1 /*
2 * Copyright © 2018 Valve Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include "aco_ir.h"
26
27 #include <map>
28 #include <unordered_map>
29 #include <vector>
30
31 /*
32 * Implements the algorithm for dominator-tree value numbering
33 * from "Value Numbering" by Briggs, Cooper, and Simpson.
34 */
35
36 namespace aco {
37 namespace {
38
39 inline uint32_t
murmur_32_scramble(uint32_t h,uint32_t k)40 murmur_32_scramble(uint32_t h, uint32_t k)
41 {
42 k *= 0xcc9e2d51;
43 k = (k << 15) | (k >> 17);
44 h ^= k * 0x1b873593;
45 h = (h << 13) | (h >> 19);
46 h = h * 5 + 0xe6546b64;
47 return h;
48 }
49
50 template <typename T>
51 uint32_t
hash_murmur_32(Instruction * instr)52 hash_murmur_32(Instruction* instr)
53 {
54 uint32_t hash = uint32_t(instr->format) << 16 | uint32_t(instr->opcode);
55
56 for (const Operand& op : instr->operands)
57 hash = murmur_32_scramble(hash, op.constantValue());
58
59 /* skip format, opcode and pass_flags */
60 for (unsigned i = 2; i < (sizeof(T) >> 2); i++) {
61 uint32_t u;
62 /* Accesses it though a byte array, so doesn't violate the strict aliasing rule */
63 memcpy(&u, reinterpret_cast<uint8_t*>(instr) + i * 4, 4);
64 hash = murmur_32_scramble(hash, u);
65 }
66
67 /* Finalize. */
68 uint32_t len = instr->operands.size() + instr->definitions.size() + sizeof(T);
69 hash ^= len;
70 hash ^= hash >> 16;
71 hash *= 0x85ebca6b;
72 hash ^= hash >> 13;
73 hash *= 0xc2b2ae35;
74 hash ^= hash >> 16;
75 return hash;
76 }
77
78 struct InstrHash {
79 /* This hash function uses the Murmur3 algorithm written by Austin Appleby
80 * https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp
81 *
82 * In order to calculate the expression set, only the right-hand-side of an
83 * instruction is used for the hash, i.e. everything except the definitions.
84 */
operator ()aco::__anon7e74dbe80111::InstrHash85 std::size_t operator()(Instruction* instr) const
86 {
87 if (instr->isVOP3())
88 return hash_murmur_32<VOP3_instruction>(instr);
89
90 if (instr->isDPP())
91 return hash_murmur_32<DPP_instruction>(instr);
92
93 if (instr->isSDWA())
94 return hash_murmur_32<SDWA_instruction>(instr);
95
96 switch (instr->format) {
97 case Format::SMEM: return hash_murmur_32<SMEM_instruction>(instr);
98 case Format::VINTRP: return hash_murmur_32<Interp_instruction>(instr);
99 case Format::DS: return hash_murmur_32<DS_instruction>(instr);
100 case Format::SOPP: return hash_murmur_32<SOPP_instruction>(instr);
101 case Format::SOPK: return hash_murmur_32<SOPK_instruction>(instr);
102 case Format::EXP: return hash_murmur_32<Export_instruction>(instr);
103 case Format::MUBUF: return hash_murmur_32<MUBUF_instruction>(instr);
104 case Format::MIMG: return hash_murmur_32<MIMG_instruction>(instr);
105 case Format::MTBUF: return hash_murmur_32<MTBUF_instruction>(instr);
106 case Format::FLAT: return hash_murmur_32<FLAT_instruction>(instr);
107 case Format::PSEUDO_BRANCH: return hash_murmur_32<Pseudo_branch_instruction>(instr);
108 case Format::PSEUDO_REDUCTION: return hash_murmur_32<Pseudo_reduction_instruction>(instr);
109 default: return hash_murmur_32<Instruction>(instr);
110 }
111 }
112 };
113
114 struct InstrPred {
operator ()aco::__anon7e74dbe80111::InstrPred115 bool operator()(Instruction* a, Instruction* b) const
116 {
117 if (a->format != b->format)
118 return false;
119 if (a->opcode != b->opcode)
120 return false;
121 if (a->operands.size() != b->operands.size() ||
122 a->definitions.size() != b->definitions.size())
123 return false; /* possible with pseudo-instructions */
124 for (unsigned i = 0; i < a->operands.size(); i++) {
125 if (a->operands[i].isConstant()) {
126 if (!b->operands[i].isConstant())
127 return false;
128 if (a->operands[i].constantValue() != b->operands[i].constantValue())
129 return false;
130 } else if (a->operands[i].isTemp()) {
131 if (!b->operands[i].isTemp())
132 return false;
133 if (a->operands[i].tempId() != b->operands[i].tempId())
134 return false;
135 } else if (a->operands[i].isUndefined() ^ b->operands[i].isUndefined())
136 return false;
137 if (a->operands[i].isFixed()) {
138 if (!b->operands[i].isFixed())
139 return false;
140 if (a->operands[i].physReg() != b->operands[i].physReg())
141 return false;
142 if (a->operands[i].physReg() == exec && a->pass_flags != b->pass_flags)
143 return false;
144 }
145 }
146 for (unsigned i = 0; i < a->definitions.size(); i++) {
147 if (a->definitions[i].isTemp()) {
148 if (!b->definitions[i].isTemp())
149 return false;
150 if (a->definitions[i].regClass() != b->definitions[i].regClass())
151 return false;
152 }
153 if (a->definitions[i].isFixed()) {
154 if (!b->definitions[i].isFixed())
155 return false;
156 if (a->definitions[i].physReg() != b->definitions[i].physReg())
157 return false;
158 if (a->definitions[i].physReg() == exec)
159 return false;
160 }
161 }
162
163 if (a->opcode == aco_opcode::v_readfirstlane_b32)
164 return a->pass_flags == b->pass_flags;
165
166 if (a->isVOP3()) {
167 VOP3_instruction& a3 = a->vop3();
168 VOP3_instruction& b3 = b->vop3();
169 for (unsigned i = 0; i < 3; i++) {
170 if (a3.abs[i] != b3.abs[i] || a3.neg[i] != b3.neg[i])
171 return false;
172 }
173 return a3.clamp == b3.clamp && a3.omod == b3.omod && a3.opsel == b3.opsel;
174 }
175 if (a->isDPP()) {
176 DPP_instruction& aDPP = a->dpp();
177 DPP_instruction& bDPP = b->dpp();
178 return aDPP.pass_flags == bDPP.pass_flags && aDPP.dpp_ctrl == bDPP.dpp_ctrl &&
179 aDPP.bank_mask == bDPP.bank_mask && aDPP.row_mask == bDPP.row_mask &&
180 aDPP.bound_ctrl == bDPP.bound_ctrl && aDPP.abs[0] == bDPP.abs[0] &&
181 aDPP.abs[1] == bDPP.abs[1] && aDPP.neg[0] == bDPP.neg[0] &&
182 aDPP.neg[1] == bDPP.neg[1];
183 }
184 if (a->isSDWA()) {
185 SDWA_instruction& aSDWA = a->sdwa();
186 SDWA_instruction& bSDWA = b->sdwa();
187 return aSDWA.sel[0] == bSDWA.sel[0] && aSDWA.sel[1] == bSDWA.sel[1] &&
188 aSDWA.dst_sel == bSDWA.dst_sel && aSDWA.abs[0] == bSDWA.abs[0] &&
189 aSDWA.abs[1] == bSDWA.abs[1] && aSDWA.neg[0] == bSDWA.neg[0] &&
190 aSDWA.neg[1] == bSDWA.neg[1] && aSDWA.clamp == bSDWA.clamp &&
191 aSDWA.omod == bSDWA.omod;
192 }
193
194 switch (a->format) {
195 case Format::SOPK: {
196 if (a->opcode == aco_opcode::s_getreg_b32)
197 return false;
198 SOPK_instruction& aK = a->sopk();
199 SOPK_instruction& bK = b->sopk();
200 return aK.imm == bK.imm;
201 }
202 case Format::SMEM: {
203 SMEM_instruction& aS = a->smem();
204 SMEM_instruction& bS = b->smem();
205 /* isel shouldn't be creating situations where this assertion fails */
206 assert(aS.prevent_overflow == bS.prevent_overflow);
207 return aS.sync == bS.sync && aS.glc == bS.glc && aS.dlc == bS.dlc && aS.nv == bS.nv &&
208 aS.disable_wqm == bS.disable_wqm && aS.prevent_overflow == bS.prevent_overflow;
209 }
210 case Format::VINTRP: {
211 Interp_instruction& aI = a->vintrp();
212 Interp_instruction& bI = b->vintrp();
213 if (aI.attribute != bI.attribute)
214 return false;
215 if (aI.component != bI.component)
216 return false;
217 return true;
218 }
219 case Format::VOP3P: {
220 VOP3P_instruction& a3P = a->vop3p();
221 VOP3P_instruction& b3P = b->vop3p();
222 for (unsigned i = 0; i < 3; i++) {
223 if (a3P.neg_lo[i] != b3P.neg_lo[i] || a3P.neg_hi[i] != b3P.neg_hi[i])
224 return false;
225 }
226 return a3P.opsel_lo == b3P.opsel_lo && a3P.opsel_hi == b3P.opsel_hi &&
227 a3P.clamp == b3P.clamp;
228 }
229 case Format::PSEUDO_REDUCTION: {
230 Pseudo_reduction_instruction& aR = a->reduction();
231 Pseudo_reduction_instruction& bR = b->reduction();
232 return aR.pass_flags == bR.pass_flags && aR.reduce_op == bR.reduce_op &&
233 aR.cluster_size == bR.cluster_size;
234 }
235 case Format::DS: {
236 assert(a->opcode == aco_opcode::ds_bpermute_b32 ||
237 a->opcode == aco_opcode::ds_permute_b32 || a->opcode == aco_opcode::ds_swizzle_b32);
238 DS_instruction& aD = a->ds();
239 DS_instruction& bD = b->ds();
240 return aD.sync == bD.sync && aD.pass_flags == bD.pass_flags && aD.gds == bD.gds &&
241 aD.offset0 == bD.offset0 && aD.offset1 == bD.offset1;
242 }
243 case Format::MTBUF: {
244 MTBUF_instruction& aM = a->mtbuf();
245 MTBUF_instruction& bM = b->mtbuf();
246 return aM.sync == bM.sync && aM.dfmt == bM.dfmt && aM.nfmt == bM.nfmt &&
247 aM.offset == bM.offset && aM.offen == bM.offen && aM.idxen == bM.idxen &&
248 aM.glc == bM.glc && aM.dlc == bM.dlc && aM.slc == bM.slc && aM.tfe == bM.tfe &&
249 aM.disable_wqm == bM.disable_wqm;
250 }
251 case Format::MUBUF: {
252 MUBUF_instruction& aM = a->mubuf();
253 MUBUF_instruction& bM = b->mubuf();
254 return aM.sync == bM.sync && aM.offset == bM.offset && aM.offen == bM.offen &&
255 aM.idxen == bM.idxen && aM.glc == bM.glc && aM.dlc == bM.dlc && aM.slc == bM.slc &&
256 aM.tfe == bM.tfe && aM.lds == bM.lds && aM.disable_wqm == bM.disable_wqm;
257 }
258 case Format::MIMG: {
259 MIMG_instruction& aM = a->mimg();
260 MIMG_instruction& bM = b->mimg();
261 return aM.sync == bM.sync && aM.dmask == bM.dmask && aM.unrm == bM.unrm &&
262 aM.glc == bM.glc && aM.slc == bM.slc && aM.tfe == bM.tfe && aM.da == bM.da &&
263 aM.lwe == bM.lwe && aM.r128 == bM.r128 && aM.a16 == bM.a16 && aM.d16 == bM.d16 &&
264 aM.disable_wqm == bM.disable_wqm;
265 }
266 case Format::FLAT:
267 case Format::GLOBAL:
268 case Format::SCRATCH:
269 case Format::EXP:
270 case Format::SOPP:
271 case Format::PSEUDO_BRANCH:
272 case Format::PSEUDO_BARRIER: assert(false);
273 default: return true;
274 }
275 }
276 };
277
278 using expr_set = std::unordered_map<Instruction*, uint32_t, InstrHash, InstrPred>;
279
280 struct vn_ctx {
281 Program* program;
282 expr_set expr_values;
283 std::map<uint32_t, Temp> renames;
284
285 /* The exec id should be the same on the same level of control flow depth.
286 * Together with the check for dominator relations, it is safe to assume
287 * that the same exec_id also means the same execution mask.
288 * Discards increment the exec_id, so that it won't return to the previous value.
289 */
290 uint32_t exec_id = 1;
291
vn_ctxaco::__anon7e74dbe80111::vn_ctx292 vn_ctx(Program* program_) : program(program_)
293 {
294 static_assert(sizeof(Temp) == 4, "Temp must fit in 32bits");
295 unsigned size = 0;
296 for (Block& block : program->blocks)
297 size += block.instructions.size();
298 expr_values.reserve(size);
299 }
300 };
301
302 /* dominates() returns true if the parent block dominates the child block and
303 * if the parent block is part of the same loop or has a smaller loop nest depth.
304 */
305 bool
dominates(vn_ctx & ctx,uint32_t parent,uint32_t child)306 dominates(vn_ctx& ctx, uint32_t parent, uint32_t child)
307 {
308 unsigned parent_loop_nest_depth = ctx.program->blocks[parent].loop_nest_depth;
309 while (parent < child && parent_loop_nest_depth <= ctx.program->blocks[child].loop_nest_depth)
310 child = ctx.program->blocks[child].logical_idom;
311
312 return parent == child;
313 }
314
315 /** Returns whether this instruction can safely be removed
316 * and replaced by an equal expression.
317 * This is in particular true for ALU instructions and
318 * read-only memory instructions.
319 *
320 * Note that expr_set must not be used with instructions
321 * which cannot be eliminated.
322 */
323 bool
can_eliminate(aco_ptr<Instruction> & instr)324 can_eliminate(aco_ptr<Instruction>& instr)
325 {
326 switch (instr->format) {
327 case Format::FLAT:
328 case Format::GLOBAL:
329 case Format::SCRATCH:
330 case Format::EXP:
331 case Format::SOPP:
332 case Format::PSEUDO_BRANCH:
333 case Format::PSEUDO_BARRIER: return false;
334 case Format::DS:
335 return instr->opcode == aco_opcode::ds_bpermute_b32 ||
336 instr->opcode == aco_opcode::ds_permute_b32 ||
337 instr->opcode == aco_opcode::ds_swizzle_b32;
338 case Format::SMEM:
339 case Format::MUBUF:
340 case Format::MIMG:
341 case Format::MTBUF:
342 if (!get_sync_info(instr.get()).can_reorder())
343 return false;
344 break;
345 default: break;
346 }
347
348 if (instr->definitions.empty() || instr->opcode == aco_opcode::p_phi ||
349 instr->opcode == aco_opcode::p_linear_phi || instr->definitions[0].isNoCSE())
350 return false;
351
352 return true;
353 }
354
355 void
process_block(vn_ctx & ctx,Block & block)356 process_block(vn_ctx& ctx, Block& block)
357 {
358 std::vector<aco_ptr<Instruction>> new_instructions;
359 new_instructions.reserve(block.instructions.size());
360
361 for (aco_ptr<Instruction>& instr : block.instructions) {
362 /* first, rename operands */
363 for (Operand& op : instr->operands) {
364 if (!op.isTemp())
365 continue;
366 auto it = ctx.renames.find(op.tempId());
367 if (it != ctx.renames.end())
368 op.setTemp(it->second);
369 }
370
371 if (instr->opcode == aco_opcode::p_discard_if ||
372 instr->opcode == aco_opcode::p_demote_to_helper)
373 ctx.exec_id++;
374
375 if (!can_eliminate(instr)) {
376 new_instructions.emplace_back(std::move(instr));
377 continue;
378 }
379
380 /* simple copy-propagation through renaming */
381 bool copy_instr =
382 instr->opcode == aco_opcode::p_parallelcopy ||
383 (instr->opcode == aco_opcode::p_create_vector && instr->operands.size() == 1);
384 if (copy_instr && !instr->definitions[0].isFixed() && instr->operands[0].isTemp() &&
385 instr->operands[0].regClass() == instr->definitions[0].regClass()) {
386 ctx.renames[instr->definitions[0].tempId()] = instr->operands[0].getTemp();
387 continue;
388 }
389
390 instr->pass_flags = ctx.exec_id;
391 std::pair<expr_set::iterator, bool> res = ctx.expr_values.emplace(instr.get(), block.index);
392
393 /* if there was already an expression with the same value number */
394 if (!res.second) {
395 Instruction* orig_instr = res.first->first;
396 assert(instr->definitions.size() == orig_instr->definitions.size());
397 /* check if the original instruction dominates the current one */
398 if (dominates(ctx, res.first->second, block.index) &&
399 ctx.program->blocks[res.first->second].fp_mode.canReplace(block.fp_mode)) {
400 for (unsigned i = 0; i < instr->definitions.size(); i++) {
401 assert(instr->definitions[i].regClass() == orig_instr->definitions[i].regClass());
402 assert(instr->definitions[i].isTemp());
403 ctx.renames[instr->definitions[i].tempId()] = orig_instr->definitions[i].getTemp();
404 if (instr->definitions[i].isPrecise())
405 orig_instr->definitions[i].setPrecise(true);
406 /* SPIR_V spec says that an instruction marked with NUW wrapping
407 * around is undefined behaviour, so we can break additions in
408 * other contexts.
409 */
410 if (instr->definitions[i].isNUW())
411 orig_instr->definitions[i].setNUW(true);
412 }
413 } else {
414 ctx.expr_values.erase(res.first);
415 ctx.expr_values.emplace(instr.get(), block.index);
416 new_instructions.emplace_back(std::move(instr));
417 }
418 } else {
419 new_instructions.emplace_back(std::move(instr));
420 }
421 }
422
423 block.instructions = std::move(new_instructions);
424 }
425
426 void
rename_phi_operands(Block & block,std::map<uint32_t,Temp> & renames)427 rename_phi_operands(Block& block, std::map<uint32_t, Temp>& renames)
428 {
429 for (aco_ptr<Instruction>& phi : block.instructions) {
430 if (phi->opcode != aco_opcode::p_phi && phi->opcode != aco_opcode::p_linear_phi)
431 break;
432
433 for (Operand& op : phi->operands) {
434 if (!op.isTemp())
435 continue;
436 auto it = renames.find(op.tempId());
437 if (it != renames.end())
438 op.setTemp(it->second);
439 }
440 }
441 }
442 } /* end namespace */
443
444 void
value_numbering(Program * program)445 value_numbering(Program* program)
446 {
447 vn_ctx ctx(program);
448 std::vector<unsigned> loop_headers;
449
450 for (Block& block : program->blocks) {
451 assert(ctx.exec_id > 0);
452 /* decrement exec_id when leaving nested control flow */
453 if (block.kind & block_kind_loop_header)
454 loop_headers.push_back(block.index);
455 if (block.kind & block_kind_merge) {
456 ctx.exec_id--;
457 } else if (block.kind & block_kind_loop_exit) {
458 ctx.exec_id -= program->blocks[loop_headers.back()].linear_preds.size();
459 ctx.exec_id -= block.linear_preds.size();
460 loop_headers.pop_back();
461 }
462
463 if (block.logical_idom != -1)
464 process_block(ctx, block);
465 else
466 rename_phi_operands(block, ctx.renames);
467
468 /* increment exec_id when entering nested control flow */
469 if (block.kind & block_kind_branch || block.kind & block_kind_loop_preheader ||
470 block.kind & block_kind_break || block.kind & block_kind_continue ||
471 block.kind & block_kind_discard)
472 ctx.exec_id++;
473 else if (block.kind & block_kind_continue_or_break)
474 ctx.exec_id += 2;
475 }
476
477 /* rename loop header phi operands */
478 for (Block& block : program->blocks) {
479 if (block.kind & block_kind_loop_header)
480 rename_phi_operands(block, ctx.renames);
481 }
482 }
483
484 } // namespace aco
485