1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * (C) Copyright Linus Torvalds 1999
4 * (C) Copyright Johannes Erdfelt 1999-2001
5 * (C) Copyright Andreas Gal 1999
6 * (C) Copyright Gregory P. Smith 1999
7 * (C) Copyright Deti Fliegl 1999
8 * (C) Copyright Randy Dunlap 2000
9 * (C) Copyright David Brownell 2000-2002
10 */
11
12 #include <linux/bcd.h>
13 #include <linux/module.h>
14 #include <linux/version.h>
15 #include <linux/kernel.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/slab.h>
18 #include <linux/completion.h>
19 #include <linux/utsname.h>
20 #include <linux/mm.h>
21 #include <asm/io.h>
22 #include <linux/device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/mutex.h>
25 #include <asm/irq.h>
26 #include <asm/byteorder.h>
27 #include <asm/unaligned.h>
28 #include <linux/platform_device.h>
29 #include <linux/workqueue.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/types.h>
32 #include <linux/genalloc.h>
33 #include <linux/io.h>
34 #include <linux/kcov.h>
35
36 #include <linux/phy/phy.h>
37 #include <linux/usb.h>
38 #include <linux/usb/hcd.h>
39 #include <linux/usb/otg.h>
40
41 #include "usb.h"
42 #include "phy.h"
43
44
45 /*-------------------------------------------------------------------------*/
46
47 /*
48 * USB Host Controller Driver framework
49 *
50 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
51 * HCD-specific behaviors/bugs.
52 *
53 * This does error checks, tracks devices and urbs, and delegates to a
54 * "hc_driver" only for code (and data) that really needs to know about
55 * hardware differences. That includes root hub registers, i/o queues,
56 * and so on ... but as little else as possible.
57 *
58 * Shared code includes most of the "root hub" code (these are emulated,
59 * though each HC's hardware works differently) and PCI glue, plus request
60 * tracking overhead. The HCD code should only block on spinlocks or on
61 * hardware handshaking; blocking on software events (such as other kernel
62 * threads releasing resources, or completing actions) is all generic.
63 *
64 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
65 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
66 * only by the hub driver ... and that neither should be seen or used by
67 * usb client device drivers.
68 *
69 * Contributors of ideas or unattributed patches include: David Brownell,
70 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
71 *
72 * HISTORY:
73 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
74 * associated cleanup. "usb_hcd" still != "usb_bus".
75 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
76 */
77
78 /*-------------------------------------------------------------------------*/
79
80 /* Keep track of which host controller drivers are loaded */
81 unsigned long usb_hcds_loaded;
82 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
83
84 /* host controllers we manage */
85 DEFINE_IDR (usb_bus_idr);
86 EXPORT_SYMBOL_GPL (usb_bus_idr);
87
88 /* used when allocating bus numbers */
89 #define USB_MAXBUS 64
90
91 /* used when updating list of hcds */
92 DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */
93 EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
94
95 /* used for controlling access to virtual root hubs */
96 static DEFINE_SPINLOCK(hcd_root_hub_lock);
97
98 /* used when updating an endpoint's URB list */
99 static DEFINE_SPINLOCK(hcd_urb_list_lock);
100
101 /* used to protect against unlinking URBs after the device is gone */
102 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
103
104 /* wait queue for synchronous unlinks */
105 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
106
107 /*-------------------------------------------------------------------------*/
108
109 /*
110 * Sharable chunks of root hub code.
111 */
112
113 /*-------------------------------------------------------------------------*/
114 #define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
115 #define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
116
117 /* usb 3.1 root hub device descriptor */
118 static const u8 usb31_rh_dev_descriptor[18] = {
119 0x12, /* __u8 bLength; */
120 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
121 0x10, 0x03, /* __le16 bcdUSB; v3.1 */
122
123 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
124 0x00, /* __u8 bDeviceSubClass; */
125 0x03, /* __u8 bDeviceProtocol; USB 3 hub */
126 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
127
128 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
129 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
130 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
131
132 0x03, /* __u8 iManufacturer; */
133 0x02, /* __u8 iProduct; */
134 0x01, /* __u8 iSerialNumber; */
135 0x01 /* __u8 bNumConfigurations; */
136 };
137
138 /* usb 3.0 root hub device descriptor */
139 static const u8 usb3_rh_dev_descriptor[18] = {
140 0x12, /* __u8 bLength; */
141 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
142 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
143
144 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
145 0x00, /* __u8 bDeviceSubClass; */
146 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
147 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
148
149 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
150 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
151 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
152
153 0x03, /* __u8 iManufacturer; */
154 0x02, /* __u8 iProduct; */
155 0x01, /* __u8 iSerialNumber; */
156 0x01 /* __u8 bNumConfigurations; */
157 };
158
159 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
160 static const u8 usb25_rh_dev_descriptor[18] = {
161 0x12, /* __u8 bLength; */
162 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
163 0x50, 0x02, /* __le16 bcdUSB; v2.5 */
164
165 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
166 0x00, /* __u8 bDeviceSubClass; */
167 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
168 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
169
170 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
171 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
172 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
173
174 0x03, /* __u8 iManufacturer; */
175 0x02, /* __u8 iProduct; */
176 0x01, /* __u8 iSerialNumber; */
177 0x01 /* __u8 bNumConfigurations; */
178 };
179
180 /* usb 2.0 root hub device descriptor */
181 static const u8 usb2_rh_dev_descriptor[18] = {
182 0x12, /* __u8 bLength; */
183 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
184 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
185
186 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
187 0x00, /* __u8 bDeviceSubClass; */
188 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
189 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
190
191 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
192 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
193 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
194
195 0x03, /* __u8 iManufacturer; */
196 0x02, /* __u8 iProduct; */
197 0x01, /* __u8 iSerialNumber; */
198 0x01 /* __u8 bNumConfigurations; */
199 };
200
201 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
202
203 /* usb 1.1 root hub device descriptor */
204 static const u8 usb11_rh_dev_descriptor[18] = {
205 0x12, /* __u8 bLength; */
206 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
207 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
208
209 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
210 0x00, /* __u8 bDeviceSubClass; */
211 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
212 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
213
214 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
215 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
216 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
217
218 0x03, /* __u8 iManufacturer; */
219 0x02, /* __u8 iProduct; */
220 0x01, /* __u8 iSerialNumber; */
221 0x01 /* __u8 bNumConfigurations; */
222 };
223
224
225 /*-------------------------------------------------------------------------*/
226
227 /* Configuration descriptors for our root hubs */
228
229 static const u8 fs_rh_config_descriptor[] = {
230
231 /* one configuration */
232 0x09, /* __u8 bLength; */
233 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
234 0x19, 0x00, /* __le16 wTotalLength; */
235 0x01, /* __u8 bNumInterfaces; (1) */
236 0x01, /* __u8 bConfigurationValue; */
237 0x00, /* __u8 iConfiguration; */
238 0xc0, /* __u8 bmAttributes;
239 Bit 7: must be set,
240 6: Self-powered,
241 5: Remote wakeup,
242 4..0: resvd */
243 0x00, /* __u8 MaxPower; */
244
245 /* USB 1.1:
246 * USB 2.0, single TT organization (mandatory):
247 * one interface, protocol 0
248 *
249 * USB 2.0, multiple TT organization (optional):
250 * two interfaces, protocols 1 (like single TT)
251 * and 2 (multiple TT mode) ... config is
252 * sometimes settable
253 * NOT IMPLEMENTED
254 */
255
256 /* one interface */
257 0x09, /* __u8 if_bLength; */
258 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
259 0x00, /* __u8 if_bInterfaceNumber; */
260 0x00, /* __u8 if_bAlternateSetting; */
261 0x01, /* __u8 if_bNumEndpoints; */
262 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
263 0x00, /* __u8 if_bInterfaceSubClass; */
264 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
265 0x00, /* __u8 if_iInterface; */
266
267 /* one endpoint (status change endpoint) */
268 0x07, /* __u8 ep_bLength; */
269 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
270 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
271 0x03, /* __u8 ep_bmAttributes; Interrupt */
272 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
273 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
274 };
275
276 static const u8 hs_rh_config_descriptor[] = {
277
278 /* one configuration */
279 0x09, /* __u8 bLength; */
280 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
281 0x19, 0x00, /* __le16 wTotalLength; */
282 0x01, /* __u8 bNumInterfaces; (1) */
283 0x01, /* __u8 bConfigurationValue; */
284 0x00, /* __u8 iConfiguration; */
285 0xc0, /* __u8 bmAttributes;
286 Bit 7: must be set,
287 6: Self-powered,
288 5: Remote wakeup,
289 4..0: resvd */
290 0x00, /* __u8 MaxPower; */
291
292 /* USB 1.1:
293 * USB 2.0, single TT organization (mandatory):
294 * one interface, protocol 0
295 *
296 * USB 2.0, multiple TT organization (optional):
297 * two interfaces, protocols 1 (like single TT)
298 * and 2 (multiple TT mode) ... config is
299 * sometimes settable
300 * NOT IMPLEMENTED
301 */
302
303 /* one interface */
304 0x09, /* __u8 if_bLength; */
305 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
306 0x00, /* __u8 if_bInterfaceNumber; */
307 0x00, /* __u8 if_bAlternateSetting; */
308 0x01, /* __u8 if_bNumEndpoints; */
309 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
310 0x00, /* __u8 if_bInterfaceSubClass; */
311 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
312 0x00, /* __u8 if_iInterface; */
313
314 /* one endpoint (status change endpoint) */
315 0x07, /* __u8 ep_bLength; */
316 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
317 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
318 0x03, /* __u8 ep_bmAttributes; Interrupt */
319 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
320 * see hub.c:hub_configure() for details. */
321 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
322 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
323 };
324
325 static const u8 ss_rh_config_descriptor[] = {
326 /* one configuration */
327 0x09, /* __u8 bLength; */
328 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
329 0x1f, 0x00, /* __le16 wTotalLength; */
330 0x01, /* __u8 bNumInterfaces; (1) */
331 0x01, /* __u8 bConfigurationValue; */
332 0x00, /* __u8 iConfiguration; */
333 0xc0, /* __u8 bmAttributes;
334 Bit 7: must be set,
335 6: Self-powered,
336 5: Remote wakeup,
337 4..0: resvd */
338 0x00, /* __u8 MaxPower; */
339
340 /* one interface */
341 0x09, /* __u8 if_bLength; */
342 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
343 0x00, /* __u8 if_bInterfaceNumber; */
344 0x00, /* __u8 if_bAlternateSetting; */
345 0x01, /* __u8 if_bNumEndpoints; */
346 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
347 0x00, /* __u8 if_bInterfaceSubClass; */
348 0x00, /* __u8 if_bInterfaceProtocol; */
349 0x00, /* __u8 if_iInterface; */
350
351 /* one endpoint (status change endpoint) */
352 0x07, /* __u8 ep_bLength; */
353 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
354 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
355 0x03, /* __u8 ep_bmAttributes; Interrupt */
356 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
357 * see hub.c:hub_configure() for details. */
358 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
359 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
360
361 /* one SuperSpeed endpoint companion descriptor */
362 0x06, /* __u8 ss_bLength */
363 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
364 /* Companion */
365 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
366 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
367 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
368 };
369
370 /* authorized_default behaviour:
371 * -1 is authorized for all devices except wireless (old behaviour)
372 * 0 is unauthorized for all devices
373 * 1 is authorized for all devices
374 * 2 is authorized for internal devices
375 */
376 #define USB_AUTHORIZE_WIRED -1
377 #define USB_AUTHORIZE_NONE 0
378 #define USB_AUTHORIZE_ALL 1
379 #define USB_AUTHORIZE_INTERNAL 2
380
381 static int authorized_default = USB_AUTHORIZE_WIRED;
382 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
383 MODULE_PARM_DESC(authorized_default,
384 "Default USB device authorization: 0 is not authorized, 1 is "
385 "authorized, 2 is authorized for internal devices, -1 is "
386 "authorized except for wireless USB (default, old behaviour)");
387 /*-------------------------------------------------------------------------*/
388
389 /**
390 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
391 * @s: Null-terminated ASCII (actually ISO-8859-1) string
392 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
393 * @len: Length (in bytes; may be odd) of descriptor buffer.
394 *
395 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
396 * whichever is less.
397 *
398 * Note:
399 * USB String descriptors can contain at most 126 characters; input
400 * strings longer than that are truncated.
401 */
402 static unsigned
ascii2desc(char const * s,u8 * buf,unsigned len)403 ascii2desc(char const *s, u8 *buf, unsigned len)
404 {
405 unsigned n, t = 2 + 2*strlen(s);
406
407 if (t > 254)
408 t = 254; /* Longest possible UTF string descriptor */
409 if (len > t)
410 len = t;
411
412 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
413
414 n = len;
415 while (n--) {
416 *buf++ = t;
417 if (!n--)
418 break;
419 *buf++ = t >> 8;
420 t = (unsigned char)*s++;
421 }
422 return len;
423 }
424
425 /**
426 * rh_string() - provides string descriptors for root hub
427 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
428 * @hcd: the host controller for this root hub
429 * @data: buffer for output packet
430 * @len: length of the provided buffer
431 *
432 * Produces either a manufacturer, product or serial number string for the
433 * virtual root hub device.
434 *
435 * Return: The number of bytes filled in: the length of the descriptor or
436 * of the provided buffer, whichever is less.
437 */
438 static unsigned
rh_string(int id,struct usb_hcd const * hcd,u8 * data,unsigned len)439 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
440 {
441 char buf[100];
442 char const *s;
443 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
444
445 /* language ids */
446 switch (id) {
447 case 0:
448 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
449 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
450 if (len > 4)
451 len = 4;
452 memcpy(data, langids, len);
453 return len;
454 case 1:
455 /* Serial number */
456 s = hcd->self.bus_name;
457 break;
458 case 2:
459 /* Product name */
460 s = hcd->product_desc;
461 break;
462 case 3:
463 /* Manufacturer */
464 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
465 init_utsname()->release, hcd->driver->description);
466 s = buf;
467 break;
468 default:
469 /* Can't happen; caller guarantees it */
470 return 0;
471 }
472
473 return ascii2desc(s, data, len);
474 }
475
476
477 /* Root hub control transfers execute synchronously */
rh_call_control(struct usb_hcd * hcd,struct urb * urb)478 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
479 {
480 struct usb_ctrlrequest *cmd;
481 u16 typeReq, wValue, wIndex, wLength;
482 u8 *ubuf = urb->transfer_buffer;
483 unsigned len = 0;
484 int status;
485 u8 patch_wakeup = 0;
486 u8 patch_protocol = 0;
487 u16 tbuf_size;
488 u8 *tbuf = NULL;
489 const u8 *bufp;
490
491 might_sleep();
492
493 spin_lock_irq(&hcd_root_hub_lock);
494 status = usb_hcd_link_urb_to_ep(hcd, urb);
495 spin_unlock_irq(&hcd_root_hub_lock);
496 if (status)
497 return status;
498 urb->hcpriv = hcd; /* Indicate it's queued */
499
500 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
501 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
502 wValue = le16_to_cpu (cmd->wValue);
503 wIndex = le16_to_cpu (cmd->wIndex);
504 wLength = le16_to_cpu (cmd->wLength);
505
506 if (wLength > urb->transfer_buffer_length)
507 goto error;
508
509 /*
510 * tbuf should be at least as big as the
511 * USB hub descriptor.
512 */
513 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
514 tbuf = kzalloc(tbuf_size, GFP_KERNEL);
515 if (!tbuf) {
516 status = -ENOMEM;
517 goto err_alloc;
518 }
519
520 bufp = tbuf;
521
522
523 urb->actual_length = 0;
524 switch (typeReq) {
525
526 /* DEVICE REQUESTS */
527
528 /* The root hub's remote wakeup enable bit is implemented using
529 * driver model wakeup flags. If this system supports wakeup
530 * through USB, userspace may change the default "allow wakeup"
531 * policy through sysfs or these calls.
532 *
533 * Most root hubs support wakeup from downstream devices, for
534 * runtime power management (disabling USB clocks and reducing
535 * VBUS power usage). However, not all of them do so; silicon,
536 * board, and BIOS bugs here are not uncommon, so these can't
537 * be treated quite like external hubs.
538 *
539 * Likewise, not all root hubs will pass wakeup events upstream,
540 * to wake up the whole system. So don't assume root hub and
541 * controller capabilities are identical.
542 */
543
544 case DeviceRequest | USB_REQ_GET_STATUS:
545 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
546 << USB_DEVICE_REMOTE_WAKEUP)
547 | (1 << USB_DEVICE_SELF_POWERED);
548 tbuf[1] = 0;
549 len = 2;
550 break;
551 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
552 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
553 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
554 else
555 goto error;
556 break;
557 case DeviceOutRequest | USB_REQ_SET_FEATURE:
558 if (device_can_wakeup(&hcd->self.root_hub->dev)
559 && wValue == USB_DEVICE_REMOTE_WAKEUP)
560 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
561 else
562 goto error;
563 break;
564 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
565 tbuf[0] = 1;
566 len = 1;
567 fallthrough;
568 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
569 break;
570 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
571 switch (wValue & 0xff00) {
572 case USB_DT_DEVICE << 8:
573 switch (hcd->speed) {
574 case HCD_USB32:
575 case HCD_USB31:
576 bufp = usb31_rh_dev_descriptor;
577 break;
578 case HCD_USB3:
579 bufp = usb3_rh_dev_descriptor;
580 break;
581 case HCD_USB25:
582 bufp = usb25_rh_dev_descriptor;
583 break;
584 case HCD_USB2:
585 bufp = usb2_rh_dev_descriptor;
586 break;
587 case HCD_USB11:
588 bufp = usb11_rh_dev_descriptor;
589 break;
590 default:
591 goto error;
592 }
593 len = 18;
594 if (hcd->has_tt)
595 patch_protocol = 1;
596 break;
597 case USB_DT_CONFIG << 8:
598 switch (hcd->speed) {
599 case HCD_USB32:
600 case HCD_USB31:
601 case HCD_USB3:
602 bufp = ss_rh_config_descriptor;
603 len = sizeof ss_rh_config_descriptor;
604 break;
605 case HCD_USB25:
606 case HCD_USB2:
607 bufp = hs_rh_config_descriptor;
608 len = sizeof hs_rh_config_descriptor;
609 break;
610 case HCD_USB11:
611 bufp = fs_rh_config_descriptor;
612 len = sizeof fs_rh_config_descriptor;
613 break;
614 default:
615 goto error;
616 }
617 if (device_can_wakeup(&hcd->self.root_hub->dev))
618 patch_wakeup = 1;
619 break;
620 case USB_DT_STRING << 8:
621 if ((wValue & 0xff) < 4)
622 urb->actual_length = rh_string(wValue & 0xff,
623 hcd, ubuf, wLength);
624 else /* unsupported IDs --> "protocol stall" */
625 goto error;
626 break;
627 case USB_DT_BOS << 8:
628 goto nongeneric;
629 default:
630 goto error;
631 }
632 break;
633 case DeviceRequest | USB_REQ_GET_INTERFACE:
634 tbuf[0] = 0;
635 len = 1;
636 fallthrough;
637 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
638 break;
639 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
640 /* wValue == urb->dev->devaddr */
641 dev_dbg (hcd->self.controller, "root hub device address %d\n",
642 wValue);
643 break;
644
645 /* INTERFACE REQUESTS (no defined feature/status flags) */
646
647 /* ENDPOINT REQUESTS */
648
649 case EndpointRequest | USB_REQ_GET_STATUS:
650 /* ENDPOINT_HALT flag */
651 tbuf[0] = 0;
652 tbuf[1] = 0;
653 len = 2;
654 fallthrough;
655 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
656 case EndpointOutRequest | USB_REQ_SET_FEATURE:
657 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
658 break;
659
660 /* CLASS REQUESTS (and errors) */
661
662 default:
663 nongeneric:
664 /* non-generic request */
665 switch (typeReq) {
666 case GetHubStatus:
667 len = 4;
668 break;
669 case GetPortStatus:
670 if (wValue == HUB_PORT_STATUS)
671 len = 4;
672 else
673 /* other port status types return 8 bytes */
674 len = 8;
675 break;
676 case GetHubDescriptor:
677 len = sizeof (struct usb_hub_descriptor);
678 break;
679 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
680 /* len is returned by hub_control */
681 break;
682 }
683 status = hcd->driver->hub_control (hcd,
684 typeReq, wValue, wIndex,
685 tbuf, wLength);
686
687 if (typeReq == GetHubDescriptor)
688 usb_hub_adjust_deviceremovable(hcd->self.root_hub,
689 (struct usb_hub_descriptor *)tbuf);
690 break;
691 error:
692 /* "protocol stall" on error */
693 status = -EPIPE;
694 }
695
696 if (status < 0) {
697 len = 0;
698 if (status != -EPIPE) {
699 dev_dbg (hcd->self.controller,
700 "CTRL: TypeReq=0x%x val=0x%x "
701 "idx=0x%x len=%d ==> %d\n",
702 typeReq, wValue, wIndex,
703 wLength, status);
704 }
705 } else if (status > 0) {
706 /* hub_control may return the length of data copied. */
707 len = status;
708 status = 0;
709 }
710 if (len) {
711 if (urb->transfer_buffer_length < len)
712 len = urb->transfer_buffer_length;
713 urb->actual_length = len;
714 /* always USB_DIR_IN, toward host */
715 memcpy (ubuf, bufp, len);
716
717 /* report whether RH hardware supports remote wakeup */
718 if (patch_wakeup &&
719 len > offsetof (struct usb_config_descriptor,
720 bmAttributes))
721 ((struct usb_config_descriptor *)ubuf)->bmAttributes
722 |= USB_CONFIG_ATT_WAKEUP;
723
724 /* report whether RH hardware has an integrated TT */
725 if (patch_protocol &&
726 len > offsetof(struct usb_device_descriptor,
727 bDeviceProtocol))
728 ((struct usb_device_descriptor *) ubuf)->
729 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
730 }
731
732 kfree(tbuf);
733 err_alloc:
734
735 /* any errors get returned through the urb completion */
736 spin_lock_irq(&hcd_root_hub_lock);
737 usb_hcd_unlink_urb_from_ep(hcd, urb);
738 usb_hcd_giveback_urb(hcd, urb, status);
739 spin_unlock_irq(&hcd_root_hub_lock);
740 return 0;
741 }
742
743 /*-------------------------------------------------------------------------*/
744
745 /*
746 * Root Hub interrupt transfers are polled using a timer if the
747 * driver requests it; otherwise the driver is responsible for
748 * calling usb_hcd_poll_rh_status() when an event occurs.
749 *
750 * Completions are called in_interrupt(), but they may or may not
751 * be in_irq().
752 */
usb_hcd_poll_rh_status(struct usb_hcd * hcd)753 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
754 {
755 struct urb *urb;
756 int length;
757 int status;
758 unsigned long flags;
759 char buffer[6]; /* Any root hubs with > 31 ports? */
760
761 if (unlikely(!hcd->rh_pollable))
762 return;
763 if (!hcd->uses_new_polling && !hcd->status_urb)
764 return;
765
766 length = hcd->driver->hub_status_data(hcd, buffer);
767 if (length > 0) {
768
769 /* try to complete the status urb */
770 spin_lock_irqsave(&hcd_root_hub_lock, flags);
771 urb = hcd->status_urb;
772 if (urb) {
773 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
774 hcd->status_urb = NULL;
775 if (urb->transfer_buffer_length >= length) {
776 status = 0;
777 } else {
778 status = -EOVERFLOW;
779 length = urb->transfer_buffer_length;
780 }
781 urb->actual_length = length;
782 memcpy(urb->transfer_buffer, buffer, length);
783
784 usb_hcd_unlink_urb_from_ep(hcd, urb);
785 usb_hcd_giveback_urb(hcd, urb, status);
786 } else {
787 length = 0;
788 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
789 }
790 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
791 }
792
793 /* The USB 2.0 spec says 256 ms. This is close enough and won't
794 * exceed that limit if HZ is 100. The math is more clunky than
795 * maybe expected, this is to make sure that all timers for USB devices
796 * fire at the same time to give the CPU a break in between */
797 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
798 (length == 0 && hcd->status_urb != NULL))
799 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
800 }
801 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
802
803 /* timer callback */
rh_timer_func(struct timer_list * t)804 static void rh_timer_func (struct timer_list *t)
805 {
806 struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer);
807
808 usb_hcd_poll_rh_status(_hcd);
809 }
810
811 /*-------------------------------------------------------------------------*/
812
rh_queue_status(struct usb_hcd * hcd,struct urb * urb)813 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
814 {
815 int retval;
816 unsigned long flags;
817 unsigned len = 1 + (urb->dev->maxchild / 8);
818
819 spin_lock_irqsave (&hcd_root_hub_lock, flags);
820 if (hcd->status_urb || urb->transfer_buffer_length < len) {
821 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
822 retval = -EINVAL;
823 goto done;
824 }
825
826 retval = usb_hcd_link_urb_to_ep(hcd, urb);
827 if (retval)
828 goto done;
829
830 hcd->status_urb = urb;
831 urb->hcpriv = hcd; /* indicate it's queued */
832 if (!hcd->uses_new_polling)
833 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
834
835 /* If a status change has already occurred, report it ASAP */
836 else if (HCD_POLL_PENDING(hcd))
837 mod_timer(&hcd->rh_timer, jiffies);
838 retval = 0;
839 done:
840 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
841 return retval;
842 }
843
rh_urb_enqueue(struct usb_hcd * hcd,struct urb * urb)844 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
845 {
846 if (usb_endpoint_xfer_int(&urb->ep->desc))
847 return rh_queue_status (hcd, urb);
848 if (usb_endpoint_xfer_control(&urb->ep->desc))
849 return rh_call_control (hcd, urb);
850 return -EINVAL;
851 }
852
853 /*-------------------------------------------------------------------------*/
854
855 /* Unlinks of root-hub control URBs are legal, but they don't do anything
856 * since these URBs always execute synchronously.
857 */
usb_rh_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)858 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
859 {
860 unsigned long flags;
861 int rc;
862
863 spin_lock_irqsave(&hcd_root_hub_lock, flags);
864 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
865 if (rc)
866 goto done;
867
868 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
869 ; /* Do nothing */
870
871 } else { /* Status URB */
872 if (!hcd->uses_new_polling)
873 del_timer (&hcd->rh_timer);
874 if (urb == hcd->status_urb) {
875 hcd->status_urb = NULL;
876 usb_hcd_unlink_urb_from_ep(hcd, urb);
877 usb_hcd_giveback_urb(hcd, urb, status);
878 }
879 }
880 done:
881 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
882 return rc;
883 }
884
885
886 /*-------------------------------------------------------------------------*/
887
888 /**
889 * usb_bus_init - shared initialization code
890 * @bus: the bus structure being initialized
891 *
892 * This code is used to initialize a usb_bus structure, memory for which is
893 * separately managed.
894 */
usb_bus_init(struct usb_bus * bus)895 static void usb_bus_init (struct usb_bus *bus)
896 {
897 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
898
899 bus->devnum_next = 1;
900
901 bus->root_hub = NULL;
902 bus->busnum = -1;
903 bus->bandwidth_allocated = 0;
904 bus->bandwidth_int_reqs = 0;
905 bus->bandwidth_isoc_reqs = 0;
906 mutex_init(&bus->devnum_next_mutex);
907 }
908
909 /*-------------------------------------------------------------------------*/
910
911 /**
912 * usb_register_bus - registers the USB host controller with the usb core
913 * @bus: pointer to the bus to register
914 * Context: !in_interrupt()
915 *
916 * Assigns a bus number, and links the controller into usbcore data
917 * structures so that it can be seen by scanning the bus list.
918 *
919 * Return: 0 if successful. A negative error code otherwise.
920 */
usb_register_bus(struct usb_bus * bus)921 static int usb_register_bus(struct usb_bus *bus)
922 {
923 int result = -E2BIG;
924 int busnum;
925
926 mutex_lock(&usb_bus_idr_lock);
927 busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
928 if (busnum < 0) {
929 pr_err("%s: failed to get bus number\n", usbcore_name);
930 goto error_find_busnum;
931 }
932 bus->busnum = busnum;
933 mutex_unlock(&usb_bus_idr_lock);
934
935 usb_notify_add_bus(bus);
936
937 dev_info (bus->controller, "new USB bus registered, assigned bus "
938 "number %d\n", bus->busnum);
939 return 0;
940
941 error_find_busnum:
942 mutex_unlock(&usb_bus_idr_lock);
943 return result;
944 }
945
946 /**
947 * usb_deregister_bus - deregisters the USB host controller
948 * @bus: pointer to the bus to deregister
949 * Context: !in_interrupt()
950 *
951 * Recycles the bus number, and unlinks the controller from usbcore data
952 * structures so that it won't be seen by scanning the bus list.
953 */
usb_deregister_bus(struct usb_bus * bus)954 static void usb_deregister_bus (struct usb_bus *bus)
955 {
956 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
957
958 /*
959 * NOTE: make sure that all the devices are removed by the
960 * controller code, as well as having it call this when cleaning
961 * itself up
962 */
963 mutex_lock(&usb_bus_idr_lock);
964 idr_remove(&usb_bus_idr, bus->busnum);
965 mutex_unlock(&usb_bus_idr_lock);
966
967 usb_notify_remove_bus(bus);
968 }
969
970 /**
971 * register_root_hub - called by usb_add_hcd() to register a root hub
972 * @hcd: host controller for this root hub
973 *
974 * This function registers the root hub with the USB subsystem. It sets up
975 * the device properly in the device tree and then calls usb_new_device()
976 * to register the usb device. It also assigns the root hub's USB address
977 * (always 1).
978 *
979 * Return: 0 if successful. A negative error code otherwise.
980 */
register_root_hub(struct usb_hcd * hcd)981 static int register_root_hub(struct usb_hcd *hcd)
982 {
983 struct device *parent_dev = hcd->self.controller;
984 struct usb_device *usb_dev = hcd->self.root_hub;
985 const int devnum = 1;
986 int retval;
987
988 usb_dev->devnum = devnum;
989 usb_dev->bus->devnum_next = devnum + 1;
990 set_bit (devnum, usb_dev->bus->devmap.devicemap);
991 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
992
993 mutex_lock(&usb_bus_idr_lock);
994
995 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
996 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
997 if (retval != sizeof usb_dev->descriptor) {
998 mutex_unlock(&usb_bus_idr_lock);
999 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1000 dev_name(&usb_dev->dev), retval);
1001 return (retval < 0) ? retval : -EMSGSIZE;
1002 }
1003
1004 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
1005 retval = usb_get_bos_descriptor(usb_dev);
1006 if (!retval) {
1007 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1008 } else if (usb_dev->speed >= USB_SPEED_SUPER) {
1009 mutex_unlock(&usb_bus_idr_lock);
1010 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1011 dev_name(&usb_dev->dev), retval);
1012 return retval;
1013 }
1014 }
1015
1016 retval = usb_new_device (usb_dev);
1017 if (retval) {
1018 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1019 dev_name(&usb_dev->dev), retval);
1020 } else {
1021 spin_lock_irq (&hcd_root_hub_lock);
1022 hcd->rh_registered = 1;
1023 spin_unlock_irq (&hcd_root_hub_lock);
1024
1025 /* Did the HC die before the root hub was registered? */
1026 if (HCD_DEAD(hcd))
1027 usb_hc_died (hcd); /* This time clean up */
1028 }
1029 mutex_unlock(&usb_bus_idr_lock);
1030
1031 return retval;
1032 }
1033
1034 /*
1035 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1036 * @bus: the bus which the root hub belongs to
1037 * @portnum: the port which is being resumed
1038 *
1039 * HCDs should call this function when they know that a resume signal is
1040 * being sent to a root-hub port. The root hub will be prevented from
1041 * going into autosuspend until usb_hcd_end_port_resume() is called.
1042 *
1043 * The bus's private lock must be held by the caller.
1044 */
usb_hcd_start_port_resume(struct usb_bus * bus,int portnum)1045 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1046 {
1047 unsigned bit = 1 << portnum;
1048
1049 if (!(bus->resuming_ports & bit)) {
1050 bus->resuming_ports |= bit;
1051 pm_runtime_get_noresume(&bus->root_hub->dev);
1052 }
1053 }
1054 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1055
1056 /*
1057 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1058 * @bus: the bus which the root hub belongs to
1059 * @portnum: the port which is being resumed
1060 *
1061 * HCDs should call this function when they know that a resume signal has
1062 * stopped being sent to a root-hub port. The root hub will be allowed to
1063 * autosuspend again.
1064 *
1065 * The bus's private lock must be held by the caller.
1066 */
usb_hcd_end_port_resume(struct usb_bus * bus,int portnum)1067 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1068 {
1069 unsigned bit = 1 << portnum;
1070
1071 if (bus->resuming_ports & bit) {
1072 bus->resuming_ports &= ~bit;
1073 pm_runtime_put_noidle(&bus->root_hub->dev);
1074 }
1075 }
1076 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1077
1078 /*-------------------------------------------------------------------------*/
1079
1080 /**
1081 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1082 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1083 * @is_input: true iff the transaction sends data to the host
1084 * @isoc: true for isochronous transactions, false for interrupt ones
1085 * @bytecount: how many bytes in the transaction.
1086 *
1087 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1088 *
1089 * Note:
1090 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1091 * scheduled in software, this function is only used for such scheduling.
1092 */
usb_calc_bus_time(int speed,int is_input,int isoc,int bytecount)1093 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1094 {
1095 unsigned long tmp;
1096
1097 switch (speed) {
1098 case USB_SPEED_LOW: /* INTR only */
1099 if (is_input) {
1100 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1101 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1102 } else {
1103 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1104 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1105 }
1106 case USB_SPEED_FULL: /* ISOC or INTR */
1107 if (isoc) {
1108 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1109 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1110 } else {
1111 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1112 return 9107L + BW_HOST_DELAY + tmp;
1113 }
1114 case USB_SPEED_HIGH: /* ISOC or INTR */
1115 /* FIXME adjust for input vs output */
1116 if (isoc)
1117 tmp = HS_NSECS_ISO (bytecount);
1118 else
1119 tmp = HS_NSECS (bytecount);
1120 return tmp;
1121 default:
1122 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1123 return -1;
1124 }
1125 }
1126 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1127
1128
1129 /*-------------------------------------------------------------------------*/
1130
1131 /*
1132 * Generic HC operations.
1133 */
1134
1135 /*-------------------------------------------------------------------------*/
1136
1137 /**
1138 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1139 * @hcd: host controller to which @urb was submitted
1140 * @urb: URB being submitted
1141 *
1142 * Host controller drivers should call this routine in their enqueue()
1143 * method. The HCD's private spinlock must be held and interrupts must
1144 * be disabled. The actions carried out here are required for URB
1145 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1146 *
1147 * Return: 0 for no error, otherwise a negative error code (in which case
1148 * the enqueue() method must fail). If no error occurs but enqueue() fails
1149 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1150 * the private spinlock and returning.
1151 */
usb_hcd_link_urb_to_ep(struct usb_hcd * hcd,struct urb * urb)1152 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1153 {
1154 int rc = 0;
1155
1156 spin_lock(&hcd_urb_list_lock);
1157
1158 /* Check that the URB isn't being killed */
1159 if (unlikely(atomic_read(&urb->reject))) {
1160 rc = -EPERM;
1161 goto done;
1162 }
1163
1164 if (unlikely(!urb->ep->enabled)) {
1165 rc = -ENOENT;
1166 goto done;
1167 }
1168
1169 if (unlikely(!urb->dev->can_submit)) {
1170 rc = -EHOSTUNREACH;
1171 goto done;
1172 }
1173
1174 /*
1175 * Check the host controller's state and add the URB to the
1176 * endpoint's queue.
1177 */
1178 if (HCD_RH_RUNNING(hcd)) {
1179 urb->unlinked = 0;
1180 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1181 } else {
1182 rc = -ESHUTDOWN;
1183 goto done;
1184 }
1185 done:
1186 spin_unlock(&hcd_urb_list_lock);
1187 return rc;
1188 }
1189 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1190
1191 /**
1192 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1193 * @hcd: host controller to which @urb was submitted
1194 * @urb: URB being checked for unlinkability
1195 * @status: error code to store in @urb if the unlink succeeds
1196 *
1197 * Host controller drivers should call this routine in their dequeue()
1198 * method. The HCD's private spinlock must be held and interrupts must
1199 * be disabled. The actions carried out here are required for making
1200 * sure than an unlink is valid.
1201 *
1202 * Return: 0 for no error, otherwise a negative error code (in which case
1203 * the dequeue() method must fail). The possible error codes are:
1204 *
1205 * -EIDRM: @urb was not submitted or has already completed.
1206 * The completion function may not have been called yet.
1207 *
1208 * -EBUSY: @urb has already been unlinked.
1209 */
usb_hcd_check_unlink_urb(struct usb_hcd * hcd,struct urb * urb,int status)1210 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1211 int status)
1212 {
1213 struct list_head *tmp;
1214
1215 /* insist the urb is still queued */
1216 list_for_each(tmp, &urb->ep->urb_list) {
1217 if (tmp == &urb->urb_list)
1218 break;
1219 }
1220 if (tmp != &urb->urb_list)
1221 return -EIDRM;
1222
1223 /* Any status except -EINPROGRESS means something already started to
1224 * unlink this URB from the hardware. So there's no more work to do.
1225 */
1226 if (urb->unlinked)
1227 return -EBUSY;
1228 urb->unlinked = status;
1229 return 0;
1230 }
1231 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1232
1233 /**
1234 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1235 * @hcd: host controller to which @urb was submitted
1236 * @urb: URB being unlinked
1237 *
1238 * Host controller drivers should call this routine before calling
1239 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1240 * interrupts must be disabled. The actions carried out here are required
1241 * for URB completion.
1242 */
usb_hcd_unlink_urb_from_ep(struct usb_hcd * hcd,struct urb * urb)1243 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1244 {
1245 /* clear all state linking urb to this dev (and hcd) */
1246 spin_lock(&hcd_urb_list_lock);
1247 list_del_init(&urb->urb_list);
1248 spin_unlock(&hcd_urb_list_lock);
1249 }
1250 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1251
1252 /*
1253 * Some usb host controllers can only perform dma using a small SRAM area.
1254 * The usb core itself is however optimized for host controllers that can dma
1255 * using regular system memory - like pci devices doing bus mastering.
1256 *
1257 * To support host controllers with limited dma capabilities we provide dma
1258 * bounce buffers. This feature can be enabled by initializing
1259 * hcd->localmem_pool using usb_hcd_setup_local_mem().
1260 *
1261 * The initialized hcd->localmem_pool then tells the usb code to allocate all
1262 * data for dma using the genalloc API.
1263 *
1264 * So, to summarize...
1265 *
1266 * - We need "local" memory, canonical example being
1267 * a small SRAM on a discrete controller being the
1268 * only memory that the controller can read ...
1269 * (a) "normal" kernel memory is no good, and
1270 * (b) there's not enough to share
1271 *
1272 * - So we use that, even though the primary requirement
1273 * is that the memory be "local" (hence addressable
1274 * by that device), not "coherent".
1275 *
1276 */
1277
hcd_alloc_coherent(struct usb_bus * bus,gfp_t mem_flags,dma_addr_t * dma_handle,void ** vaddr_handle,size_t size,enum dma_data_direction dir)1278 static int hcd_alloc_coherent(struct usb_bus *bus,
1279 gfp_t mem_flags, dma_addr_t *dma_handle,
1280 void **vaddr_handle, size_t size,
1281 enum dma_data_direction dir)
1282 {
1283 unsigned char *vaddr;
1284
1285 if (*vaddr_handle == NULL) {
1286 WARN_ON_ONCE(1);
1287 return -EFAULT;
1288 }
1289
1290 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1291 mem_flags, dma_handle);
1292 if (!vaddr)
1293 return -ENOMEM;
1294
1295 /*
1296 * Store the virtual address of the buffer at the end
1297 * of the allocated dma buffer. The size of the buffer
1298 * may be uneven so use unaligned functions instead
1299 * of just rounding up. It makes sense to optimize for
1300 * memory footprint over access speed since the amount
1301 * of memory available for dma may be limited.
1302 */
1303 put_unaligned((unsigned long)*vaddr_handle,
1304 (unsigned long *)(vaddr + size));
1305
1306 if (dir == DMA_TO_DEVICE)
1307 memcpy(vaddr, *vaddr_handle, size);
1308
1309 *vaddr_handle = vaddr;
1310 return 0;
1311 }
1312
hcd_free_coherent(struct usb_bus * bus,dma_addr_t * dma_handle,void ** vaddr_handle,size_t size,enum dma_data_direction dir)1313 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1314 void **vaddr_handle, size_t size,
1315 enum dma_data_direction dir)
1316 {
1317 unsigned char *vaddr = *vaddr_handle;
1318
1319 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1320
1321 if (dir == DMA_FROM_DEVICE)
1322 memcpy(vaddr, *vaddr_handle, size);
1323
1324 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1325
1326 *vaddr_handle = vaddr;
1327 *dma_handle = 0;
1328 }
1329
usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd * hcd,struct urb * urb)1330 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1331 {
1332 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1333 (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1334 dma_unmap_single(hcd->self.sysdev,
1335 urb->setup_dma,
1336 sizeof(struct usb_ctrlrequest),
1337 DMA_TO_DEVICE);
1338 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1339 hcd_free_coherent(urb->dev->bus,
1340 &urb->setup_dma,
1341 (void **) &urb->setup_packet,
1342 sizeof(struct usb_ctrlrequest),
1343 DMA_TO_DEVICE);
1344
1345 /* Make it safe to call this routine more than once */
1346 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1347 }
1348 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1349
unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1350 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1351 {
1352 if (hcd->driver->unmap_urb_for_dma)
1353 hcd->driver->unmap_urb_for_dma(hcd, urb);
1354 else
1355 usb_hcd_unmap_urb_for_dma(hcd, urb);
1356 }
1357
usb_hcd_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1358 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1359 {
1360 enum dma_data_direction dir;
1361
1362 usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1363
1364 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1365 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1366 (urb->transfer_flags & URB_DMA_MAP_SG))
1367 dma_unmap_sg(hcd->self.sysdev,
1368 urb->sg,
1369 urb->num_sgs,
1370 dir);
1371 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1372 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1373 dma_unmap_page(hcd->self.sysdev,
1374 urb->transfer_dma,
1375 urb->transfer_buffer_length,
1376 dir);
1377 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1378 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1379 dma_unmap_single(hcd->self.sysdev,
1380 urb->transfer_dma,
1381 urb->transfer_buffer_length,
1382 dir);
1383 else if (urb->transfer_flags & URB_MAP_LOCAL)
1384 hcd_free_coherent(urb->dev->bus,
1385 &urb->transfer_dma,
1386 &urb->transfer_buffer,
1387 urb->transfer_buffer_length,
1388 dir);
1389
1390 /* Make it safe to call this routine more than once */
1391 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1392 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1393 }
1394 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1395
map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1396 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1397 gfp_t mem_flags)
1398 {
1399 if (hcd->driver->map_urb_for_dma)
1400 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1401 else
1402 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1403 }
1404
usb_hcd_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1405 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1406 gfp_t mem_flags)
1407 {
1408 enum dma_data_direction dir;
1409 int ret = 0;
1410
1411 /* Map the URB's buffers for DMA access.
1412 * Lower level HCD code should use *_dma exclusively,
1413 * unless it uses pio or talks to another transport,
1414 * or uses the provided scatter gather list for bulk.
1415 */
1416
1417 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1418 if (hcd->self.uses_pio_for_control)
1419 return ret;
1420 if (hcd->localmem_pool) {
1421 ret = hcd_alloc_coherent(
1422 urb->dev->bus, mem_flags,
1423 &urb->setup_dma,
1424 (void **)&urb->setup_packet,
1425 sizeof(struct usb_ctrlrequest),
1426 DMA_TO_DEVICE);
1427 if (ret)
1428 return ret;
1429 urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1430 } else if (hcd_uses_dma(hcd)) {
1431 if (object_is_on_stack(urb->setup_packet)) {
1432 WARN_ONCE(1, "setup packet is on stack\n");
1433 return -EAGAIN;
1434 }
1435
1436 urb->setup_dma = dma_map_single(
1437 hcd->self.sysdev,
1438 urb->setup_packet,
1439 sizeof(struct usb_ctrlrequest),
1440 DMA_TO_DEVICE);
1441 if (dma_mapping_error(hcd->self.sysdev,
1442 urb->setup_dma))
1443 return -EAGAIN;
1444 urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1445 }
1446 }
1447
1448 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1449 if (urb->transfer_buffer_length != 0
1450 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1451 if (hcd->localmem_pool) {
1452 ret = hcd_alloc_coherent(
1453 urb->dev->bus, mem_flags,
1454 &urb->transfer_dma,
1455 &urb->transfer_buffer,
1456 urb->transfer_buffer_length,
1457 dir);
1458 if (ret == 0)
1459 urb->transfer_flags |= URB_MAP_LOCAL;
1460 } else if (hcd_uses_dma(hcd)) {
1461 if (urb->num_sgs) {
1462 int n;
1463
1464 /* We don't support sg for isoc transfers ! */
1465 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1466 WARN_ON(1);
1467 return -EINVAL;
1468 }
1469
1470 n = dma_map_sg(
1471 hcd->self.sysdev,
1472 urb->sg,
1473 urb->num_sgs,
1474 dir);
1475 if (n <= 0)
1476 ret = -EAGAIN;
1477 else
1478 urb->transfer_flags |= URB_DMA_MAP_SG;
1479 urb->num_mapped_sgs = n;
1480 if (n != urb->num_sgs)
1481 urb->transfer_flags |=
1482 URB_DMA_SG_COMBINED;
1483 } else if (urb->sg) {
1484 struct scatterlist *sg = urb->sg;
1485 urb->transfer_dma = dma_map_page(
1486 hcd->self.sysdev,
1487 sg_page(sg),
1488 sg->offset,
1489 urb->transfer_buffer_length,
1490 dir);
1491 if (dma_mapping_error(hcd->self.sysdev,
1492 urb->transfer_dma))
1493 ret = -EAGAIN;
1494 else
1495 urb->transfer_flags |= URB_DMA_MAP_PAGE;
1496 } else if (object_is_on_stack(urb->transfer_buffer)) {
1497 WARN_ONCE(1, "transfer buffer is on stack\n");
1498 ret = -EAGAIN;
1499 } else {
1500 urb->transfer_dma = dma_map_single(
1501 hcd->self.sysdev,
1502 urb->transfer_buffer,
1503 urb->transfer_buffer_length,
1504 dir);
1505 if (dma_mapping_error(hcd->self.sysdev,
1506 urb->transfer_dma))
1507 ret = -EAGAIN;
1508 else
1509 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1510 }
1511 }
1512 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1513 URB_SETUP_MAP_LOCAL)))
1514 usb_hcd_unmap_urb_for_dma(hcd, urb);
1515 }
1516 return ret;
1517 }
1518 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1519
1520 /*-------------------------------------------------------------------------*/
1521
1522 /* may be called in any context with a valid urb->dev usecount
1523 * caller surrenders "ownership" of urb
1524 * expects usb_submit_urb() to have sanity checked and conditioned all
1525 * inputs in the urb
1526 */
usb_hcd_submit_urb(struct urb * urb,gfp_t mem_flags)1527 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1528 {
1529 int status;
1530 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1531
1532 /* increment urb's reference count as part of giving it to the HCD
1533 * (which will control it). HCD guarantees that it either returns
1534 * an error or calls giveback(), but not both.
1535 */
1536 usb_get_urb(urb);
1537 atomic_inc(&urb->use_count);
1538 atomic_inc(&urb->dev->urbnum);
1539 usbmon_urb_submit(&hcd->self, urb);
1540
1541 /* NOTE requirements on root-hub callers (usbfs and the hub
1542 * driver, for now): URBs' urb->transfer_buffer must be
1543 * valid and usb_buffer_{sync,unmap}() not be needed, since
1544 * they could clobber root hub response data. Also, control
1545 * URBs must be submitted in process context with interrupts
1546 * enabled.
1547 */
1548
1549 if (is_root_hub(urb->dev)) {
1550 status = rh_urb_enqueue(hcd, urb);
1551 } else {
1552 status = map_urb_for_dma(hcd, urb, mem_flags);
1553 if (likely(status == 0)) {
1554 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1555 if (unlikely(status))
1556 unmap_urb_for_dma(hcd, urb);
1557 }
1558 }
1559
1560 if (unlikely(status)) {
1561 usbmon_urb_submit_error(&hcd->self, urb, status);
1562 urb->hcpriv = NULL;
1563 INIT_LIST_HEAD(&urb->urb_list);
1564 atomic_dec(&urb->use_count);
1565 /*
1566 * Order the write of urb->use_count above before the read
1567 * of urb->reject below. Pairs with the memory barriers in
1568 * usb_kill_urb() and usb_poison_urb().
1569 */
1570 smp_mb__after_atomic();
1571
1572 atomic_dec(&urb->dev->urbnum);
1573 if (atomic_read(&urb->reject))
1574 wake_up(&usb_kill_urb_queue);
1575 usb_put_urb(urb);
1576 }
1577 return status;
1578 }
1579
1580 /*-------------------------------------------------------------------------*/
1581
1582 /* this makes the hcd giveback() the urb more quickly, by kicking it
1583 * off hardware queues (which may take a while) and returning it as
1584 * soon as practical. we've already set up the urb's return status,
1585 * but we can't know if the callback completed already.
1586 */
unlink1(struct usb_hcd * hcd,struct urb * urb,int status)1587 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1588 {
1589 int value;
1590
1591 if (is_root_hub(urb->dev))
1592 value = usb_rh_urb_dequeue(hcd, urb, status);
1593 else {
1594
1595 /* The only reason an HCD might fail this call is if
1596 * it has not yet fully queued the urb to begin with.
1597 * Such failures should be harmless. */
1598 value = hcd->driver->urb_dequeue(hcd, urb, status);
1599 }
1600 return value;
1601 }
1602
1603 /*
1604 * called in any context
1605 *
1606 * caller guarantees urb won't be recycled till both unlink()
1607 * and the urb's completion function return
1608 */
usb_hcd_unlink_urb(struct urb * urb,int status)1609 int usb_hcd_unlink_urb (struct urb *urb, int status)
1610 {
1611 struct usb_hcd *hcd;
1612 struct usb_device *udev = urb->dev;
1613 int retval = -EIDRM;
1614 unsigned long flags;
1615
1616 /* Prevent the device and bus from going away while
1617 * the unlink is carried out. If they are already gone
1618 * then urb->use_count must be 0, since disconnected
1619 * devices can't have any active URBs.
1620 */
1621 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1622 if (atomic_read(&urb->use_count) > 0) {
1623 retval = 0;
1624 usb_get_dev(udev);
1625 }
1626 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1627 if (retval == 0) {
1628 hcd = bus_to_hcd(urb->dev->bus);
1629 retval = unlink1(hcd, urb, status);
1630 if (retval == 0)
1631 retval = -EINPROGRESS;
1632 else if (retval != -EIDRM && retval != -EBUSY)
1633 dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n",
1634 urb, retval);
1635 usb_put_dev(udev);
1636 }
1637 return retval;
1638 }
1639
1640 /*-------------------------------------------------------------------------*/
1641
__usb_hcd_giveback_urb(struct urb * urb)1642 static void __usb_hcd_giveback_urb(struct urb *urb)
1643 {
1644 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1645 struct usb_anchor *anchor = urb->anchor;
1646 int status = urb->unlinked;
1647
1648 urb->hcpriv = NULL;
1649 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1650 urb->actual_length < urb->transfer_buffer_length &&
1651 !status))
1652 status = -EREMOTEIO;
1653
1654 unmap_urb_for_dma(hcd, urb);
1655 usbmon_urb_complete(&hcd->self, urb, status);
1656 usb_anchor_suspend_wakeups(anchor);
1657 usb_unanchor_urb(urb);
1658 if (likely(status == 0))
1659 usb_led_activity(USB_LED_EVENT_HOST);
1660
1661 /* pass ownership to the completion handler */
1662 urb->status = status;
1663 /*
1664 * This function can be called in task context inside another remote
1665 * coverage collection section, but KCOV doesn't support that kind of
1666 * recursion yet. Only collect coverage in softirq context for now.
1667 */
1668 if (in_serving_softirq())
1669 kcov_remote_start_usb((u64)urb->dev->bus->busnum);
1670 urb->complete(urb);
1671 if (in_serving_softirq())
1672 kcov_remote_stop();
1673
1674 usb_anchor_resume_wakeups(anchor);
1675 atomic_dec(&urb->use_count);
1676 /*
1677 * Order the write of urb->use_count above before the read
1678 * of urb->reject below. Pairs with the memory barriers in
1679 * usb_kill_urb() and usb_poison_urb().
1680 */
1681 smp_mb__after_atomic();
1682
1683 if (unlikely(atomic_read(&urb->reject)))
1684 wake_up(&usb_kill_urb_queue);
1685 usb_put_urb(urb);
1686 }
1687
usb_giveback_urb_bh(struct tasklet_struct * t)1688 static void usb_giveback_urb_bh(struct tasklet_struct *t)
1689 {
1690 struct giveback_urb_bh *bh = from_tasklet(bh, t, bh);
1691 struct list_head local_list;
1692
1693 spin_lock_irq(&bh->lock);
1694 bh->running = true;
1695 restart:
1696 list_replace_init(&bh->head, &local_list);
1697 spin_unlock_irq(&bh->lock);
1698
1699 while (!list_empty(&local_list)) {
1700 struct urb *urb;
1701
1702 urb = list_entry(local_list.next, struct urb, urb_list);
1703 list_del_init(&urb->urb_list);
1704 bh->completing_ep = urb->ep;
1705 __usb_hcd_giveback_urb(urb);
1706 bh->completing_ep = NULL;
1707 }
1708
1709 /* check if there are new URBs to giveback */
1710 spin_lock_irq(&bh->lock);
1711 if (!list_empty(&bh->head))
1712 goto restart;
1713 bh->running = false;
1714 spin_unlock_irq(&bh->lock);
1715 }
1716
1717 /**
1718 * usb_hcd_giveback_urb - return URB from HCD to device driver
1719 * @hcd: host controller returning the URB
1720 * @urb: urb being returned to the USB device driver.
1721 * @status: completion status code for the URB.
1722 * Context: in_interrupt()
1723 *
1724 * This hands the URB from HCD to its USB device driver, using its
1725 * completion function. The HCD has freed all per-urb resources
1726 * (and is done using urb->hcpriv). It also released all HCD locks;
1727 * the device driver won't cause problems if it frees, modifies,
1728 * or resubmits this URB.
1729 *
1730 * If @urb was unlinked, the value of @status will be overridden by
1731 * @urb->unlinked. Erroneous short transfers are detected in case
1732 * the HCD hasn't checked for them.
1733 */
usb_hcd_giveback_urb(struct usb_hcd * hcd,struct urb * urb,int status)1734 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1735 {
1736 struct giveback_urb_bh *bh;
1737 bool running, high_prio_bh;
1738
1739 /* pass status to tasklet via unlinked */
1740 if (likely(!urb->unlinked))
1741 urb->unlinked = status;
1742
1743 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1744 __usb_hcd_giveback_urb(urb);
1745 return;
1746 }
1747
1748 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1749 bh = &hcd->high_prio_bh;
1750 high_prio_bh = true;
1751 } else {
1752 bh = &hcd->low_prio_bh;
1753 high_prio_bh = false;
1754 }
1755
1756 spin_lock(&bh->lock);
1757 list_add_tail(&urb->urb_list, &bh->head);
1758 running = bh->running;
1759 spin_unlock(&bh->lock);
1760
1761 if (running)
1762 ;
1763 else if (high_prio_bh)
1764 tasklet_hi_schedule(&bh->bh);
1765 else
1766 tasklet_schedule(&bh->bh);
1767 }
1768 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1769
1770 /*-------------------------------------------------------------------------*/
1771
1772 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1773 * queue to drain completely. The caller must first insure that no more
1774 * URBs can be submitted for this endpoint.
1775 */
usb_hcd_flush_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)1776 void usb_hcd_flush_endpoint(struct usb_device *udev,
1777 struct usb_host_endpoint *ep)
1778 {
1779 struct usb_hcd *hcd;
1780 struct urb *urb;
1781
1782 if (!ep)
1783 return;
1784 might_sleep();
1785 hcd = bus_to_hcd(udev->bus);
1786
1787 /* No more submits can occur */
1788 spin_lock_irq(&hcd_urb_list_lock);
1789 rescan:
1790 list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) {
1791 int is_in;
1792
1793 if (urb->unlinked)
1794 continue;
1795 usb_get_urb (urb);
1796 is_in = usb_urb_dir_in(urb);
1797 spin_unlock(&hcd_urb_list_lock);
1798
1799 /* kick hcd */
1800 unlink1(hcd, urb, -ESHUTDOWN);
1801 dev_dbg (hcd->self.controller,
1802 "shutdown urb %pK ep%d%s-%s\n",
1803 urb, usb_endpoint_num(&ep->desc),
1804 is_in ? "in" : "out",
1805 usb_ep_type_string(usb_endpoint_type(&ep->desc)));
1806 usb_put_urb (urb);
1807
1808 /* list contents may have changed */
1809 spin_lock(&hcd_urb_list_lock);
1810 goto rescan;
1811 }
1812 spin_unlock_irq(&hcd_urb_list_lock);
1813
1814 /* Wait until the endpoint queue is completely empty */
1815 while (!list_empty (&ep->urb_list)) {
1816 spin_lock_irq(&hcd_urb_list_lock);
1817
1818 /* The list may have changed while we acquired the spinlock */
1819 urb = NULL;
1820 if (!list_empty (&ep->urb_list)) {
1821 urb = list_entry (ep->urb_list.prev, struct urb,
1822 urb_list);
1823 usb_get_urb (urb);
1824 }
1825 spin_unlock_irq(&hcd_urb_list_lock);
1826
1827 if (urb) {
1828 usb_kill_urb (urb);
1829 usb_put_urb (urb);
1830 }
1831 }
1832 }
1833
1834 /**
1835 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1836 * the bus bandwidth
1837 * @udev: target &usb_device
1838 * @new_config: new configuration to install
1839 * @cur_alt: the current alternate interface setting
1840 * @new_alt: alternate interface setting that is being installed
1841 *
1842 * To change configurations, pass in the new configuration in new_config,
1843 * and pass NULL for cur_alt and new_alt.
1844 *
1845 * To reset a device's configuration (put the device in the ADDRESSED state),
1846 * pass in NULL for new_config, cur_alt, and new_alt.
1847 *
1848 * To change alternate interface settings, pass in NULL for new_config,
1849 * pass in the current alternate interface setting in cur_alt,
1850 * and pass in the new alternate interface setting in new_alt.
1851 *
1852 * Return: An error if the requested bandwidth change exceeds the
1853 * bus bandwidth or host controller internal resources.
1854 */
usb_hcd_alloc_bandwidth(struct usb_device * udev,struct usb_host_config * new_config,struct usb_host_interface * cur_alt,struct usb_host_interface * new_alt)1855 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1856 struct usb_host_config *new_config,
1857 struct usb_host_interface *cur_alt,
1858 struct usb_host_interface *new_alt)
1859 {
1860 int num_intfs, i, j;
1861 struct usb_host_interface *alt = NULL;
1862 int ret = 0;
1863 struct usb_hcd *hcd;
1864 struct usb_host_endpoint *ep;
1865
1866 hcd = bus_to_hcd(udev->bus);
1867 if (!hcd->driver->check_bandwidth)
1868 return 0;
1869
1870 /* Configuration is being removed - set configuration 0 */
1871 if (!new_config && !cur_alt) {
1872 for (i = 1; i < 16; ++i) {
1873 ep = udev->ep_out[i];
1874 if (ep)
1875 hcd->driver->drop_endpoint(hcd, udev, ep);
1876 ep = udev->ep_in[i];
1877 if (ep)
1878 hcd->driver->drop_endpoint(hcd, udev, ep);
1879 }
1880 hcd->driver->check_bandwidth(hcd, udev);
1881 return 0;
1882 }
1883 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1884 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1885 * of the bus. There will always be bandwidth for endpoint 0, so it's
1886 * ok to exclude it.
1887 */
1888 if (new_config) {
1889 num_intfs = new_config->desc.bNumInterfaces;
1890 /* Remove endpoints (except endpoint 0, which is always on the
1891 * schedule) from the old config from the schedule
1892 */
1893 for (i = 1; i < 16; ++i) {
1894 ep = udev->ep_out[i];
1895 if (ep) {
1896 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1897 if (ret < 0)
1898 goto reset;
1899 }
1900 ep = udev->ep_in[i];
1901 if (ep) {
1902 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1903 if (ret < 0)
1904 goto reset;
1905 }
1906 }
1907 for (i = 0; i < num_intfs; ++i) {
1908 struct usb_host_interface *first_alt;
1909 int iface_num;
1910
1911 first_alt = &new_config->intf_cache[i]->altsetting[0];
1912 iface_num = first_alt->desc.bInterfaceNumber;
1913 /* Set up endpoints for alternate interface setting 0 */
1914 alt = usb_find_alt_setting(new_config, iface_num, 0);
1915 if (!alt)
1916 /* No alt setting 0? Pick the first setting. */
1917 alt = first_alt;
1918
1919 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1920 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1921 if (ret < 0)
1922 goto reset;
1923 }
1924 }
1925 }
1926 if (cur_alt && new_alt) {
1927 struct usb_interface *iface = usb_ifnum_to_if(udev,
1928 cur_alt->desc.bInterfaceNumber);
1929
1930 if (!iface)
1931 return -EINVAL;
1932 if (iface->resetting_device) {
1933 /*
1934 * The USB core just reset the device, so the xHCI host
1935 * and the device will think alt setting 0 is installed.
1936 * However, the USB core will pass in the alternate
1937 * setting installed before the reset as cur_alt. Dig
1938 * out the alternate setting 0 structure, or the first
1939 * alternate setting if a broken device doesn't have alt
1940 * setting 0.
1941 */
1942 cur_alt = usb_altnum_to_altsetting(iface, 0);
1943 if (!cur_alt)
1944 cur_alt = &iface->altsetting[0];
1945 }
1946
1947 /* Drop all the endpoints in the current alt setting */
1948 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1949 ret = hcd->driver->drop_endpoint(hcd, udev,
1950 &cur_alt->endpoint[i]);
1951 if (ret < 0)
1952 goto reset;
1953 }
1954 /* Add all the endpoints in the new alt setting */
1955 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1956 ret = hcd->driver->add_endpoint(hcd, udev,
1957 &new_alt->endpoint[i]);
1958 if (ret < 0)
1959 goto reset;
1960 }
1961 }
1962 ret = hcd->driver->check_bandwidth(hcd, udev);
1963 reset:
1964 if (ret < 0)
1965 hcd->driver->reset_bandwidth(hcd, udev);
1966 return ret;
1967 }
1968
1969 /* Disables the endpoint: synchronizes with the hcd to make sure all
1970 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
1971 * have been called previously. Use for set_configuration, set_interface,
1972 * driver removal, physical disconnect.
1973 *
1974 * example: a qh stored in ep->hcpriv, holding state related to endpoint
1975 * type, maxpacket size, toggle, halt status, and scheduling.
1976 */
usb_hcd_disable_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)1977 void usb_hcd_disable_endpoint(struct usb_device *udev,
1978 struct usb_host_endpoint *ep)
1979 {
1980 struct usb_hcd *hcd;
1981
1982 might_sleep();
1983 hcd = bus_to_hcd(udev->bus);
1984 if (hcd->driver->endpoint_disable)
1985 hcd->driver->endpoint_disable(hcd, ep);
1986 }
1987
1988 /**
1989 * usb_hcd_reset_endpoint - reset host endpoint state
1990 * @udev: USB device.
1991 * @ep: the endpoint to reset.
1992 *
1993 * Resets any host endpoint state such as the toggle bit, sequence
1994 * number and current window.
1995 */
usb_hcd_reset_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)1996 void usb_hcd_reset_endpoint(struct usb_device *udev,
1997 struct usb_host_endpoint *ep)
1998 {
1999 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2000
2001 if (hcd->driver->endpoint_reset)
2002 hcd->driver->endpoint_reset(hcd, ep);
2003 else {
2004 int epnum = usb_endpoint_num(&ep->desc);
2005 int is_out = usb_endpoint_dir_out(&ep->desc);
2006 int is_control = usb_endpoint_xfer_control(&ep->desc);
2007
2008 usb_settoggle(udev, epnum, is_out, 0);
2009 if (is_control)
2010 usb_settoggle(udev, epnum, !is_out, 0);
2011 }
2012 }
2013
2014 /**
2015 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2016 * @interface: alternate setting that includes all endpoints.
2017 * @eps: array of endpoints that need streams.
2018 * @num_eps: number of endpoints in the array.
2019 * @num_streams: number of streams to allocate.
2020 * @mem_flags: flags hcd should use to allocate memory.
2021 *
2022 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2023 * Drivers may queue multiple transfers to different stream IDs, which may
2024 * complete in a different order than they were queued.
2025 *
2026 * Return: On success, the number of allocated streams. On failure, a negative
2027 * error code.
2028 */
usb_alloc_streams(struct usb_interface * interface,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)2029 int usb_alloc_streams(struct usb_interface *interface,
2030 struct usb_host_endpoint **eps, unsigned int num_eps,
2031 unsigned int num_streams, gfp_t mem_flags)
2032 {
2033 struct usb_hcd *hcd;
2034 struct usb_device *dev;
2035 int i, ret;
2036
2037 dev = interface_to_usbdev(interface);
2038 hcd = bus_to_hcd(dev->bus);
2039 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2040 return -EINVAL;
2041 if (dev->speed < USB_SPEED_SUPER)
2042 return -EINVAL;
2043 if (dev->state < USB_STATE_CONFIGURED)
2044 return -ENODEV;
2045
2046 for (i = 0; i < num_eps; i++) {
2047 /* Streams only apply to bulk endpoints. */
2048 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2049 return -EINVAL;
2050 /* Re-alloc is not allowed */
2051 if (eps[i]->streams)
2052 return -EINVAL;
2053 }
2054
2055 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2056 num_streams, mem_flags);
2057 if (ret < 0)
2058 return ret;
2059
2060 for (i = 0; i < num_eps; i++)
2061 eps[i]->streams = ret;
2062
2063 return ret;
2064 }
2065 EXPORT_SYMBOL_GPL(usb_alloc_streams);
2066
2067 /**
2068 * usb_free_streams - free bulk endpoint stream IDs.
2069 * @interface: alternate setting that includes all endpoints.
2070 * @eps: array of endpoints to remove streams from.
2071 * @num_eps: number of endpoints in the array.
2072 * @mem_flags: flags hcd should use to allocate memory.
2073 *
2074 * Reverts a group of bulk endpoints back to not using stream IDs.
2075 * Can fail if we are given bad arguments, or HCD is broken.
2076 *
2077 * Return: 0 on success. On failure, a negative error code.
2078 */
usb_free_streams(struct usb_interface * interface,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)2079 int usb_free_streams(struct usb_interface *interface,
2080 struct usb_host_endpoint **eps, unsigned int num_eps,
2081 gfp_t mem_flags)
2082 {
2083 struct usb_hcd *hcd;
2084 struct usb_device *dev;
2085 int i, ret;
2086
2087 dev = interface_to_usbdev(interface);
2088 hcd = bus_to_hcd(dev->bus);
2089 if (dev->speed < USB_SPEED_SUPER)
2090 return -EINVAL;
2091
2092 /* Double-free is not allowed */
2093 for (i = 0; i < num_eps; i++)
2094 if (!eps[i] || !eps[i]->streams)
2095 return -EINVAL;
2096
2097 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2098 if (ret < 0)
2099 return ret;
2100
2101 for (i = 0; i < num_eps; i++)
2102 eps[i]->streams = 0;
2103
2104 return ret;
2105 }
2106 EXPORT_SYMBOL_GPL(usb_free_streams);
2107
2108 /* Protect against drivers that try to unlink URBs after the device
2109 * is gone, by waiting until all unlinks for @udev are finished.
2110 * Since we don't currently track URBs by device, simply wait until
2111 * nothing is running in the locked region of usb_hcd_unlink_urb().
2112 */
usb_hcd_synchronize_unlinks(struct usb_device * udev)2113 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2114 {
2115 spin_lock_irq(&hcd_urb_unlink_lock);
2116 spin_unlock_irq(&hcd_urb_unlink_lock);
2117 }
2118
2119 /*-------------------------------------------------------------------------*/
2120
2121 /* called in any context */
usb_hcd_get_frame_number(struct usb_device * udev)2122 int usb_hcd_get_frame_number (struct usb_device *udev)
2123 {
2124 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2125
2126 if (!HCD_RH_RUNNING(hcd))
2127 return -ESHUTDOWN;
2128 return hcd->driver->get_frame_number (hcd);
2129 }
2130
2131 /*-------------------------------------------------------------------------*/
2132
2133 #ifdef CONFIG_PM
2134
hcd_bus_suspend(struct usb_device * rhdev,pm_message_t msg)2135 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2136 {
2137 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2138 int status;
2139 int old_state = hcd->state;
2140
2141 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2142 (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2143 rhdev->do_remote_wakeup);
2144 if (HCD_DEAD(hcd)) {
2145 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2146 return 0;
2147 }
2148
2149 if (!hcd->driver->bus_suspend) {
2150 status = -ENOENT;
2151 } else {
2152 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2153 hcd->state = HC_STATE_QUIESCING;
2154 status = hcd->driver->bus_suspend(hcd);
2155 }
2156 if (status == 0) {
2157 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2158 hcd->state = HC_STATE_SUSPENDED;
2159
2160 if (!PMSG_IS_AUTO(msg))
2161 usb_phy_roothub_suspend(hcd->self.sysdev,
2162 hcd->phy_roothub);
2163
2164 /* Did we race with a root-hub wakeup event? */
2165 if (rhdev->do_remote_wakeup) {
2166 char buffer[6];
2167
2168 status = hcd->driver->hub_status_data(hcd, buffer);
2169 if (status != 0) {
2170 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2171 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2172 status = -EBUSY;
2173 }
2174 }
2175 } else {
2176 spin_lock_irq(&hcd_root_hub_lock);
2177 if (!HCD_DEAD(hcd)) {
2178 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2179 hcd->state = old_state;
2180 }
2181 spin_unlock_irq(&hcd_root_hub_lock);
2182 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2183 "suspend", status);
2184 }
2185 return status;
2186 }
2187
hcd_bus_resume(struct usb_device * rhdev,pm_message_t msg)2188 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2189 {
2190 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2191 int status;
2192 int old_state = hcd->state;
2193
2194 dev_dbg(&rhdev->dev, "usb %sresume\n",
2195 (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2196 if (HCD_DEAD(hcd)) {
2197 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2198 return 0;
2199 }
2200
2201 if (!PMSG_IS_AUTO(msg)) {
2202 status = usb_phy_roothub_resume(hcd->self.sysdev,
2203 hcd->phy_roothub);
2204 if (status)
2205 return status;
2206 }
2207
2208 if (!hcd->driver->bus_resume)
2209 return -ENOENT;
2210 if (HCD_RH_RUNNING(hcd))
2211 return 0;
2212
2213 hcd->state = HC_STATE_RESUMING;
2214 status = hcd->driver->bus_resume(hcd);
2215 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2216 if (status == 0)
2217 status = usb_phy_roothub_calibrate(hcd->phy_roothub);
2218
2219 if (status == 0) {
2220 struct usb_device *udev;
2221 int port1;
2222
2223 spin_lock_irq(&hcd_root_hub_lock);
2224 if (!HCD_DEAD(hcd)) {
2225 usb_set_device_state(rhdev, rhdev->actconfig
2226 ? USB_STATE_CONFIGURED
2227 : USB_STATE_ADDRESS);
2228 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2229 hcd->state = HC_STATE_RUNNING;
2230 }
2231 spin_unlock_irq(&hcd_root_hub_lock);
2232
2233 /*
2234 * Check whether any of the enabled ports on the root hub are
2235 * unsuspended. If they are then a TRSMRCY delay is needed
2236 * (this is what the USB-2 spec calls a "global resume").
2237 * Otherwise we can skip the delay.
2238 */
2239 usb_hub_for_each_child(rhdev, port1, udev) {
2240 if (udev->state != USB_STATE_NOTATTACHED &&
2241 !udev->port_is_suspended) {
2242 usleep_range(10000, 11000); /* TRSMRCY */
2243 break;
2244 }
2245 }
2246 } else {
2247 hcd->state = old_state;
2248 usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub);
2249 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2250 "resume", status);
2251 if (status != -ESHUTDOWN)
2252 usb_hc_died(hcd);
2253 }
2254 return status;
2255 }
2256
2257 /* Workqueue routine for root-hub remote wakeup */
hcd_resume_work(struct work_struct * work)2258 static void hcd_resume_work(struct work_struct *work)
2259 {
2260 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2261 struct usb_device *udev = hcd->self.root_hub;
2262
2263 usb_remote_wakeup(udev);
2264 }
2265
2266 /**
2267 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2268 * @hcd: host controller for this root hub
2269 *
2270 * The USB host controller calls this function when its root hub is
2271 * suspended (with the remote wakeup feature enabled) and a remote
2272 * wakeup request is received. The routine submits a workqueue request
2273 * to resume the root hub (that is, manage its downstream ports again).
2274 */
usb_hcd_resume_root_hub(struct usb_hcd * hcd)2275 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2276 {
2277 unsigned long flags;
2278
2279 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2280 if (hcd->rh_registered) {
2281 pm_wakeup_event(&hcd->self.root_hub->dev, 0);
2282 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2283 queue_work(pm_wq, &hcd->wakeup_work);
2284 }
2285 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2286 }
2287 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2288
2289 #endif /* CONFIG_PM */
2290
2291 /*-------------------------------------------------------------------------*/
2292
2293 #ifdef CONFIG_USB_OTG
2294
2295 /**
2296 * usb_bus_start_enum - start immediate enumeration (for OTG)
2297 * @bus: the bus (must use hcd framework)
2298 * @port_num: 1-based number of port; usually bus->otg_port
2299 * Context: in_interrupt()
2300 *
2301 * Starts enumeration, with an immediate reset followed later by
2302 * hub_wq identifying and possibly configuring the device.
2303 * This is needed by OTG controller drivers, where it helps meet
2304 * HNP protocol timing requirements for starting a port reset.
2305 *
2306 * Return: 0 if successful.
2307 */
usb_bus_start_enum(struct usb_bus * bus,unsigned port_num)2308 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2309 {
2310 struct usb_hcd *hcd;
2311 int status = -EOPNOTSUPP;
2312
2313 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2314 * boards with root hubs hooked up to internal devices (instead of
2315 * just the OTG port) may need more attention to resetting...
2316 */
2317 hcd = bus_to_hcd(bus);
2318 if (port_num && hcd->driver->start_port_reset)
2319 status = hcd->driver->start_port_reset(hcd, port_num);
2320
2321 /* allocate hub_wq shortly after (first) root port reset finishes;
2322 * it may issue others, until at least 50 msecs have passed.
2323 */
2324 if (status == 0)
2325 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2326 return status;
2327 }
2328 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2329
2330 #endif
2331
2332 /*-------------------------------------------------------------------------*/
2333
2334 /**
2335 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2336 * @irq: the IRQ being raised
2337 * @__hcd: pointer to the HCD whose IRQ is being signaled
2338 *
2339 * If the controller isn't HALTed, calls the driver's irq handler.
2340 * Checks whether the controller is now dead.
2341 *
2342 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2343 */
usb_hcd_irq(int irq,void * __hcd)2344 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2345 {
2346 struct usb_hcd *hcd = __hcd;
2347 irqreturn_t rc;
2348
2349 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2350 rc = IRQ_NONE;
2351 else if (hcd->driver->irq(hcd) == IRQ_NONE)
2352 rc = IRQ_NONE;
2353 else
2354 rc = IRQ_HANDLED;
2355
2356 return rc;
2357 }
2358 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2359
2360 /*-------------------------------------------------------------------------*/
2361
2362 /* Workqueue routine for when the root-hub has died. */
hcd_died_work(struct work_struct * work)2363 static void hcd_died_work(struct work_struct *work)
2364 {
2365 struct usb_hcd *hcd = container_of(work, struct usb_hcd, died_work);
2366 static char *env[] = {
2367 "ERROR=DEAD",
2368 NULL
2369 };
2370
2371 /* Notify user space that the host controller has died */
2372 kobject_uevent_env(&hcd->self.root_hub->dev.kobj, KOBJ_OFFLINE, env);
2373 }
2374
2375 /**
2376 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2377 * @hcd: pointer to the HCD representing the controller
2378 *
2379 * This is called by bus glue to report a USB host controller that died
2380 * while operations may still have been pending. It's called automatically
2381 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2382 *
2383 * Only call this function with the primary HCD.
2384 */
usb_hc_died(struct usb_hcd * hcd)2385 void usb_hc_died (struct usb_hcd *hcd)
2386 {
2387 unsigned long flags;
2388
2389 dev_err (hcd->self.controller, "HC died; cleaning up\n");
2390
2391 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2392 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2393 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2394 if (hcd->rh_registered) {
2395 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2396
2397 /* make hub_wq clean up old urbs and devices */
2398 usb_set_device_state (hcd->self.root_hub,
2399 USB_STATE_NOTATTACHED);
2400 usb_kick_hub_wq(hcd->self.root_hub);
2401 }
2402 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2403 hcd = hcd->shared_hcd;
2404 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2405 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2406 if (hcd->rh_registered) {
2407 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2408
2409 /* make hub_wq clean up old urbs and devices */
2410 usb_set_device_state(hcd->self.root_hub,
2411 USB_STATE_NOTATTACHED);
2412 usb_kick_hub_wq(hcd->self.root_hub);
2413 }
2414 }
2415
2416 /* Handle the case where this function gets called with a shared HCD */
2417 if (usb_hcd_is_primary_hcd(hcd))
2418 schedule_work(&hcd->died_work);
2419 else
2420 schedule_work(&hcd->primary_hcd->died_work);
2421
2422 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2423 /* Make sure that the other roothub is also deallocated. */
2424 }
2425 EXPORT_SYMBOL_GPL (usb_hc_died);
2426
2427 /*-------------------------------------------------------------------------*/
2428
init_giveback_urb_bh(struct giveback_urb_bh * bh)2429 static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2430 {
2431
2432 spin_lock_init(&bh->lock);
2433 INIT_LIST_HEAD(&bh->head);
2434 tasklet_setup(&bh->bh, usb_giveback_urb_bh);
2435 }
2436
__usb_create_hcd(const struct hc_driver * driver,struct device * sysdev,struct device * dev,const char * bus_name,struct usb_hcd * primary_hcd)2437 struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver,
2438 struct device *sysdev, struct device *dev, const char *bus_name,
2439 struct usb_hcd *primary_hcd)
2440 {
2441 struct usb_hcd *hcd;
2442
2443 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2444 if (!hcd)
2445 return NULL;
2446 if (primary_hcd == NULL) {
2447 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2448 GFP_KERNEL);
2449 if (!hcd->address0_mutex) {
2450 kfree(hcd);
2451 dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2452 return NULL;
2453 }
2454 mutex_init(hcd->address0_mutex);
2455 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2456 GFP_KERNEL);
2457 if (!hcd->bandwidth_mutex) {
2458 kfree(hcd->address0_mutex);
2459 kfree(hcd);
2460 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2461 return NULL;
2462 }
2463 mutex_init(hcd->bandwidth_mutex);
2464 dev_set_drvdata(dev, hcd);
2465 } else {
2466 mutex_lock(&usb_port_peer_mutex);
2467 hcd->address0_mutex = primary_hcd->address0_mutex;
2468 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2469 hcd->primary_hcd = primary_hcd;
2470 primary_hcd->primary_hcd = primary_hcd;
2471 hcd->shared_hcd = primary_hcd;
2472 primary_hcd->shared_hcd = hcd;
2473 mutex_unlock(&usb_port_peer_mutex);
2474 }
2475
2476 kref_init(&hcd->kref);
2477
2478 usb_bus_init(&hcd->self);
2479 hcd->self.controller = dev;
2480 hcd->self.sysdev = sysdev;
2481 hcd->self.bus_name = bus_name;
2482
2483 timer_setup(&hcd->rh_timer, rh_timer_func, 0);
2484 #ifdef CONFIG_PM
2485 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2486 #endif
2487
2488 INIT_WORK(&hcd->died_work, hcd_died_work);
2489
2490 hcd->driver = driver;
2491 hcd->speed = driver->flags & HCD_MASK;
2492 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2493 "USB Host Controller";
2494 return hcd;
2495 }
2496 EXPORT_SYMBOL_GPL(__usb_create_hcd);
2497
2498 /**
2499 * usb_create_shared_hcd - create and initialize an HCD structure
2500 * @driver: HC driver that will use this hcd
2501 * @dev: device for this HC, stored in hcd->self.controller
2502 * @bus_name: value to store in hcd->self.bus_name
2503 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2504 * PCI device. Only allocate certain resources for the primary HCD
2505 * Context: !in_interrupt()
2506 *
2507 * Allocate a struct usb_hcd, with extra space at the end for the
2508 * HC driver's private data. Initialize the generic members of the
2509 * hcd structure.
2510 *
2511 * Return: On success, a pointer to the created and initialized HCD structure.
2512 * On failure (e.g. if memory is unavailable), %NULL.
2513 */
usb_create_shared_hcd(const struct hc_driver * driver,struct device * dev,const char * bus_name,struct usb_hcd * primary_hcd)2514 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2515 struct device *dev, const char *bus_name,
2516 struct usb_hcd *primary_hcd)
2517 {
2518 return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd);
2519 }
2520 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2521
2522 /**
2523 * usb_create_hcd - create and initialize an HCD structure
2524 * @driver: HC driver that will use this hcd
2525 * @dev: device for this HC, stored in hcd->self.controller
2526 * @bus_name: value to store in hcd->self.bus_name
2527 * Context: !in_interrupt()
2528 *
2529 * Allocate a struct usb_hcd, with extra space at the end for the
2530 * HC driver's private data. Initialize the generic members of the
2531 * hcd structure.
2532 *
2533 * Return: On success, a pointer to the created and initialized HCD
2534 * structure. On failure (e.g. if memory is unavailable), %NULL.
2535 */
usb_create_hcd(const struct hc_driver * driver,struct device * dev,const char * bus_name)2536 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2537 struct device *dev, const char *bus_name)
2538 {
2539 return __usb_create_hcd(driver, dev, dev, bus_name, NULL);
2540 }
2541 EXPORT_SYMBOL_GPL(usb_create_hcd);
2542
2543 /*
2544 * Roothubs that share one PCI device must also share the bandwidth mutex.
2545 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2546 * deallocated.
2547 *
2548 * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2549 * freed. When hcd_release() is called for either hcd in a peer set,
2550 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2551 */
hcd_release(struct kref * kref)2552 static void hcd_release(struct kref *kref)
2553 {
2554 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2555
2556 mutex_lock(&usb_port_peer_mutex);
2557 if (hcd->shared_hcd) {
2558 struct usb_hcd *peer = hcd->shared_hcd;
2559
2560 peer->shared_hcd = NULL;
2561 peer->primary_hcd = NULL;
2562 } else {
2563 kfree(hcd->address0_mutex);
2564 kfree(hcd->bandwidth_mutex);
2565 }
2566 mutex_unlock(&usb_port_peer_mutex);
2567 kfree(hcd);
2568 }
2569
usb_get_hcd(struct usb_hcd * hcd)2570 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2571 {
2572 if (hcd)
2573 kref_get (&hcd->kref);
2574 return hcd;
2575 }
2576 EXPORT_SYMBOL_GPL(usb_get_hcd);
2577
usb_put_hcd(struct usb_hcd * hcd)2578 void usb_put_hcd (struct usb_hcd *hcd)
2579 {
2580 if (hcd)
2581 kref_put (&hcd->kref, hcd_release);
2582 }
2583 EXPORT_SYMBOL_GPL(usb_put_hcd);
2584
usb_hcd_is_primary_hcd(struct usb_hcd * hcd)2585 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2586 {
2587 if (!hcd->primary_hcd)
2588 return 1;
2589 return hcd == hcd->primary_hcd;
2590 }
2591 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2592
usb_hcd_find_raw_port_number(struct usb_hcd * hcd,int port1)2593 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2594 {
2595 if (!hcd->driver->find_raw_port_number)
2596 return port1;
2597
2598 return hcd->driver->find_raw_port_number(hcd, port1);
2599 }
2600
usb_hcd_request_irqs(struct usb_hcd * hcd,unsigned int irqnum,unsigned long irqflags)2601 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2602 unsigned int irqnum, unsigned long irqflags)
2603 {
2604 int retval;
2605
2606 if (hcd->driver->irq) {
2607
2608 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2609 hcd->driver->description, hcd->self.busnum);
2610 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2611 hcd->irq_descr, hcd);
2612 if (retval != 0) {
2613 dev_err(hcd->self.controller,
2614 "request interrupt %d failed\n",
2615 irqnum);
2616 return retval;
2617 }
2618 hcd->irq = irqnum;
2619 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2620 (hcd->driver->flags & HCD_MEMORY) ?
2621 "io mem" : "io base",
2622 (unsigned long long)hcd->rsrc_start);
2623 } else {
2624 hcd->irq = 0;
2625 if (hcd->rsrc_start)
2626 dev_info(hcd->self.controller, "%s 0x%08llx\n",
2627 (hcd->driver->flags & HCD_MEMORY) ?
2628 "io mem" : "io base",
2629 (unsigned long long)hcd->rsrc_start);
2630 }
2631 return 0;
2632 }
2633
2634 /*
2635 * Before we free this root hub, flush in-flight peering attempts
2636 * and disable peer lookups
2637 */
usb_put_invalidate_rhdev(struct usb_hcd * hcd)2638 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2639 {
2640 struct usb_device *rhdev;
2641
2642 mutex_lock(&usb_port_peer_mutex);
2643 rhdev = hcd->self.root_hub;
2644 hcd->self.root_hub = NULL;
2645 mutex_unlock(&usb_port_peer_mutex);
2646 usb_put_dev(rhdev);
2647 }
2648
2649 /**
2650 * usb_add_hcd - finish generic HCD structure initialization and register
2651 * @hcd: the usb_hcd structure to initialize
2652 * @irqnum: Interrupt line to allocate
2653 * @irqflags: Interrupt type flags
2654 *
2655 * Finish the remaining parts of generic HCD initialization: allocate the
2656 * buffers of consistent memory, register the bus, request the IRQ line,
2657 * and call the driver's reset() and start() routines.
2658 */
usb_add_hcd(struct usb_hcd * hcd,unsigned int irqnum,unsigned long irqflags)2659 int usb_add_hcd(struct usb_hcd *hcd,
2660 unsigned int irqnum, unsigned long irqflags)
2661 {
2662 int retval;
2663 struct usb_device *rhdev;
2664
2665 if (!hcd->skip_phy_initialization && usb_hcd_is_primary_hcd(hcd)) {
2666 hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev);
2667 if (IS_ERR(hcd->phy_roothub))
2668 return PTR_ERR(hcd->phy_roothub);
2669
2670 retval = usb_phy_roothub_init(hcd->phy_roothub);
2671 if (retval)
2672 return retval;
2673
2674 retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2675 PHY_MODE_USB_HOST_SS);
2676 if (retval)
2677 retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2678 PHY_MODE_USB_HOST);
2679 if (retval)
2680 goto err_usb_phy_roothub_power_on;
2681
2682 retval = usb_phy_roothub_power_on(hcd->phy_roothub);
2683 if (retval)
2684 goto err_usb_phy_roothub_power_on;
2685 }
2686
2687 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2688
2689 switch (authorized_default) {
2690 case USB_AUTHORIZE_NONE:
2691 hcd->dev_policy = USB_DEVICE_AUTHORIZE_NONE;
2692 break;
2693
2694 case USB_AUTHORIZE_ALL:
2695 hcd->dev_policy = USB_DEVICE_AUTHORIZE_ALL;
2696 break;
2697
2698 case USB_AUTHORIZE_INTERNAL:
2699 hcd->dev_policy = USB_DEVICE_AUTHORIZE_INTERNAL;
2700 break;
2701
2702 case USB_AUTHORIZE_WIRED:
2703 default:
2704 hcd->dev_policy = hcd->wireless ?
2705 USB_DEVICE_AUTHORIZE_NONE : USB_DEVICE_AUTHORIZE_ALL;
2706 break;
2707 }
2708
2709 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2710
2711 /* per default all interfaces are authorized */
2712 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2713
2714 /* HC is in reset state, but accessible. Now do the one-time init,
2715 * bottom up so that hcds can customize the root hubs before hub_wq
2716 * starts talking to them. (Note, bus id is assigned early too.)
2717 */
2718 retval = hcd_buffer_create(hcd);
2719 if (retval != 0) {
2720 dev_dbg(hcd->self.sysdev, "pool alloc failed\n");
2721 goto err_create_buf;
2722 }
2723
2724 retval = usb_register_bus(&hcd->self);
2725 if (retval < 0)
2726 goto err_register_bus;
2727
2728 rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2729 if (rhdev == NULL) {
2730 dev_err(hcd->self.sysdev, "unable to allocate root hub\n");
2731 retval = -ENOMEM;
2732 goto err_allocate_root_hub;
2733 }
2734 mutex_lock(&usb_port_peer_mutex);
2735 hcd->self.root_hub = rhdev;
2736 mutex_unlock(&usb_port_peer_mutex);
2737
2738 rhdev->rx_lanes = 1;
2739 rhdev->tx_lanes = 1;
2740
2741 switch (hcd->speed) {
2742 case HCD_USB11:
2743 rhdev->speed = USB_SPEED_FULL;
2744 break;
2745 case HCD_USB2:
2746 rhdev->speed = USB_SPEED_HIGH;
2747 break;
2748 case HCD_USB25:
2749 rhdev->speed = USB_SPEED_WIRELESS;
2750 break;
2751 case HCD_USB3:
2752 rhdev->speed = USB_SPEED_SUPER;
2753 break;
2754 case HCD_USB32:
2755 rhdev->rx_lanes = 2;
2756 rhdev->tx_lanes = 2;
2757 fallthrough;
2758 case HCD_USB31:
2759 rhdev->speed = USB_SPEED_SUPER_PLUS;
2760 break;
2761 default:
2762 retval = -EINVAL;
2763 goto err_set_rh_speed;
2764 }
2765
2766 /* wakeup flag init defaults to "everything works" for root hubs,
2767 * but drivers can override it in reset() if needed, along with
2768 * recording the overall controller's system wakeup capability.
2769 */
2770 device_set_wakeup_capable(&rhdev->dev, 1);
2771
2772 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2773 * registered. But since the controller can die at any time,
2774 * let's initialize the flag before touching the hardware.
2775 */
2776 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2777
2778 /* "reset" is misnamed; its role is now one-time init. the controller
2779 * should already have been reset (and boot firmware kicked off etc).
2780 */
2781 if (hcd->driver->reset) {
2782 retval = hcd->driver->reset(hcd);
2783 if (retval < 0) {
2784 dev_err(hcd->self.controller, "can't setup: %d\n",
2785 retval);
2786 goto err_hcd_driver_setup;
2787 }
2788 }
2789 hcd->rh_pollable = 1;
2790
2791 retval = usb_phy_roothub_calibrate(hcd->phy_roothub);
2792 if (retval)
2793 goto err_hcd_driver_setup;
2794
2795 /* NOTE: root hub and controller capabilities may not be the same */
2796 if (device_can_wakeup(hcd->self.controller)
2797 && device_can_wakeup(&hcd->self.root_hub->dev))
2798 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2799
2800 /* initialize tasklets */
2801 init_giveback_urb_bh(&hcd->high_prio_bh);
2802 init_giveback_urb_bh(&hcd->low_prio_bh);
2803
2804 /* enable irqs just before we start the controller,
2805 * if the BIOS provides legacy PCI irqs.
2806 */
2807 if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2808 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2809 if (retval)
2810 goto err_request_irq;
2811 }
2812
2813 hcd->state = HC_STATE_RUNNING;
2814 retval = hcd->driver->start(hcd);
2815 if (retval < 0) {
2816 dev_err(hcd->self.controller, "startup error %d\n", retval);
2817 goto err_hcd_driver_start;
2818 }
2819
2820 /* starting here, usbcore will pay attention to this root hub */
2821 retval = register_root_hub(hcd);
2822 if (retval != 0)
2823 goto err_register_root_hub;
2824
2825 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2826 usb_hcd_poll_rh_status(hcd);
2827
2828 return retval;
2829
2830 err_register_root_hub:
2831 hcd->rh_pollable = 0;
2832 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2833 del_timer_sync(&hcd->rh_timer);
2834 hcd->driver->stop(hcd);
2835 hcd->state = HC_STATE_HALT;
2836 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2837 del_timer_sync(&hcd->rh_timer);
2838 err_hcd_driver_start:
2839 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2840 free_irq(irqnum, hcd);
2841 err_request_irq:
2842 err_hcd_driver_setup:
2843 err_set_rh_speed:
2844 usb_put_invalidate_rhdev(hcd);
2845 err_allocate_root_hub:
2846 usb_deregister_bus(&hcd->self);
2847 err_register_bus:
2848 hcd_buffer_destroy(hcd);
2849 err_create_buf:
2850 usb_phy_roothub_power_off(hcd->phy_roothub);
2851 err_usb_phy_roothub_power_on:
2852 usb_phy_roothub_exit(hcd->phy_roothub);
2853
2854 return retval;
2855 }
2856 EXPORT_SYMBOL_GPL(usb_add_hcd);
2857
2858 /**
2859 * usb_remove_hcd - shutdown processing for generic HCDs
2860 * @hcd: the usb_hcd structure to remove
2861 * Context: !in_interrupt()
2862 *
2863 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2864 * invoking the HCD's stop() method.
2865 */
usb_remove_hcd(struct usb_hcd * hcd)2866 void usb_remove_hcd(struct usb_hcd *hcd)
2867 {
2868 struct usb_device *rhdev = hcd->self.root_hub;
2869
2870 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2871
2872 usb_get_dev(rhdev);
2873 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2874 if (HC_IS_RUNNING (hcd->state))
2875 hcd->state = HC_STATE_QUIESCING;
2876
2877 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2878 spin_lock_irq (&hcd_root_hub_lock);
2879 hcd->rh_registered = 0;
2880 spin_unlock_irq (&hcd_root_hub_lock);
2881
2882 #ifdef CONFIG_PM
2883 cancel_work_sync(&hcd->wakeup_work);
2884 #endif
2885 cancel_work_sync(&hcd->died_work);
2886
2887 mutex_lock(&usb_bus_idr_lock);
2888 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2889 mutex_unlock(&usb_bus_idr_lock);
2890
2891 /*
2892 * tasklet_kill() isn't needed here because:
2893 * - driver's disconnect() called from usb_disconnect() should
2894 * make sure its URBs are completed during the disconnect()
2895 * callback
2896 *
2897 * - it is too late to run complete() here since driver may have
2898 * been removed already now
2899 */
2900
2901 /* Prevent any more root-hub status calls from the timer.
2902 * The HCD might still restart the timer (if a port status change
2903 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2904 * the hub_status_data() callback.
2905 */
2906 hcd->rh_pollable = 0;
2907 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2908 del_timer_sync(&hcd->rh_timer);
2909
2910 hcd->driver->stop(hcd);
2911 hcd->state = HC_STATE_HALT;
2912
2913 /* In case the HCD restarted the timer, stop it again. */
2914 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2915 del_timer_sync(&hcd->rh_timer);
2916
2917 if (usb_hcd_is_primary_hcd(hcd)) {
2918 if (hcd->irq > 0)
2919 free_irq(hcd->irq, hcd);
2920 }
2921
2922 usb_deregister_bus(&hcd->self);
2923 hcd_buffer_destroy(hcd);
2924
2925 usb_phy_roothub_power_off(hcd->phy_roothub);
2926 usb_phy_roothub_exit(hcd->phy_roothub);
2927
2928 usb_put_invalidate_rhdev(hcd);
2929 hcd->flags = 0;
2930 }
2931 EXPORT_SYMBOL_GPL(usb_remove_hcd);
2932
2933 void
usb_hcd_platform_shutdown(struct platform_device * dev)2934 usb_hcd_platform_shutdown(struct platform_device *dev)
2935 {
2936 struct usb_hcd *hcd = platform_get_drvdata(dev);
2937
2938 /* No need for pm_runtime_put(), we're shutting down */
2939 pm_runtime_get_sync(&dev->dev);
2940
2941 if (hcd->driver->shutdown)
2942 hcd->driver->shutdown(hcd);
2943 }
2944 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2945
usb_hcd_setup_local_mem(struct usb_hcd * hcd,phys_addr_t phys_addr,dma_addr_t dma,size_t size)2946 int usb_hcd_setup_local_mem(struct usb_hcd *hcd, phys_addr_t phys_addr,
2947 dma_addr_t dma, size_t size)
2948 {
2949 int err;
2950 void *local_mem;
2951
2952 hcd->localmem_pool = devm_gen_pool_create(hcd->self.sysdev, 4,
2953 dev_to_node(hcd->self.sysdev),
2954 dev_name(hcd->self.sysdev));
2955 if (IS_ERR(hcd->localmem_pool))
2956 return PTR_ERR(hcd->localmem_pool);
2957
2958 local_mem = devm_memremap(hcd->self.sysdev, phys_addr,
2959 size, MEMREMAP_WC);
2960 if (IS_ERR(local_mem))
2961 return PTR_ERR(local_mem);
2962
2963 /*
2964 * Here we pass a dma_addr_t but the arg type is a phys_addr_t.
2965 * It's not backed by system memory and thus there's no kernel mapping
2966 * for it.
2967 */
2968 err = gen_pool_add_virt(hcd->localmem_pool, (unsigned long)local_mem,
2969 dma, size, dev_to_node(hcd->self.sysdev));
2970 if (err < 0) {
2971 dev_err(hcd->self.sysdev, "gen_pool_add_virt failed with %d\n",
2972 err);
2973 return err;
2974 }
2975
2976 return 0;
2977 }
2978 EXPORT_SYMBOL_GPL(usb_hcd_setup_local_mem);
2979
2980 /*-------------------------------------------------------------------------*/
2981
2982 #if IS_ENABLED(CONFIG_USB_MON)
2983
2984 const struct usb_mon_operations *mon_ops;
2985
2986 /*
2987 * The registration is unlocked.
2988 * We do it this way because we do not want to lock in hot paths.
2989 *
2990 * Notice that the code is minimally error-proof. Because usbmon needs
2991 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2992 */
2993
usb_mon_register(const struct usb_mon_operations * ops)2994 int usb_mon_register(const struct usb_mon_operations *ops)
2995 {
2996
2997 if (mon_ops)
2998 return -EBUSY;
2999
3000 mon_ops = ops;
3001 mb();
3002 return 0;
3003 }
3004 EXPORT_SYMBOL_GPL (usb_mon_register);
3005
usb_mon_deregister(void)3006 void usb_mon_deregister (void)
3007 {
3008
3009 if (mon_ops == NULL) {
3010 printk(KERN_ERR "USB: monitor was not registered\n");
3011 return;
3012 }
3013 mon_ops = NULL;
3014 mb();
3015 }
3016 EXPORT_SYMBOL_GPL (usb_mon_deregister);
3017
3018 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
3019