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign);
923
924 if (Section.Content || Section.Size) {
925 SHeader.sh_size = writeContent(OS, Section.Content, Section.Size);
926 return;
927 }
928
929 for (const ELFYAML::StackSizeEntry &E : *Section.Entries) {
930 support::endian::write<uintX_t>(OS, E.Address, ELFT::TargetEndianness);
931 SHeader.sh_size += sizeof(uintX_t) + encodeULEB128(E.Size, OS);
932 }
933 }
934
935 template <class ELFT>
writeSectionContent(Elf_Shdr & SHeader,const ELFYAML::LinkerOptionsSection & Section,ContiguousBlobAccumulator & CBA)936 void ELFState<ELFT>::writeSectionContent(
937 Elf_Shdr &SHeader, const ELFYAML::LinkerOptionsSection &Section,
938 ContiguousBlobAccumulator &CBA) {
939 raw_ostream &OS =
940 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign);
941
942 if (Section.Content) {
943 SHeader.sh_size = writeContent(OS, Section.Content, None);
944 return;
945 }
946
947 if (!Section.Options)
948 return;
949
950 for (const ELFYAML::LinkerOption &LO : *Section.Options) {
951 OS.write(LO.Key.data(), LO.Key.size());
952 OS.write('\0');
953 OS.write(LO.Value.data(), LO.Value.size());
954 OS.write('\0');
955 SHeader.sh_size += (LO.Key.size() + LO.Value.size() + 2);
956 }
957 }
958
959 template <class ELFT>
writeSectionContent(Elf_Shdr & SHeader,const ELFYAML::DependentLibrariesSection & Section,ContiguousBlobAccumulator & CBA)960 void ELFState<ELFT>::writeSectionContent(
961 Elf_Shdr &SHeader, const ELFYAML::DependentLibrariesSection &Section,
962 ContiguousBlobAccumulator &CBA) {
963 raw_ostream &OS =
964 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign);
965
966 if (Section.Content) {
967 SHeader.sh_size = writeContent(OS, Section.Content, None);
968 return;
969 }
970
971 if (!Section.Libs)
972 return;
973
974 for (StringRef Lib : *Section.Libs) {
975 OS.write(Lib.data(), Lib.size());
976 OS.write('\0');
977 SHeader.sh_size += Lib.size() + 1;
978 }
979 }
980
981 template <class ELFT>
writeSectionContent(Elf_Shdr & SHeader,const ELFYAML::HashSection & Section,ContiguousBlobAccumulator & CBA)982 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
983 const ELFYAML::HashSection &Section,
984 ContiguousBlobAccumulator &CBA) {
985 raw_ostream &OS =
986 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign);
987
988 unsigned Link = 0;
989 if (Section.Link.empty() && SN2I.lookup(".dynsym", Link))
990 SHeader.sh_link = Link;
991
992 if (Section.Content || Section.Size) {
993 SHeader.sh_size = writeContent(OS, Section.Content, Section.Size);
994 return;
995 }
996
997 support::endian::write<uint32_t>(OS, Section.Bucket->size(),
998 ELFT::TargetEndianness);
999 support::endian::write<uint32_t>(OS, Section.Chain->size(),
1000 ELFT::TargetEndianness);
1001 for (uint32_t Val : *Section.Bucket)
1002 support::endian::write<uint32_t>(OS, Val, ELFT::TargetEndianness);
1003 for (uint32_t Val : *Section.Chain)
1004 support::endian::write<uint32_t>(OS, Val, ELFT::TargetEndianness);
1005
1006 SHeader.sh_size = (2 + Section.Bucket->size() + Section.Chain->size()) * 4;
1007 }
1008
1009 template <class ELFT>
writeSectionContent(Elf_Shdr & SHeader,const ELFYAML::VerdefSection & Section,ContiguousBlobAccumulator & CBA)1010 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
1011 const ELFYAML::VerdefSection &Section,
1012 ContiguousBlobAccumulator &CBA) {
1013 typedef typename ELFT::Verdef Elf_Verdef;
1014 typedef typename ELFT::Verdaux Elf_Verdaux;
1015 raw_ostream &OS =
1016 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign);
1017
1018 SHeader.sh_info = Section.Info;
1019
1020 if (Section.Content) {
1021 SHeader.sh_size = writeContent(OS, Section.Content, None);
1022 return;
1023 }
1024
1025 if (!Section.Entries)
1026 return;
1027
1028 uint64_t AuxCnt = 0;
1029 for (size_t I = 0; I < Section.Entries->size(); ++I) {
1030 const ELFYAML::VerdefEntry &E = (*Section.Entries)[I];
1031
1032 Elf_Verdef VerDef;
1033 VerDef.vd_version = E.Version;
1034 VerDef.vd_flags = E.Flags;
1035 VerDef.vd_ndx = E.VersionNdx;
1036 VerDef.vd_hash = E.Hash;
1037 VerDef.vd_aux = sizeof(Elf_Verdef);
1038 VerDef.vd_cnt = E.VerNames.size();
1039 if (I == Section.Entries->size() - 1)
1040 VerDef.vd_next = 0;
1041 else
1042 VerDef.vd_next =
1043 sizeof(Elf_Verdef) + E.VerNames.size() * sizeof(Elf_Verdaux);
1044 OS.write((const char *)&VerDef, sizeof(Elf_Verdef));
1045
1046 for (size_t J = 0; J < E.VerNames.size(); ++J, ++AuxCnt) {
1047 Elf_Verdaux VernAux;
1048 VernAux.vda_name = DotDynstr.getOffset(E.VerNames[J]);
1049 if (J == E.VerNames.size() - 1)
1050 VernAux.vda_next = 0;
1051 else
1052 VernAux.vda_next = sizeof(Elf_Verdaux);
1053 OS.write((const char *)&VernAux, sizeof(Elf_Verdaux));
1054 }
1055 }
1056
1057 SHeader.sh_size = Section.Entries->size() * sizeof(Elf_Verdef) +
1058 AuxCnt * sizeof(Elf_Verdaux);
1059 }
1060
1061 template <class ELFT>
writeSectionContent(Elf_Shdr & SHeader,const ELFYAML::VerneedSection & Section,ContiguousBlobAccumulator & CBA)1062 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
1063 const ELFYAML::VerneedSection &Section,
1064 ContiguousBlobAccumulator &CBA) {
1065 typedef typename ELFT::Verneed Elf_Verneed;
1066 typedef typename ELFT::Vernaux Elf_Vernaux;
1067
1068 auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign);
1069 SHeader.sh_info = Section.Info;
1070
1071 if (Section.Content) {
1072 SHeader.sh_size = writeContent(OS, Section.Content, None);
1073 return;
1074 }
1075
1076 if (!Section.VerneedV)
1077 return;
1078
1079 uint64_t AuxCnt = 0;
1080 for (size_t I = 0; I < Section.VerneedV->size(); ++I) {
1081 const ELFYAML::VerneedEntry &VE = (*Section.VerneedV)[I];
1082
1083 Elf_Verneed VerNeed;
1084 VerNeed.vn_version = VE.Version;
1085 VerNeed.vn_file = DotDynstr.getOffset(VE.File);
1086 if (I == Section.VerneedV->size() - 1)
1087 VerNeed.vn_next = 0;
1088 else
1089 VerNeed.vn_next =
1090 sizeof(Elf_Verneed) + VE.AuxV.size() * sizeof(Elf_Vernaux);
1091 VerNeed.vn_cnt = VE.AuxV.size();
1092 VerNeed.vn_aux = sizeof(Elf_Verneed);
1093 OS.write((const char *)&VerNeed, sizeof(Elf_Verneed));
1094
1095 for (size_t J = 0; J < VE.AuxV.size(); ++J, ++AuxCnt) {
1096 const ELFYAML::VernauxEntry &VAuxE = VE.AuxV[J];
1097
1098 Elf_Vernaux VernAux;
1099 VernAux.vna_hash = VAuxE.Hash;
1100 VernAux.vna_flags = VAuxE.Flags;
1101 VernAux.vna_other = VAuxE.Other;
1102 VernAux.vna_name = DotDynstr.getOffset(VAuxE.Name);
1103 if (J == VE.AuxV.size() - 1)
1104 VernAux.vna_next = 0;
1105 else
1106 VernAux.vna_next = sizeof(Elf_Vernaux);
1107 OS.write((const char *)&VernAux, sizeof(Elf_Vernaux));
1108 }
1109 }
1110
1111 SHeader.sh_size = Section.VerneedV->size() * sizeof(Elf_Verneed) +
1112 AuxCnt * sizeof(Elf_Vernaux);
1113 }
1114
1115 template <class ELFT>
writeSectionContent(Elf_Shdr & SHeader,const ELFYAML::MipsABIFlags & Section,ContiguousBlobAccumulator & CBA)1116 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
1117 const ELFYAML::MipsABIFlags &Section,
1118 ContiguousBlobAccumulator &CBA) {
1119 assert(Section.Type == llvm::ELF::SHT_MIPS_ABIFLAGS &&
1120 "Section type is not SHT_MIPS_ABIFLAGS");
1121
1122 object::Elf_Mips_ABIFlags<ELFT> Flags;
1123 zero(Flags);
1124 SHeader.sh_entsize = sizeof(Flags);
1125 SHeader.sh_size = SHeader.sh_entsize;
1126
1127 auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign);
1128 Flags.version = Section.Version;
1129 Flags.isa_level = Section.ISALevel;
1130 Flags.isa_rev = Section.ISARevision;
1131 Flags.gpr_size = Section.GPRSize;
1132 Flags.cpr1_size = Section.CPR1Size;
1133 Flags.cpr2_size = Section.CPR2Size;
1134 Flags.fp_abi = Section.FpABI;
1135 Flags.isa_ext = Section.ISAExtension;
1136 Flags.ases = Section.ASEs;
1137 Flags.flags1 = Section.Flags1;
1138 Flags.flags2 = Section.Flags2;
1139 OS.write((const char *)&Flags, sizeof(Flags));
1140 }
1141
1142 template <class ELFT>
writeSectionContent(Elf_Shdr & SHeader,const ELFYAML::DynamicSection & Section,ContiguousBlobAccumulator & CBA)1143 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
1144 const ELFYAML::DynamicSection &Section,
1145 ContiguousBlobAccumulator &CBA) {
1146 assert(Section.Type == llvm::ELF::SHT_DYNAMIC &&
1147 "Section type is not SHT_DYNAMIC");
1148
1149 if (!Section.Entries.empty() && Section.Content)
1150 reportError("cannot specify both raw content and explicit entries "
1151 "for dynamic section '" +
1152 Section.Name + "'");
1153
1154 if (Section.Content)
1155 SHeader.sh_size = Section.Content->binary_size();
1156 else
1157 SHeader.sh_size = 2 * sizeof(uintX_t) * Section.Entries.size();
1158 if (Section.EntSize)
1159 SHeader.sh_entsize = *Section.EntSize;
1160 else
1161 SHeader.sh_entsize = sizeof(Elf_Dyn);
1162
1163 raw_ostream &OS =
1164 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign);
1165 for (const ELFYAML::DynamicEntry &DE : Section.Entries) {
1166 support::endian::write<uintX_t>(OS, DE.Tag, ELFT::TargetEndianness);
1167 support::endian::write<uintX_t>(OS, DE.Val, ELFT::TargetEndianness);
1168 }
1169 if (Section.Content)
1170 Section.Content->writeAsBinary(OS);
1171 }
1172
1173 template <class ELFT>
writeSectionContent(Elf_Shdr & SHeader,const ELFYAML::AddrsigSection & Section,ContiguousBlobAccumulator & CBA)1174 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
1175 const ELFYAML::AddrsigSection &Section,
1176 ContiguousBlobAccumulator &CBA) {
1177 raw_ostream &OS =
1178 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign);
1179
1180 unsigned Link = 0;
1181 if (Section.Link.empty() && SN2I.lookup(".symtab", Link))
1182 SHeader.sh_link = Link;
1183
1184 if (Section.Content || Section.Size) {
1185 SHeader.sh_size = writeContent(OS, Section.Content, Section.Size);
1186 return;
1187 }
1188
1189 for (const ELFYAML::AddrsigSymbol &Sym : *Section.Symbols) {
1190 uint64_t Val =
1191 Sym.Name ? toSymbolIndex(*Sym.Name, Section.Name, /*IsDynamic=*/false)
1192 : (uint32_t)*Sym.Index;
1193 SHeader.sh_size += encodeULEB128(Val, OS);
1194 }
1195 }
1196
1197 template <class ELFT>
writeSectionContent(Elf_Shdr & SHeader,const ELFYAML::NoteSection & Section,ContiguousBlobAccumulator & CBA)1198 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
1199 const ELFYAML::NoteSection &Section,
1200 ContiguousBlobAccumulator &CBA) {
1201 raw_ostream &OS =
1202 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign);
1203 uint64_t Offset = OS.tell();
1204
1205 if (Section.Content || Section.Size) {
1206 SHeader.sh_size = writeContent(OS, Section.Content, Section.Size);
1207 return;
1208 }
1209
1210 for (const ELFYAML::NoteEntry &NE : *Section.Notes) {
1211 // Write name size.
1212 if (NE.Name.empty())
1213 support::endian::write<uint32_t>(OS, 0, ELFT::TargetEndianness);
1214 else
1215 support::endian::write<uint32_t>(OS, NE.Name.size() + 1,
1216 ELFT::TargetEndianness);
1217
1218 // Write description size.
1219 if (NE.Desc.binary_size() == 0)
1220 support::endian::write<uint32_t>(OS, 0, ELFT::TargetEndianness);
1221 else
1222 support::endian::write<uint32_t>(OS, NE.Desc.binary_size(),
1223 ELFT::TargetEndianness);
1224
1225 // Write type.
1226 support::endian::write<uint32_t>(OS, NE.Type, ELFT::TargetEndianness);
1227
1228 // Write name, null terminator and padding.
1229 if (!NE.Name.empty()) {
1230 support::endian::write<uint8_t>(OS, arrayRefFromStringRef(NE.Name),
1231 ELFT::TargetEndianness);
1232 support::endian::write<uint8_t>(OS, 0, ELFT::TargetEndianness);
1233 CBA.padToAlignment(4);
1234 }
1235
1236 // Write description and padding.
1237 if (NE.Desc.binary_size() != 0) {
1238 NE.Desc.writeAsBinary(OS);
1239 CBA.padToAlignment(4);
1240 }
1241 }
1242
1243 SHeader.sh_size = OS.tell() - Offset;
1244 }
1245
1246 template <class ELFT>
writeSectionContent(Elf_Shdr & SHeader,const ELFYAML::GnuHashSection & Section,ContiguousBlobAccumulator & CBA)1247 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
1248 const ELFYAML::GnuHashSection &Section,
1249 ContiguousBlobAccumulator &CBA) {
1250 raw_ostream &OS =
1251 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign);
1252
1253 unsigned Link = 0;
1254 if (Section.Link.empty() && SN2I.lookup(".dynsym", Link))
1255 SHeader.sh_link = Link;
1256
1257 if (Section.Content) {
1258 SHeader.sh_size = writeContent(OS, Section.Content, None);
1259 return;
1260 }
1261
1262 // We write the header first, starting with the hash buckets count. Normally
1263 // it is the number of entries in HashBuckets, but the "NBuckets" property can
1264 // be used to override this field, which is useful for producing broken
1265 // objects.
1266 if (Section.Header->NBuckets)
1267 support::endian::write<uint32_t>(OS, *Section.Header->NBuckets,
1268 ELFT::TargetEndianness);
1269 else
1270 support::endian::write<uint32_t>(OS, Section.HashBuckets->size(),
1271 ELFT::TargetEndianness);
1272
1273 // Write the index of the first symbol in the dynamic symbol table accessible
1274 // via the hash table.
1275 support::endian::write<uint32_t>(OS, Section.Header->SymNdx,
1276 ELFT::TargetEndianness);
1277
1278 // Write the number of words in the Bloom filter. As above, the "MaskWords"
1279 // property can be used to set this field to any value.
1280 if (Section.Header->MaskWords)
1281 support::endian::write<uint32_t>(OS, *Section.Header->MaskWords,
1282 ELFT::TargetEndianness);
1283 else
1284 support::endian::write<uint32_t>(OS, Section.BloomFilter->size(),
1285 ELFT::TargetEndianness);
1286
1287 // Write the shift constant used by the Bloom filter.
1288 support::endian::write<uint32_t>(OS, Section.Header->Shift2,
1289 ELFT::TargetEndianness);
1290
1291 // We've finished writing the header. Now write the Bloom filter.
1292 for (llvm::yaml::Hex64 Val : *Section.BloomFilter)
1293 support::endian::write<typename ELFT::uint>(OS, Val,
1294 ELFT::TargetEndianness);
1295
1296 // Write an array of hash buckets.
1297 for (llvm::yaml::Hex32 Val : *Section.HashBuckets)
1298 support::endian::write<uint32_t>(OS, Val, ELFT::TargetEndianness);
1299
1300 // Write an array of hash values.
1301 for (llvm::yaml::Hex32 Val : *Section.HashValues)
1302 support::endian::write<uint32_t>(OS, Val, ELFT::TargetEndianness);
1303
1304 SHeader.sh_size = 16 /*Header size*/ +
1305 Section.BloomFilter->size() * sizeof(typename ELFT::uint) +
1306 Section.HashBuckets->size() * 4 +
1307 Section.HashValues->size() * 4;
1308 }
1309
1310 template <class ELFT>
writeFill(ELFYAML::Fill & Fill,ContiguousBlobAccumulator & CBA)1311 void ELFState<ELFT>::writeFill(ELFYAML::Fill &Fill,
1312 ContiguousBlobAccumulator &CBA) {
1313 raw_ostream &OS = CBA.getOSAndAlignedOffset(Fill.ShOffset, /*Align=*/1);
1314
1315 size_t PatternSize = Fill.Pattern ? Fill.Pattern->binary_size() : 0;
1316 if (!PatternSize) {
1317 OS.write_zeros(Fill.Size);
1318 return;
1319 }
1320
1321 // Fill the content with the specified pattern.
1322 uint64_t Written = 0;
1323 for (; Written + PatternSize <= Fill.Size; Written += PatternSize)
1324 Fill.Pattern->writeAsBinary(OS);
1325 Fill.Pattern->writeAsBinary(OS, Fill.Size - Written);
1326 }
1327
buildSectionIndex()1328 template <class ELFT> void ELFState<ELFT>::buildSectionIndex() {
1329 size_t SecNdx = -1;
1330 StringSet<> Seen;
1331 for (size_t I = 0; I < Doc.Chunks.size(); ++I) {
1332 const std::unique_ptr<ELFYAML::Chunk> &C = Doc.Chunks[I];
1333 bool IsSection = isa<ELFYAML::Section>(C.get());
1334 if (IsSection)
1335 ++SecNdx;
1336
1337 if (C->Name.empty())
1338 continue;
1339
1340 if (!Seen.insert(C->Name).second)
1341 reportError("repeated section/fill name: '" + C->Name +
1342 "' at YAML section/fill number " + Twine(I));
1343 if (!IsSection || HasError)
1344 continue;
1345
1346 if (!SN2I.addName(C->Name, SecNdx))
1347 llvm_unreachable("buildSectionIndex() failed");
1348 DotShStrtab.add(ELFYAML::dropUniqueSuffix(C->Name));
1349 }
1350
1351 DotShStrtab.finalize();
1352 }
1353
buildSymbolIndexes()1354 template <class ELFT> void ELFState<ELFT>::buildSymbolIndexes() {
1355 auto Build = [this](ArrayRef<ELFYAML::Symbol> V, NameToIdxMap &Map) {
1356 for (size_t I = 0, S = V.size(); I < S; ++I) {
1357 const ELFYAML::Symbol &Sym = V[I];
1358 if (!Sym.Name.empty() && !Map.addName(Sym.Name, I + 1))
1359 reportError("repeated symbol name: '" + Sym.Name + "'");
1360 }
1361 };
1362
1363 if (Doc.Symbols)
1364 Build(*Doc.Symbols, SymN2I);
1365 if (Doc.DynamicSymbols)
1366 Build(*Doc.DynamicSymbols, DynSymN2I);
1367 }
1368
finalizeStrings()1369 template <class ELFT> void ELFState<ELFT>::finalizeStrings() {
1370 // Add the regular symbol names to .strtab section.
1371 if (Doc.Symbols)
1372 for (const ELFYAML::Symbol &Sym : *Doc.Symbols)
1373 DotStrtab.add(ELFYAML::dropUniqueSuffix(Sym.Name));
1374 DotStrtab.finalize();
1375
1376 // Add the dynamic symbol names to .dynstr section.
1377 if (Doc.DynamicSymbols)
1378 for (const ELFYAML::Symbol &Sym : *Doc.DynamicSymbols)
1379 DotDynstr.add(ELFYAML::dropUniqueSuffix(Sym.Name));
1380
1381 // SHT_GNU_verdef and SHT_GNU_verneed sections might also
1382 // add strings to .dynstr section.
1383 for (const ELFYAML::Chunk *Sec : Doc.getSections()) {
1384 if (auto VerNeed = dyn_cast<ELFYAML::VerneedSection>(Sec)) {
1385 if (VerNeed->VerneedV) {
1386 for (const ELFYAML::VerneedEntry &VE : *VerNeed->VerneedV) {
1387 DotDynstr.add(VE.File);
1388 for (const ELFYAML::VernauxEntry &Aux : VE.AuxV)
1389 DotDynstr.add(Aux.Name);
1390 }
1391 }
1392 } else if (auto VerDef = dyn_cast<ELFYAML::VerdefSection>(Sec)) {
1393 if (VerDef->Entries)
1394 for (const ELFYAML::VerdefEntry &E : *VerDef->Entries)
1395 for (StringRef Name : E.VerNames)
1396 DotDynstr.add(Name);
1397 }
1398 }
1399
1400 DotDynstr.finalize();
1401 }
1402
1403 template <class ELFT>
writeELF(raw_ostream & OS,ELFYAML::Object & Doc,yaml::ErrorHandler EH)1404 bool ELFState<ELFT>::writeELF(raw_ostream &OS, ELFYAML::Object &Doc,
1405 yaml::ErrorHandler EH) {
1406 ELFState<ELFT> State(Doc, EH);
1407
1408 // Finalize .strtab and .dynstr sections. We do that early because want to
1409 // finalize the string table builders before writing the content of the
1410 // sections that might want to use them.
1411 State.finalizeStrings();
1412
1413 State.buildSectionIndex();
1414 if (State.HasError)
1415 return false;
1416
1417 State.buildSymbolIndexes();
1418
1419 std::vector<Elf_Phdr> PHeaders;
1420 State.initProgramHeaders(PHeaders);
1421
1422 // XXX: This offset is tightly coupled with the order that we write
1423 // things to `OS`.
1424 const size_t SectionContentBeginOffset =
1425 sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * Doc.ProgramHeaders.size();
1426 ContiguousBlobAccumulator CBA(SectionContentBeginOffset);
1427
1428 std::vector<Elf_Shdr> SHeaders;
1429 State.initSectionHeaders(SHeaders, CBA);
1430
1431 // Now we can decide segment offsets.
1432 State.setProgramHeaderLayout(PHeaders, SHeaders);
1433
1434 if (State.HasError)
1435 return false;
1436
1437 State.writeELFHeader(CBA, OS);
1438 writeArrayData(OS, makeArrayRef(PHeaders));
1439 CBA.writeBlobToStream(OS);
1440 writeArrayData(OS, makeArrayRef(SHeaders));
1441 return true;
1442 }
1443
1444 namespace llvm {
1445 namespace yaml {
1446
yaml2elf(llvm::ELFYAML::Object & Doc,raw_ostream & Out,ErrorHandler EH)1447 bool yaml2elf(llvm::ELFYAML::Object &Doc, raw_ostream &Out, ErrorHandler EH) {
1448 bool IsLE = Doc.Header.Data == ELFYAML::ELF_ELFDATA(ELF::ELFDATA2LSB);
1449 bool Is64Bit = Doc.Header.Class == ELFYAML::ELF_ELFCLASS(ELF::ELFCLASS64);
1450 if (Is64Bit) {
1451 if (IsLE)
1452 return ELFState<object::ELF64LE>::writeELF(Out, Doc, EH);
1453 return ELFState<object::ELF64BE>::writeELF(Out, Doc, EH);
1454 }
1455 if (IsLE)
1456 return ELFState<object::ELF32LE>::writeELF(Out, Doc, EH);
1457 return ELFState<object::ELF32BE>::writeELF(Out, Doc, EH);
1458 }
1459
1460 } // namespace yaml
1461 } // namespace llvm
1462