• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2008 Google Inc.  All rights reserved.
3 // https://developers.google.com/protocol-buffers/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 //     * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 //     * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 //     * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // Author: kenton@google.com (Kenton Varda)
32 //  Based on original Protocol Buffers design by
33 //  Sanjay Ghemawat, Jeff Dean, and others.
34 
35 #include <google/protobuf/descriptor.h>
36 
37 #include <algorithm>
38 #include <functional>
39 #include <limits>
40 #include <map>
41 #include <memory>
42 #include <set>
43 #include <string>
44 #include <unordered_map>
45 #include <unordered_set>
46 #include <vector>
47 
48 #include <google/protobuf/stubs/common.h>
49 #include <google/protobuf/stubs/logging.h>
50 #include <google/protobuf/stubs/stringprintf.h>
51 #include <google/protobuf/stubs/strutil.h>
52 #include <google/protobuf/descriptor.pb.h>
53 #include <google/protobuf/io/coded_stream.h>
54 #include <google/protobuf/io/tokenizer.h>
55 #include <google/protobuf/io/zero_copy_stream_impl.h>
56 #include <google/protobuf/descriptor_database.h>
57 #include <google/protobuf/dynamic_message.h>
58 #include <google/protobuf/generated_message_util.h>
59 #include <google/protobuf/text_format.h>
60 #include <google/protobuf/unknown_field_set.h>
61 #include <google/protobuf/wire_format.h>
62 #include <google/protobuf/stubs/casts.h>
63 #include <google/protobuf/stubs/substitute.h>
64 #include <google/protobuf/io/strtod.h>
65 #include <google/protobuf/stubs/map_util.h>
66 #include <google/protobuf/stubs/stl_util.h>
67 #include <google/protobuf/stubs/hash.h>
68 
69 #undef PACKAGE  // autoheader #defines this.  :(
70 
71 
72 #include <google/protobuf/port_def.inc>
73 
74 namespace google {
75 namespace protobuf {
76 
77 struct Symbol {
78   enum Type {
79     NULL_SYMBOL,
80     MESSAGE,
81     FIELD,
82     ONEOF,
83     ENUM,
84     ENUM_VALUE,
85     SERVICE,
86     METHOD,
87     PACKAGE
88   };
89   Type type;
90   union {
91     const Descriptor* descriptor;
92     const FieldDescriptor* field_descriptor;
93     const OneofDescriptor* oneof_descriptor;
94     const EnumDescriptor* enum_descriptor;
95     const EnumValueDescriptor* enum_value_descriptor;
96     const ServiceDescriptor* service_descriptor;
97     const MethodDescriptor* method_descriptor;
98     const FileDescriptor* package_file_descriptor;
99   };
100 
Symbolgoogle::protobuf::Symbol101   inline Symbol() : type(NULL_SYMBOL) { descriptor = nullptr; }
IsNullgoogle::protobuf::Symbol102   inline bool IsNull() const { return type == NULL_SYMBOL; }
IsTypegoogle::protobuf::Symbol103   inline bool IsType() const { return type == MESSAGE || type == ENUM; }
IsAggregategoogle::protobuf::Symbol104   inline bool IsAggregate() const {
105     return type == MESSAGE || type == PACKAGE || type == ENUM ||
106            type == SERVICE;
107   }
108 
109 #define CONSTRUCTOR(TYPE, TYPE_CONSTANT, FIELD) \
110   inline explicit Symbol(const TYPE* value) {   \
111     type = TYPE_CONSTANT;                       \
112     this->FIELD = value;                        \
113   }
114 
CONSTRUCTORgoogle::protobuf::Symbol115   CONSTRUCTOR(Descriptor, MESSAGE, descriptor)
116   CONSTRUCTOR(FieldDescriptor, FIELD, field_descriptor)
117   CONSTRUCTOR(OneofDescriptor, ONEOF, oneof_descriptor)
118   CONSTRUCTOR(EnumDescriptor, ENUM, enum_descriptor)
119   CONSTRUCTOR(EnumValueDescriptor, ENUM_VALUE, enum_value_descriptor)
120   CONSTRUCTOR(ServiceDescriptor, SERVICE, service_descriptor)
121   CONSTRUCTOR(MethodDescriptor, METHOD, method_descriptor)
122   CONSTRUCTOR(FileDescriptor, PACKAGE, package_file_descriptor)
123 #undef CONSTRUCTOR
124 
125   const FileDescriptor* GetFile() const {
126     switch (type) {
127       case NULL_SYMBOL:
128         return nullptr;
129       case MESSAGE:
130         return descriptor->file();
131       case FIELD:
132         return field_descriptor->file();
133       case ONEOF:
134         return oneof_descriptor->containing_type()->file();
135       case ENUM:
136         return enum_descriptor->file();
137       case ENUM_VALUE:
138         return enum_value_descriptor->type()->file();
139       case SERVICE:
140         return service_descriptor->file();
141       case METHOD:
142         return method_descriptor->service()->file();
143       case PACKAGE:
144         return package_file_descriptor;
145     }
146     return nullptr;
147   }
148 };
149 
150 const FieldDescriptor::CppType
151     FieldDescriptor::kTypeToCppTypeMap[MAX_TYPE + 1] = {
152         static_cast<CppType>(0),  // 0 is reserved for errors
153 
154         CPPTYPE_DOUBLE,   // TYPE_DOUBLE
155         CPPTYPE_FLOAT,    // TYPE_FLOAT
156         CPPTYPE_INT64,    // TYPE_INT64
157         CPPTYPE_UINT64,   // TYPE_UINT64
158         CPPTYPE_INT32,    // TYPE_INT32
159         CPPTYPE_UINT64,   // TYPE_FIXED64
160         CPPTYPE_UINT32,   // TYPE_FIXED32
161         CPPTYPE_BOOL,     // TYPE_BOOL
162         CPPTYPE_STRING,   // TYPE_STRING
163         CPPTYPE_MESSAGE,  // TYPE_GROUP
164         CPPTYPE_MESSAGE,  // TYPE_MESSAGE
165         CPPTYPE_STRING,   // TYPE_BYTES
166         CPPTYPE_UINT32,   // TYPE_UINT32
167         CPPTYPE_ENUM,     // TYPE_ENUM
168         CPPTYPE_INT32,    // TYPE_SFIXED32
169         CPPTYPE_INT64,    // TYPE_SFIXED64
170         CPPTYPE_INT32,    // TYPE_SINT32
171         CPPTYPE_INT64,    // TYPE_SINT64
172 };
173 
174 const char* const FieldDescriptor::kTypeToName[MAX_TYPE + 1] = {
175     "ERROR",  // 0 is reserved for errors
176 
177     "double",    // TYPE_DOUBLE
178     "float",     // TYPE_FLOAT
179     "int64",     // TYPE_INT64
180     "uint64",    // TYPE_UINT64
181     "int32",     // TYPE_INT32
182     "fixed64",   // TYPE_FIXED64
183     "fixed32",   // TYPE_FIXED32
184     "bool",      // TYPE_BOOL
185     "string",    // TYPE_STRING
186     "group",     // TYPE_GROUP
187     "message",   // TYPE_MESSAGE
188     "bytes",     // TYPE_BYTES
189     "uint32",    // TYPE_UINT32
190     "enum",      // TYPE_ENUM
191     "sfixed32",  // TYPE_SFIXED32
192     "sfixed64",  // TYPE_SFIXED64
193     "sint32",    // TYPE_SINT32
194     "sint64",    // TYPE_SINT64
195 };
196 
197 const char* const FieldDescriptor::kCppTypeToName[MAX_CPPTYPE + 1] = {
198     "ERROR",  // 0 is reserved for errors
199 
200     "int32",    // CPPTYPE_INT32
201     "int64",    // CPPTYPE_INT64
202     "uint32",   // CPPTYPE_UINT32
203     "uint64",   // CPPTYPE_UINT64
204     "double",   // CPPTYPE_DOUBLE
205     "float",    // CPPTYPE_FLOAT
206     "bool",     // CPPTYPE_BOOL
207     "enum",     // CPPTYPE_ENUM
208     "string",   // CPPTYPE_STRING
209     "message",  // CPPTYPE_MESSAGE
210 };
211 
212 const char* const FieldDescriptor::kLabelToName[MAX_LABEL + 1] = {
213     "ERROR",  // 0 is reserved for errors
214 
215     "optional",  // LABEL_OPTIONAL
216     "required",  // LABEL_REQUIRED
217     "repeated",  // LABEL_REPEATED
218 };
219 
SyntaxName(FileDescriptor::Syntax syntax)220 const char* FileDescriptor::SyntaxName(FileDescriptor::Syntax syntax) {
221   switch (syntax) {
222     case SYNTAX_PROTO2:
223       return "proto2";
224     case SYNTAX_PROTO3:
225       return "proto3";
226     case SYNTAX_UNKNOWN:
227       return "unknown";
228   }
229   GOOGLE_LOG(FATAL) << "can't reach here.";
230   return nullptr;
231 }
232 
233 static const char* const kNonLinkedWeakMessageReplacementName = "google.protobuf.Empty";
234 
235 #if !defined(_MSC_VER) || _MSC_VER >= 1900
236 const int FieldDescriptor::kMaxNumber;
237 const int FieldDescriptor::kFirstReservedNumber;
238 const int FieldDescriptor::kLastReservedNumber;
239 #endif
240 
241 namespace {
242 
243 // Note:  I distrust ctype.h due to locales.
ToUpper(char ch)244 char ToUpper(char ch) {
245   return (ch >= 'a' && ch <= 'z') ? (ch - 'a' + 'A') : ch;
246 }
247 
ToLower(char ch)248 char ToLower(char ch) {
249   return (ch >= 'A' && ch <= 'Z') ? (ch - 'A' + 'a') : ch;
250 }
251 
ToCamelCase(const std::string & input,bool lower_first)252 std::string ToCamelCase(const std::string& input, bool lower_first) {
253   bool capitalize_next = !lower_first;
254   std::string result;
255   result.reserve(input.size());
256 
257   for (int i = 0; i < input.size(); i++) {
258     if (input[i] == '_') {
259       capitalize_next = true;
260     } else if (capitalize_next) {
261       result.push_back(ToUpper(input[i]));
262       capitalize_next = false;
263     } else {
264       result.push_back(input[i]);
265     }
266   }
267 
268   // Lower-case the first letter.
269   if (lower_first && !result.empty()) {
270     result[0] = ToLower(result[0]);
271   }
272 
273   return result;
274 }
275 
ToJsonName(const std::string & input)276 std::string ToJsonName(const std::string& input) {
277   bool capitalize_next = false;
278   std::string result;
279   result.reserve(input.size());
280 
281   for (int i = 0; i < input.size(); i++) {
282     if (input[i] == '_') {
283       capitalize_next = true;
284     } else if (capitalize_next) {
285       result.push_back(ToUpper(input[i]));
286       capitalize_next = false;
287     } else {
288       result.push_back(input[i]);
289     }
290   }
291 
292   return result;
293 }
294 
EnumValueToPascalCase(const std::string & input)295 std::string EnumValueToPascalCase(const std::string& input) {
296   bool next_upper = true;
297   std::string result;
298   result.reserve(input.size());
299 
300   for (int i = 0; i < input.size(); i++) {
301     if (input[i] == '_') {
302       next_upper = true;
303     } else {
304       if (next_upper) {
305         result.push_back(ToUpper(input[i]));
306       } else {
307         result.push_back(ToLower(input[i]));
308       }
309       next_upper = false;
310     }
311   }
312 
313   return result;
314 }
315 
316 // Class to remove an enum prefix from enum values.
317 class PrefixRemover {
318  public:
PrefixRemover(StringPiece prefix)319   PrefixRemover(StringPiece prefix) {
320     // Strip underscores and lower-case the prefix.
321     for (int i = 0; i < prefix.size(); i++) {
322       if (prefix[i] != '_') {
323         prefix_ += ascii_tolower(prefix[i]);
324       }
325     }
326   }
327 
328   // Tries to remove the enum prefix from this enum value.
329   // If this is not possible, returns the input verbatim.
MaybeRemove(StringPiece str)330   std::string MaybeRemove(StringPiece str) {
331     // We can't just lowercase and strip str and look for a prefix.
332     // We need to properly recognize the difference between:
333     //
334     //   enum Foo {
335     //     FOO_BAR_BAZ = 0;
336     //     FOO_BARBAZ = 1;
337     //   }
338     //
339     // This is acceptable (though perhaps not advisable) because even when
340     // we PascalCase, these two will still be distinct (BarBaz vs. Barbaz).
341     size_t i, j;
342 
343     // Skip past prefix_ in str if we can.
344     for (i = 0, j = 0; i < str.size() && j < prefix_.size(); i++) {
345       if (str[i] == '_') {
346         continue;
347       }
348 
349       if (ascii_tolower(str[i]) != prefix_[j++]) {
350         return std::string(str);
351       }
352     }
353 
354     // If we didn't make it through the prefix, we've failed to strip the
355     // prefix.
356     if (j < prefix_.size()) {
357       return std::string(str);
358     }
359 
360     // Skip underscores between prefix and further characters.
361     while (i < str.size() && str[i] == '_') {
362       i++;
363     }
364 
365     // Enum label can't be the empty string.
366     if (i == str.size()) {
367       return std::string(str);
368     }
369 
370     // We successfully stripped the prefix.
371     str.remove_prefix(i);
372     return std::string(str);
373   }
374 
375  private:
376   std::string prefix_;
377 };
378 
379 // A DescriptorPool contains a bunch of hash-maps to implement the
380 // various Find*By*() methods.  Since hashtable lookups are O(1), it's
381 // most efficient to construct a fixed set of large hash-maps used by
382 // all objects in the pool rather than construct one or more small
383 // hash-maps for each object.
384 //
385 // The keys to these hash-maps are (parent, name) or (parent, number) pairs.
386 
387 typedef std::pair<const void*, StringPiece> PointerStringPair;
388 
389 typedef std::pair<const Descriptor*, int> DescriptorIntPair;
390 typedef std::pair<const EnumDescriptor*, int> EnumIntPair;
391 
392 #define HASH_MAP std::unordered_map
393 #define HASH_SET std::unordered_set
394 #define HASH_FXN hash
395 
396 template <typename PairType>
397 struct PointerIntegerPairHash {
operator ()google::protobuf::__anon0db35b980211::PointerIntegerPairHash398   size_t operator()(const PairType& p) const {
399     static const size_t prime1 = 16777499;
400     static const size_t prime2 = 16777619;
401     return reinterpret_cast<size_t>(p.first) * prime1 ^
402            static_cast<size_t>(p.second) * prime2;
403   }
404 
405 #ifdef _MSC_VER
406   // Used only by MSVC and platforms where hash_map is not available.
407   static const size_t bucket_size = 4;
408   static const size_t min_buckets = 8;
409 #endif
operator ()google::protobuf::__anon0db35b980211::PointerIntegerPairHash410   inline bool operator()(const PairType& a, const PairType& b) const {
411     return a < b;
412   }
413 };
414 
415 struct PointerStringPairHash {
operator ()google::protobuf::__anon0db35b980211::PointerStringPairHash416   size_t operator()(const PointerStringPair& p) const {
417     static const size_t prime = 16777619;
418     hash<StringPiece> string_hash;
419     return reinterpret_cast<size_t>(p.first) * prime ^
420            static_cast<size_t>(string_hash(p.second));
421   }
422 
423 #ifdef _MSC_VER
424   // Used only by MSVC and platforms where hash_map is not available.
425   static const size_t bucket_size = 4;
426   static const size_t min_buckets = 8;
427 #endif
operator ()google::protobuf::__anon0db35b980211::PointerStringPairHash428   inline bool operator()(const PointerStringPair& a,
429                          const PointerStringPair& b) const {
430     return a < b;
431   }
432 };
433 
434 
435 const Symbol kNullSymbol;
436 
437 typedef HASH_MAP<StringPiece, Symbol, HASH_FXN<StringPiece>>
438     SymbolsByNameMap;
439 
440 typedef HASH_MAP<PointerStringPair, Symbol, PointerStringPairHash>
441     SymbolsByParentMap;
442 
443 typedef HASH_MAP<StringPiece, const FileDescriptor*,
444                  HASH_FXN<StringPiece>>
445     FilesByNameMap;
446 
447 typedef HASH_MAP<PointerStringPair, const FieldDescriptor*,
448                  PointerStringPairHash>
449     FieldsByNameMap;
450 
451 typedef HASH_MAP<DescriptorIntPair, const FieldDescriptor*,
452                  PointerIntegerPairHash<DescriptorIntPair>,
453                  std::equal_to<DescriptorIntPair>>
454     FieldsByNumberMap;
455 
456 typedef HASH_MAP<EnumIntPair, const EnumValueDescriptor*,
457                  PointerIntegerPairHash<EnumIntPair>,
458                  std::equal_to<EnumIntPair>>
459     EnumValuesByNumberMap;
460 // This is a map rather than a hash-map, since we use it to iterate
461 // through all the extensions that extend a given Descriptor, and an
462 // ordered data structure that implements lower_bound is convenient
463 // for that.
464 typedef std::map<DescriptorIntPair, const FieldDescriptor*>
465     ExtensionsGroupedByDescriptorMap;
466 typedef HASH_MAP<std::string, const SourceCodeInfo_Location*>
467     LocationsByPathMap;
468 
NewAllowedProto3Extendee()469 std::set<std::string>* NewAllowedProto3Extendee() {
470   auto allowed_proto3_extendees = new std::set<std::string>;
471   const char* kOptionNames[] = {
472       "FileOptions",      "MessageOptions", "FieldOptions",  "EnumOptions",
473       "EnumValueOptions", "ServiceOptions", "MethodOptions", "OneofOptions"};
474   for (int i = 0; i < GOOGLE_ARRAYSIZE(kOptionNames); ++i) {
475     // descriptor.proto has a different package name in opensource. We allow
476     // both so the opensource protocol compiler can also compile internal
477     // proto3 files with custom options. See: b/27567912
478     allowed_proto3_extendees->insert(std::string("google.protobuf.") +
479                                      kOptionNames[i]);
480     // Split the word to trick the opensource processing scripts so they
481     // will keep the original package name.
482     allowed_proto3_extendees->insert(std::string("proto") + "2." +
483                                      kOptionNames[i]);
484   }
485   return allowed_proto3_extendees;
486 }
487 
488 // Checks whether the extendee type is allowed in proto3.
489 // Only extensions to descriptor options are allowed. We use name comparison
490 // instead of comparing the descriptor directly because the extensions may be
491 // defined in a different pool.
AllowedExtendeeInProto3(const std::string & name)492 bool AllowedExtendeeInProto3(const std::string& name) {
493   static auto allowed_proto3_extendees =
494       internal::OnShutdownDelete(NewAllowedProto3Extendee());
495   return allowed_proto3_extendees->find(name) !=
496          allowed_proto3_extendees->end();
497 }
498 
499 }  // anonymous namespace
500 
501 // ===================================================================
502 // DescriptorPool::Tables
503 
504 class DescriptorPool::Tables {
505  public:
506   Tables();
507   ~Tables();
508 
509   // Record the current state of the tables to the stack of checkpoints.
510   // Each call to AddCheckpoint() must be paired with exactly one call to either
511   // ClearLastCheckpoint() or RollbackToLastCheckpoint().
512   //
513   // This is used when building files, since some kinds of validation errors
514   // cannot be detected until the file's descriptors have already been added to
515   // the tables.
516   //
517   // This supports recursive checkpoints, since building a file may trigger
518   // recursive building of other files. Note that recursive checkpoints are not
519   // normally necessary; explicit dependencies are built prior to checkpointing.
520   // So although we recursively build transitive imports, there is at most one
521   // checkpoint in the stack during dependency building.
522   //
523   // Recursive checkpoints only arise during cross-linking of the descriptors.
524   // Symbol references must be resolved, via DescriptorBuilder::FindSymbol and
525   // friends. If the pending file references an unknown symbol
526   // (e.g., it is not defined in the pending file's explicit dependencies), and
527   // the pool is using a fallback database, and that database contains a file
528   // defining that symbol, and that file has not yet been built by the pool,
529   // the pool builds the file during cross-linking, leading to another
530   // checkpoint.
531   void AddCheckpoint();
532 
533   // Mark the last checkpoint as having cleared successfully, removing it from
534   // the stack. If the stack is empty, all pending symbols will be committed.
535   //
536   // Note that this does not guarantee that the symbols added since the last
537   // checkpoint won't be rolled back: if a checkpoint gets rolled back,
538   // everything past that point gets rolled back, including symbols added after
539   // checkpoints that were pushed onto the stack after it and marked as cleared.
540   void ClearLastCheckpoint();
541 
542   // Roll back the Tables to the state of the checkpoint at the top of the
543   // stack, removing everything that was added after that point.
544   void RollbackToLastCheckpoint();
545 
546   // The stack of files which are currently being built.  Used to detect
547   // cyclic dependencies when loading files from a DescriptorDatabase.  Not
548   // used when fallback_database_ == nullptr.
549   std::vector<std::string> pending_files_;
550 
551   // A set of files which we have tried to load from the fallback database
552   // and encountered errors.  We will not attempt to load them again during
553   // execution of the current public API call, but for compatibility with
554   // legacy clients, this is cleared at the beginning of each public API call.
555   // Not used when fallback_database_ == nullptr.
556   HASH_SET<std::string> known_bad_files_;
557 
558   // A set of symbols which we have tried to load from the fallback database
559   // and encountered errors. We will not attempt to load them again during
560   // execution of the current public API call, but for compatibility with
561   // legacy clients, this is cleared at the beginning of each public API call.
562   HASH_SET<std::string> known_bad_symbols_;
563 
564   // The set of descriptors for which we've already loaded the full
565   // set of extensions numbers from fallback_database_.
566   HASH_SET<const Descriptor*> extensions_loaded_from_db_;
567 
568   // Maps type name to Descriptor::WellKnownType.  This is logically global
569   // and const, but we make it a member here to simplify its construction and
570   // destruction.  This only has 20-ish entries and is one per DescriptorPool,
571   // so the overhead is small.
572   HASH_MAP<std::string, Descriptor::WellKnownType> well_known_types_;
573 
574   // -----------------------------------------------------------------
575   // Finding items.
576 
577   // Find symbols.  This returns a null Symbol (symbol.IsNull() is true)
578   // if not found.
579   inline Symbol FindSymbol(StringPiece key) const;
580 
581   // This implements the body of DescriptorPool::Find*ByName().  It should
582   // really be a private method of DescriptorPool, but that would require
583   // declaring Symbol in descriptor.h, which would drag all kinds of other
584   // stuff into the header.  Yay C++.
585   Symbol FindByNameHelper(const DescriptorPool* pool, StringPiece name);
586 
587   // These return nullptr if not found.
588   inline const FileDescriptor* FindFile(StringPiece key) const;
589   inline const FieldDescriptor* FindExtension(const Descriptor* extendee,
590                                               int number) const;
591   inline void FindAllExtensions(const Descriptor* extendee,
592                                 std::vector<const FieldDescriptor*>* out) const;
593 
594   // -----------------------------------------------------------------
595   // Adding items.
596 
597   // These add items to the corresponding tables.  They return false if
598   // the key already exists in the table.  For AddSymbol(), the string passed
599   // in must be one that was constructed using AllocateString(), as it will
600   // be used as a key in the symbols_by_name_ map without copying.
601   bool AddSymbol(const std::string& full_name, Symbol symbol);
602   bool AddFile(const FileDescriptor* file);
603   bool AddExtension(const FieldDescriptor* field);
604 
605   // -----------------------------------------------------------------
606   // Allocating memory.
607 
608   // Allocate an object which will be reclaimed when the pool is
609   // destroyed.  Note that the object's destructor will never be called,
610   // so its fields must be plain old data (primitive data types and
611   // pointers).  All of the descriptor types are such objects.
612   template <typename Type>
613   Type* Allocate();
614 
615   // Allocate an array of objects which will be reclaimed when the
616   // pool in destroyed.  Again, destructors are never called.
617   template <typename Type>
618   Type* AllocateArray(int count);
619 
620   // Allocate a string which will be destroyed when the pool is destroyed.
621   // The string is initialized to the given value for convenience.
622   std::string* AllocateString(StringPiece value);
623 
624   // Allocate empty string which will be destroyed when the pool is destroyed.
625   std::string* AllocateEmptyString();
626 
627   // Allocate a internal::call_once which will be destroyed when the pool is
628   // destroyed.
629   internal::once_flag* AllocateOnceDynamic();
630 
631   // Allocate a protocol message object.  Some older versions of GCC have
632   // trouble understanding explicit template instantiations in some cases, so
633   // in those cases we have to pass a dummy pointer of the right type as the
634   // parameter instead of specifying the type explicitly.
635   template <typename Type>
636   Type* AllocateMessage(Type* dummy = nullptr);
637 
638   // Allocate a FileDescriptorTables object.
639   FileDescriptorTables* AllocateFileTables();
640 
641  private:
642   // All other memory allocated in the pool.  Must be first as other objects can
643   // point into these.
644   std::vector<std::vector<char>> allocations_;
645   std::vector<std::unique_ptr<std::string>> strings_;
646   std::vector<std::unique_ptr<Message>> messages_;
647   std::vector<std::unique_ptr<internal::once_flag>> once_dynamics_;
648   std::vector<std::unique_ptr<FileDescriptorTables>> file_tables_;
649 
650   SymbolsByNameMap symbols_by_name_;
651   FilesByNameMap files_by_name_;
652   ExtensionsGroupedByDescriptorMap extensions_;
653 
654   struct CheckPoint {
CheckPointgoogle::protobuf::DescriptorPool::Tables::CheckPoint655     explicit CheckPoint(const Tables* tables)
656         : strings_before_checkpoint(tables->strings_.size()),
657           messages_before_checkpoint(tables->messages_.size()),
658           once_dynamics_before_checkpoint(tables->once_dynamics_.size()),
659           file_tables_before_checkpoint(tables->file_tables_.size()),
660           allocations_before_checkpoint(tables->allocations_.size()),
661           pending_symbols_before_checkpoint(
662               tables->symbols_after_checkpoint_.size()),
663           pending_files_before_checkpoint(
664               tables->files_after_checkpoint_.size()),
665           pending_extensions_before_checkpoint(
666               tables->extensions_after_checkpoint_.size()) {}
667     int strings_before_checkpoint;
668     int messages_before_checkpoint;
669     int once_dynamics_before_checkpoint;
670     int file_tables_before_checkpoint;
671     int allocations_before_checkpoint;
672     int pending_symbols_before_checkpoint;
673     int pending_files_before_checkpoint;
674     int pending_extensions_before_checkpoint;
675   };
676   std::vector<CheckPoint> checkpoints_;
677   std::vector<const char*> symbols_after_checkpoint_;
678   std::vector<const char*> files_after_checkpoint_;
679   std::vector<DescriptorIntPair> extensions_after_checkpoint_;
680 
681   // Allocate some bytes which will be reclaimed when the pool is
682   // destroyed.
683   void* AllocateBytes(int size);
684 };
685 
686 // Contains tables specific to a particular file.  These tables are not
687 // modified once the file has been constructed, so they need not be
688 // protected by a mutex.  This makes operations that depend only on the
689 // contents of a single file -- e.g. Descriptor::FindFieldByName() --
690 // lock-free.
691 //
692 // For historical reasons, the definitions of the methods of
693 // FileDescriptorTables and DescriptorPool::Tables are interleaved below.
694 // These used to be a single class.
695 class FileDescriptorTables {
696  public:
697   FileDescriptorTables();
698   ~FileDescriptorTables();
699 
700   // Empty table, used with placeholder files.
701   inline static const FileDescriptorTables& GetEmptyInstance();
702 
703   // -----------------------------------------------------------------
704   // Finding items.
705 
706   // Find symbols.  These return a null Symbol (symbol.IsNull() is true)
707   // if not found.
708   inline Symbol FindNestedSymbol(const void* parent,
709                                  StringPiece name) const;
710   inline Symbol FindNestedSymbolOfType(const void* parent,
711                                        StringPiece name,
712                                        const Symbol::Type type) const;
713 
714   // These return nullptr if not found.
715   inline const FieldDescriptor* FindFieldByNumber(const Descriptor* parent,
716                                                   int number) const;
717   inline const FieldDescriptor* FindFieldByLowercaseName(
718       const void* parent, StringPiece lowercase_name) const;
719   inline const FieldDescriptor* FindFieldByCamelcaseName(
720       const void* parent, StringPiece camelcase_name) const;
721   inline const EnumValueDescriptor* FindEnumValueByNumber(
722       const EnumDescriptor* parent, int number) const;
723   // This creates a new EnumValueDescriptor if not found, in a thread-safe way.
724   inline const EnumValueDescriptor* FindEnumValueByNumberCreatingIfUnknown(
725       const EnumDescriptor* parent, int number) const;
726 
727   // -----------------------------------------------------------------
728   // Adding items.
729 
730   // These add items to the corresponding tables.  They return false if
731   // the key already exists in the table.  For AddAliasUnderParent(), the
732   // string passed in must be one that was constructed using AllocateString(),
733   // as it will be used as a key in the symbols_by_parent_ map without copying.
734   bool AddAliasUnderParent(const void* parent, const std::string& name,
735                            Symbol symbol);
736   bool AddFieldByNumber(const FieldDescriptor* field);
737   bool AddEnumValueByNumber(const EnumValueDescriptor* value);
738 
739   // Adds the field to the lowercase_name and camelcase_name maps.  Never
740   // fails because we allow duplicates; the first field by the name wins.
741   void AddFieldByStylizedNames(const FieldDescriptor* field);
742 
743   // Populates p->first->locations_by_path_ from p->second.
744   // Unusual signature dictated by internal::call_once.
745   static void BuildLocationsByPath(
746       std::pair<const FileDescriptorTables*, const SourceCodeInfo*>* p);
747 
748   // Returns the location denoted by the specified path through info,
749   // or nullptr if not found.
750   // The value of info must be that of the corresponding FileDescriptor.
751   // (Conceptually a pure function, but stateful as an optimisation.)
752   const SourceCodeInfo_Location* GetSourceLocation(
753       const std::vector<int>& path, const SourceCodeInfo* info) const;
754 
755   // Must be called after BuildFileImpl(), even if the build failed and
756   // we are going to roll back to the last checkpoint.
757   void FinalizeTables();
758 
759  private:
760   const void* FindParentForFieldsByMap(const FieldDescriptor* field) const;
761   static void FieldsByLowercaseNamesLazyInitStatic(
762       const FileDescriptorTables* tables);
763   void FieldsByLowercaseNamesLazyInitInternal() const;
764   static void FieldsByCamelcaseNamesLazyInitStatic(
765       const FileDescriptorTables* tables);
766   void FieldsByCamelcaseNamesLazyInitInternal() const;
767 
768   SymbolsByParentMap symbols_by_parent_;
769   mutable FieldsByNameMap fields_by_lowercase_name_;
770   std::unique_ptr<FieldsByNameMap> fields_by_lowercase_name_tmp_;
771   mutable internal::once_flag fields_by_lowercase_name_once_;
772   mutable FieldsByNameMap fields_by_camelcase_name_;
773   std::unique_ptr<FieldsByNameMap> fields_by_camelcase_name_tmp_;
774   mutable internal::once_flag fields_by_camelcase_name_once_;
775   FieldsByNumberMap fields_by_number_;  // Not including extensions.
776   EnumValuesByNumberMap enum_values_by_number_;
777   mutable EnumValuesByNumberMap unknown_enum_values_by_number_
778       PROTOBUF_GUARDED_BY(unknown_enum_values_mu_);
779 
780   // Populated on first request to save space, hence constness games.
781   mutable internal::once_flag locations_by_path_once_;
782   mutable LocationsByPathMap locations_by_path_;
783 
784   // Mutex to protect the unknown-enum-value map due to dynamic
785   // EnumValueDescriptor creation on unknown values.
786   mutable internal::WrappedMutex unknown_enum_values_mu_;
787 };
788 
Tables()789 DescriptorPool::Tables::Tables()
790     // Start some hash-map and hash-set objects with a small # of buckets
791     : known_bad_files_(3),
792       known_bad_symbols_(3),
793       extensions_loaded_from_db_(3),
794       symbols_by_name_(3),
795       files_by_name_(3) {
796   well_known_types_.insert({
797       {"google.protobuf.DoubleValue", Descriptor::WELLKNOWNTYPE_DOUBLEVALUE},
798       {"google.protobuf.FloatValue", Descriptor::WELLKNOWNTYPE_FLOATVALUE},
799       {"google.protobuf.Int64Value", Descriptor::WELLKNOWNTYPE_INT64VALUE},
800       {"google.protobuf.UInt64Value", Descriptor::WELLKNOWNTYPE_UINT64VALUE},
801       {"google.protobuf.Int32Value", Descriptor::WELLKNOWNTYPE_INT32VALUE},
802       {"google.protobuf.UInt32Value", Descriptor::WELLKNOWNTYPE_UINT32VALUE},
803       {"google.protobuf.StringValue", Descriptor::WELLKNOWNTYPE_STRINGVALUE},
804       {"google.protobuf.BytesValue", Descriptor::WELLKNOWNTYPE_BYTESVALUE},
805       {"google.protobuf.BoolValue", Descriptor::WELLKNOWNTYPE_BOOLVALUE},
806       {"google.protobuf.Any", Descriptor::WELLKNOWNTYPE_ANY},
807       {"google.protobuf.FieldMask", Descriptor::WELLKNOWNTYPE_FIELDMASK},
808       {"google.protobuf.Duration", Descriptor::WELLKNOWNTYPE_DURATION},
809       {"google.protobuf.Timestamp", Descriptor::WELLKNOWNTYPE_TIMESTAMP},
810       {"google.protobuf.Value", Descriptor::WELLKNOWNTYPE_VALUE},
811       {"google.protobuf.ListValue", Descriptor::WELLKNOWNTYPE_LISTVALUE},
812       {"google.protobuf.Struct", Descriptor::WELLKNOWNTYPE_STRUCT},
813   });
814 }
815 
~Tables()816 DescriptorPool::Tables::~Tables() { GOOGLE_DCHECK(checkpoints_.empty()); }
817 
FileDescriptorTables()818 FileDescriptorTables::FileDescriptorTables()
819     // Initialize all the hash tables to start out with a small # of buckets.
820     : symbols_by_parent_(3),
821       fields_by_lowercase_name_(3),
822       fields_by_lowercase_name_tmp_(new FieldsByNameMap()),
823       fields_by_camelcase_name_(3),
824       fields_by_camelcase_name_tmp_(new FieldsByNameMap()),
825       fields_by_number_(3),
826       enum_values_by_number_(3),
827       unknown_enum_values_by_number_(3),
828       locations_by_path_(3) {}
829 
~FileDescriptorTables()830 FileDescriptorTables::~FileDescriptorTables() {}
831 
GetEmptyInstance()832 inline const FileDescriptorTables& FileDescriptorTables::GetEmptyInstance() {
833   static auto file_descriptor_tables =
834       internal::OnShutdownDelete(new FileDescriptorTables());
835   return *file_descriptor_tables;
836 }
837 
AddCheckpoint()838 void DescriptorPool::Tables::AddCheckpoint() {
839   checkpoints_.push_back(CheckPoint(this));
840 }
841 
ClearLastCheckpoint()842 void DescriptorPool::Tables::ClearLastCheckpoint() {
843   GOOGLE_DCHECK(!checkpoints_.empty());
844   checkpoints_.pop_back();
845   if (checkpoints_.empty()) {
846     // All checkpoints have been cleared: we can now commit all of the pending
847     // data.
848     symbols_after_checkpoint_.clear();
849     files_after_checkpoint_.clear();
850     extensions_after_checkpoint_.clear();
851   }
852 }
853 
RollbackToLastCheckpoint()854 void DescriptorPool::Tables::RollbackToLastCheckpoint() {
855   GOOGLE_DCHECK(!checkpoints_.empty());
856   const CheckPoint& checkpoint = checkpoints_.back();
857 
858   for (int i = checkpoint.pending_symbols_before_checkpoint;
859        i < symbols_after_checkpoint_.size(); i++) {
860     symbols_by_name_.erase(symbols_after_checkpoint_[i]);
861   }
862   for (int i = checkpoint.pending_files_before_checkpoint;
863        i < files_after_checkpoint_.size(); i++) {
864     files_by_name_.erase(files_after_checkpoint_[i]);
865   }
866   for (int i = checkpoint.pending_extensions_before_checkpoint;
867        i < extensions_after_checkpoint_.size(); i++) {
868     extensions_.erase(extensions_after_checkpoint_[i]);
869   }
870 
871   symbols_after_checkpoint_.resize(
872       checkpoint.pending_symbols_before_checkpoint);
873   files_after_checkpoint_.resize(checkpoint.pending_files_before_checkpoint);
874   extensions_after_checkpoint_.resize(
875       checkpoint.pending_extensions_before_checkpoint);
876 
877   strings_.resize(checkpoint.strings_before_checkpoint);
878   messages_.resize(checkpoint.messages_before_checkpoint);
879   once_dynamics_.resize(checkpoint.once_dynamics_before_checkpoint);
880   file_tables_.resize(checkpoint.file_tables_before_checkpoint);
881   allocations_.resize(checkpoint.allocations_before_checkpoint);
882   checkpoints_.pop_back();
883 }
884 
885 // -------------------------------------------------------------------
886 
FindSymbol(StringPiece key) const887 inline Symbol DescriptorPool::Tables::FindSymbol(StringPiece key) const {
888   const Symbol* result = FindOrNull(symbols_by_name_, key);
889   if (result == nullptr) {
890     return kNullSymbol;
891   } else {
892     return *result;
893   }
894 }
895 
FindNestedSymbol(const void * parent,StringPiece name) const896 inline Symbol FileDescriptorTables::FindNestedSymbol(
897     const void* parent, StringPiece name) const {
898   const Symbol* result =
899       FindOrNull(symbols_by_parent_, PointerStringPair(parent, name));
900   if (result == nullptr) {
901     return kNullSymbol;
902   } else {
903     return *result;
904   }
905 }
906 
FindNestedSymbolOfType(const void * parent,StringPiece name,const Symbol::Type type) const907 inline Symbol FileDescriptorTables::FindNestedSymbolOfType(
908     const void* parent, StringPiece name, const Symbol::Type type) const {
909   Symbol result = FindNestedSymbol(parent, name);
910   if (result.type != type) return kNullSymbol;
911   return result;
912 }
913 
FindByNameHelper(const DescriptorPool * pool,StringPiece name)914 Symbol DescriptorPool::Tables::FindByNameHelper(const DescriptorPool* pool,
915                                                 StringPiece name) {
916   if (pool->mutex_ != nullptr) {
917     // Fast path: the Symbol is already cached.  This is just a hash lookup.
918     ReaderMutexLock lock(pool->mutex_);
919     if (known_bad_symbols_.empty() && known_bad_files_.empty()) {
920       Symbol result = FindSymbol(name);
921       if (!result.IsNull()) return result;
922     }
923   }
924   MutexLockMaybe lock(pool->mutex_);
925   if (pool->fallback_database_ != nullptr) {
926     known_bad_symbols_.clear();
927     known_bad_files_.clear();
928   }
929   Symbol result = FindSymbol(name);
930 
931   if (result.IsNull() && pool->underlay_ != nullptr) {
932     // Symbol not found; check the underlay.
933     result = pool->underlay_->tables_->FindByNameHelper(pool->underlay_, name);
934   }
935 
936   if (result.IsNull()) {
937     // Symbol still not found, so check fallback database.
938     if (pool->TryFindSymbolInFallbackDatabase(name)) {
939       result = FindSymbol(name);
940     }
941   }
942 
943   return result;
944 }
945 
FindFile(StringPiece key) const946 inline const FileDescriptor* DescriptorPool::Tables::FindFile(
947     StringPiece key) const {
948   return FindPtrOrNull(files_by_name_, key);
949 }
950 
FindFieldByNumber(const Descriptor * parent,int number) const951 inline const FieldDescriptor* FileDescriptorTables::FindFieldByNumber(
952     const Descriptor* parent, int number) const {
953   return FindPtrOrNull(fields_by_number_, std::make_pair(parent, number));
954 }
955 
FindParentForFieldsByMap(const FieldDescriptor * field) const956 const void* FileDescriptorTables::FindParentForFieldsByMap(
957     const FieldDescriptor* field) const {
958   if (field->is_extension()) {
959     if (field->extension_scope() == nullptr) {
960       return field->file();
961     } else {
962       return field->extension_scope();
963     }
964   } else {
965     return field->containing_type();
966   }
967 }
968 
FieldsByLowercaseNamesLazyInitStatic(const FileDescriptorTables * tables)969 void FileDescriptorTables::FieldsByLowercaseNamesLazyInitStatic(
970     const FileDescriptorTables* tables) {
971   tables->FieldsByLowercaseNamesLazyInitInternal();
972 }
973 
FieldsByLowercaseNamesLazyInitInternal() const974 void FileDescriptorTables::FieldsByLowercaseNamesLazyInitInternal() const {
975   for (FieldsByNumberMap::const_iterator it = fields_by_number_.begin();
976        it != fields_by_number_.end(); it++) {
977     PointerStringPair lowercase_key(FindParentForFieldsByMap(it->second),
978                                     it->second->lowercase_name().c_str());
979     InsertIfNotPresent(&fields_by_lowercase_name_, lowercase_key,
980                             it->second);
981   }
982 }
983 
FindFieldByLowercaseName(const void * parent,StringPiece lowercase_name) const984 inline const FieldDescriptor* FileDescriptorTables::FindFieldByLowercaseName(
985     const void* parent, StringPiece lowercase_name) const {
986   internal::call_once(
987       fields_by_lowercase_name_once_,
988       &FileDescriptorTables::FieldsByLowercaseNamesLazyInitStatic, this);
989   return FindPtrOrNull(fields_by_lowercase_name_,
990                             PointerStringPair(parent, lowercase_name));
991 }
992 
FieldsByCamelcaseNamesLazyInitStatic(const FileDescriptorTables * tables)993 void FileDescriptorTables::FieldsByCamelcaseNamesLazyInitStatic(
994     const FileDescriptorTables* tables) {
995   tables->FieldsByCamelcaseNamesLazyInitInternal();
996 }
997 
FieldsByCamelcaseNamesLazyInitInternal() const998 void FileDescriptorTables::FieldsByCamelcaseNamesLazyInitInternal() const {
999   for (FieldsByNumberMap::const_iterator it = fields_by_number_.begin();
1000        it != fields_by_number_.end(); it++) {
1001     PointerStringPair camelcase_key(FindParentForFieldsByMap(it->second),
1002                                     it->second->camelcase_name().c_str());
1003     InsertIfNotPresent(&fields_by_camelcase_name_, camelcase_key,
1004                             it->second);
1005   }
1006 }
1007 
FindFieldByCamelcaseName(const void * parent,StringPiece camelcase_name) const1008 inline const FieldDescriptor* FileDescriptorTables::FindFieldByCamelcaseName(
1009     const void* parent, StringPiece camelcase_name) const {
1010   internal::call_once(
1011       fields_by_camelcase_name_once_,
1012       FileDescriptorTables::FieldsByCamelcaseNamesLazyInitStatic, this);
1013   return FindPtrOrNull(fields_by_camelcase_name_,
1014                             PointerStringPair(parent, camelcase_name));
1015 }
1016 
FindEnumValueByNumber(const EnumDescriptor * parent,int number) const1017 inline const EnumValueDescriptor* FileDescriptorTables::FindEnumValueByNumber(
1018     const EnumDescriptor* parent, int number) const {
1019   return FindPtrOrNull(enum_values_by_number_,
1020                             std::make_pair(parent, number));
1021 }
1022 
1023 inline const EnumValueDescriptor*
FindEnumValueByNumberCreatingIfUnknown(const EnumDescriptor * parent,int number) const1024 FileDescriptorTables::FindEnumValueByNumberCreatingIfUnknown(
1025     const EnumDescriptor* parent, int number) const {
1026   // First try, with map of compiled-in values.
1027   {
1028     const EnumValueDescriptor* desc = FindPtrOrNull(
1029         enum_values_by_number_, std::make_pair(parent, number));
1030     if (desc != nullptr) {
1031       return desc;
1032     }
1033   }
1034   // Second try, with reader lock held on unknown enum values: common case.
1035   {
1036     ReaderMutexLock l(&unknown_enum_values_mu_);
1037     const EnumValueDescriptor* desc = FindPtrOrNull(
1038         unknown_enum_values_by_number_, std::make_pair(parent, number));
1039     if (desc != nullptr) {
1040       return desc;
1041     }
1042   }
1043   // If not found, try again with writer lock held, and create new descriptor if
1044   // necessary.
1045   {
1046     WriterMutexLock l(&unknown_enum_values_mu_);
1047     const EnumValueDescriptor* desc = FindPtrOrNull(
1048         unknown_enum_values_by_number_, std::make_pair(parent, number));
1049     if (desc != nullptr) {
1050       return desc;
1051     }
1052 
1053     // Create an EnumValueDescriptor dynamically. We don't insert it into the
1054     // EnumDescriptor (it's not a part of the enum as originally defined), but
1055     // we do insert it into the table so that we can return the same pointer
1056     // later.
1057     std::string enum_value_name = StringPrintf("UNKNOWN_ENUM_VALUE_%s_%d",
1058                                                parent->name().c_str(), number);
1059     DescriptorPool::Tables* tables = const_cast<DescriptorPool::Tables*>(
1060         DescriptorPool::generated_pool()->tables_.get());
1061     EnumValueDescriptor* result = tables->Allocate<EnumValueDescriptor>();
1062     result->name_ = tables->AllocateString(enum_value_name);
1063     result->full_name_ =
1064         tables->AllocateString(parent->full_name() + "." + enum_value_name);
1065     result->number_ = number;
1066     result->type_ = parent;
1067     result->options_ = &EnumValueOptions::default_instance();
1068     InsertIfNotPresent(&unknown_enum_values_by_number_,
1069                             std::make_pair(parent, number), result);
1070     return result;
1071   }
1072 }
1073 
FindExtension(const Descriptor * extendee,int number) const1074 inline const FieldDescriptor* DescriptorPool::Tables::FindExtension(
1075     const Descriptor* extendee, int number) const {
1076   return FindPtrOrNull(extensions_, std::make_pair(extendee, number));
1077 }
1078 
FindAllExtensions(const Descriptor * extendee,std::vector<const FieldDescriptor * > * out) const1079 inline void DescriptorPool::Tables::FindAllExtensions(
1080     const Descriptor* extendee,
1081     std::vector<const FieldDescriptor*>* out) const {
1082   ExtensionsGroupedByDescriptorMap::const_iterator it =
1083       extensions_.lower_bound(std::make_pair(extendee, 0));
1084   for (; it != extensions_.end() && it->first.first == extendee; ++it) {
1085     out->push_back(it->second);
1086   }
1087 }
1088 
1089 // -------------------------------------------------------------------
1090 
AddSymbol(const std::string & full_name,Symbol symbol)1091 bool DescriptorPool::Tables::AddSymbol(const std::string& full_name,
1092                                        Symbol symbol) {
1093   if (InsertIfNotPresent(&symbols_by_name_, full_name, symbol)) {
1094     symbols_after_checkpoint_.push_back(full_name.c_str());
1095     return true;
1096   } else {
1097     return false;
1098   }
1099 }
1100 
AddAliasUnderParent(const void * parent,const std::string & name,Symbol symbol)1101 bool FileDescriptorTables::AddAliasUnderParent(const void* parent,
1102                                                const std::string& name,
1103                                                Symbol symbol) {
1104   PointerStringPair by_parent_key(parent, name.c_str());
1105   return InsertIfNotPresent(&symbols_by_parent_, by_parent_key, symbol);
1106 }
1107 
AddFile(const FileDescriptor * file)1108 bool DescriptorPool::Tables::AddFile(const FileDescriptor* file) {
1109   if (InsertIfNotPresent(&files_by_name_, file->name(), file)) {
1110     files_after_checkpoint_.push_back(file->name().c_str());
1111     return true;
1112   } else {
1113     return false;
1114   }
1115 }
1116 
FinalizeTables()1117 void FileDescriptorTables::FinalizeTables() {
1118   // Clean up the temporary maps used by AddFieldByStylizedNames().
1119   fields_by_lowercase_name_tmp_ = nullptr;
1120   fields_by_camelcase_name_tmp_ = nullptr;
1121 }
1122 
AddFieldByStylizedNames(const FieldDescriptor * field)1123 void FileDescriptorTables::AddFieldByStylizedNames(
1124     const FieldDescriptor* field) {
1125   const void* parent = FindParentForFieldsByMap(field);
1126 
1127   // We want fields_by_{lower,camel}case_name_ to be lazily built, but
1128   // cross-link order determines which entry will be present in the case of a
1129   // conflict. So we use the temporary maps that get destroyed after
1130   // BuildFileImpl() to detect the conflicts, and only store the conflicts in
1131   // the map that will persist. We will then lazily populate the rest of the
1132   // entries from fields_by_number_.
1133 
1134   PointerStringPair lowercase_key(parent, field->lowercase_name().c_str());
1135   if (!InsertIfNotPresent(fields_by_lowercase_name_tmp_.get(),
1136                                lowercase_key, field)) {
1137     InsertIfNotPresent(
1138         &fields_by_lowercase_name_, lowercase_key,
1139         FindPtrOrNull(*fields_by_lowercase_name_tmp_, lowercase_key));
1140   }
1141 
1142   PointerStringPair camelcase_key(parent, field->camelcase_name().c_str());
1143   if (!InsertIfNotPresent(fields_by_camelcase_name_tmp_.get(),
1144                                camelcase_key, field)) {
1145     InsertIfNotPresent(
1146         &fields_by_camelcase_name_, camelcase_key,
1147         FindPtrOrNull(*fields_by_camelcase_name_tmp_, camelcase_key));
1148   }
1149 }
1150 
AddFieldByNumber(const FieldDescriptor * field)1151 bool FileDescriptorTables::AddFieldByNumber(const FieldDescriptor* field) {
1152   DescriptorIntPair key(field->containing_type(), field->number());
1153   return InsertIfNotPresent(&fields_by_number_, key, field);
1154 }
1155 
AddEnumValueByNumber(const EnumValueDescriptor * value)1156 bool FileDescriptorTables::AddEnumValueByNumber(
1157     const EnumValueDescriptor* value) {
1158   EnumIntPair key(value->type(), value->number());
1159   return InsertIfNotPresent(&enum_values_by_number_, key, value);
1160 }
1161 
AddExtension(const FieldDescriptor * field)1162 bool DescriptorPool::Tables::AddExtension(const FieldDescriptor* field) {
1163   DescriptorIntPair key(field->containing_type(), field->number());
1164   if (InsertIfNotPresent(&extensions_, key, field)) {
1165     extensions_after_checkpoint_.push_back(key);
1166     return true;
1167   } else {
1168     return false;
1169   }
1170 }
1171 
1172 // -------------------------------------------------------------------
1173 
1174 template <typename Type>
Allocate()1175 Type* DescriptorPool::Tables::Allocate() {
1176   return reinterpret_cast<Type*>(AllocateBytes(sizeof(Type)));
1177 }
1178 
1179 template <typename Type>
AllocateArray(int count)1180 Type* DescriptorPool::Tables::AllocateArray(int count) {
1181   return reinterpret_cast<Type*>(AllocateBytes(sizeof(Type) * count));
1182 }
1183 
AllocateString(StringPiece value)1184 std::string* DescriptorPool::Tables::AllocateString(StringPiece value) {
1185   std::string* result = new std::string(value);
1186   strings_.emplace_back(result);
1187   return result;
1188 }
1189 
AllocateEmptyString()1190 std::string* DescriptorPool::Tables::AllocateEmptyString() {
1191   std::string* result = new std::string();
1192   strings_.emplace_back(result);
1193   return result;
1194 }
1195 
AllocateOnceDynamic()1196 internal::once_flag* DescriptorPool::Tables::AllocateOnceDynamic() {
1197   internal::once_flag* result = new internal::once_flag();
1198   once_dynamics_.emplace_back(result);
1199   return result;
1200 }
1201 
1202 template <typename Type>
AllocateMessage(Type *)1203 Type* DescriptorPool::Tables::AllocateMessage(Type* /* dummy */) {
1204   Type* result = new Type;
1205   messages_.emplace_back(result);
1206   return result;
1207 }
1208 
AllocateFileTables()1209 FileDescriptorTables* DescriptorPool::Tables::AllocateFileTables() {
1210   FileDescriptorTables* result = new FileDescriptorTables;
1211   file_tables_.emplace_back(result);
1212   return result;
1213 }
1214 
AllocateBytes(int size)1215 void* DescriptorPool::Tables::AllocateBytes(int size) {
1216   // TODO(kenton):  Would it be worthwhile to implement this in some more
1217   // sophisticated way?  Probably not for the open source release, but for
1218   // internal use we could easily plug in one of our existing memory pool
1219   // allocators...
1220   if (size == 0) return nullptr;
1221 
1222   allocations_.emplace_back(size);
1223   return allocations_.back().data();
1224 }
1225 
BuildLocationsByPath(std::pair<const FileDescriptorTables *,const SourceCodeInfo * > * p)1226 void FileDescriptorTables::BuildLocationsByPath(
1227     std::pair<const FileDescriptorTables*, const SourceCodeInfo*>* p) {
1228   for (int i = 0, len = p->second->location_size(); i < len; ++i) {
1229     const SourceCodeInfo_Location* loc = &p->second->location().Get(i);
1230     p->first->locations_by_path_[Join(loc->path(), ",")] = loc;
1231   }
1232 }
1233 
GetSourceLocation(const std::vector<int> & path,const SourceCodeInfo * info) const1234 const SourceCodeInfo_Location* FileDescriptorTables::GetSourceLocation(
1235     const std::vector<int>& path, const SourceCodeInfo* info) const {
1236   std::pair<const FileDescriptorTables*, const SourceCodeInfo*> p(
1237       std::make_pair(this, info));
1238   internal::call_once(locations_by_path_once_,
1239                       FileDescriptorTables::BuildLocationsByPath, &p);
1240   return FindPtrOrNull(locations_by_path_, Join(path, ","));
1241 }
1242 
1243 // ===================================================================
1244 // DescriptorPool
1245 
~ErrorCollector()1246 DescriptorPool::ErrorCollector::~ErrorCollector() {}
1247 
DescriptorPool()1248 DescriptorPool::DescriptorPool()
1249     : mutex_(nullptr),
1250       fallback_database_(nullptr),
1251       default_error_collector_(nullptr),
1252       underlay_(nullptr),
1253       tables_(new Tables),
1254       enforce_dependencies_(true),
1255       lazily_build_dependencies_(false),
1256       allow_unknown_(false),
1257       enforce_weak_(false),
1258       disallow_enforce_utf8_(false) {}
1259 
DescriptorPool(DescriptorDatabase * fallback_database,ErrorCollector * error_collector)1260 DescriptorPool::DescriptorPool(DescriptorDatabase* fallback_database,
1261                                ErrorCollector* error_collector)
1262     : mutex_(new internal::WrappedMutex),
1263       fallback_database_(fallback_database),
1264       default_error_collector_(error_collector),
1265       underlay_(nullptr),
1266       tables_(new Tables),
1267       enforce_dependencies_(true),
1268       lazily_build_dependencies_(false),
1269       allow_unknown_(false),
1270       enforce_weak_(false),
1271       disallow_enforce_utf8_(false) {}
1272 
DescriptorPool(const DescriptorPool * underlay)1273 DescriptorPool::DescriptorPool(const DescriptorPool* underlay)
1274     : mutex_(nullptr),
1275       fallback_database_(nullptr),
1276       default_error_collector_(nullptr),
1277       underlay_(underlay),
1278       tables_(new Tables),
1279       enforce_dependencies_(true),
1280       lazily_build_dependencies_(false),
1281       allow_unknown_(false),
1282       enforce_weak_(false),
1283       disallow_enforce_utf8_(false) {}
1284 
~DescriptorPool()1285 DescriptorPool::~DescriptorPool() {
1286   if (mutex_ != nullptr) delete mutex_;
1287 }
1288 
1289 // DescriptorPool::BuildFile() defined later.
1290 // DescriptorPool::BuildFileCollectingErrors() defined later.
1291 
InternalDontEnforceDependencies()1292 void DescriptorPool::InternalDontEnforceDependencies() {
1293   enforce_dependencies_ = false;
1294 }
1295 
AddUnusedImportTrackFile(ConstStringParam file_name,bool is_error)1296 void DescriptorPool::AddUnusedImportTrackFile(ConstStringParam file_name,
1297                                               bool is_error) {
1298   unused_import_track_files_[std::string(file_name)] = is_error;
1299 }
1300 
ClearUnusedImportTrackFiles()1301 void DescriptorPool::ClearUnusedImportTrackFiles() {
1302   unused_import_track_files_.clear();
1303 }
1304 
InternalIsFileLoaded(ConstStringParam filename) const1305 bool DescriptorPool::InternalIsFileLoaded(ConstStringParam filename) const {
1306   MutexLockMaybe lock(mutex_);
1307   return tables_->FindFile(filename) != nullptr;
1308 }
1309 
1310 // generated_pool ====================================================
1311 
1312 namespace {
1313 
1314 
GeneratedDatabase()1315 EncodedDescriptorDatabase* GeneratedDatabase() {
1316   static auto generated_database =
1317       internal::OnShutdownDelete(new EncodedDescriptorDatabase());
1318   return generated_database;
1319 }
1320 
NewGeneratedPool()1321 DescriptorPool* NewGeneratedPool() {
1322   auto generated_pool = new DescriptorPool(GeneratedDatabase());
1323   generated_pool->InternalSetLazilyBuildDependencies();
1324   return generated_pool;
1325 }
1326 
1327 }  // anonymous namespace
1328 
internal_generated_database()1329 DescriptorDatabase* DescriptorPool::internal_generated_database() {
1330   return GeneratedDatabase();
1331 }
1332 
internal_generated_pool()1333 DescriptorPool* DescriptorPool::internal_generated_pool() {
1334   static DescriptorPool* generated_pool =
1335       internal::OnShutdownDelete(NewGeneratedPool());
1336   return generated_pool;
1337 }
1338 
generated_pool()1339 const DescriptorPool* DescriptorPool::generated_pool() {
1340   const DescriptorPool* pool = internal_generated_pool();
1341   // Ensure that descriptor.proto has been registered in the generated pool.
1342   DescriptorProto::descriptor();
1343   return pool;
1344 }
1345 
1346 
InternalAddGeneratedFile(const void * encoded_file_descriptor,int size)1347 void DescriptorPool::InternalAddGeneratedFile(
1348     const void* encoded_file_descriptor, int size) {
1349   // So, this function is called in the process of initializing the
1350   // descriptors for generated proto classes.  Each generated .pb.cc file
1351   // has an internal procedure called AddDescriptors() which is called at
1352   // process startup, and that function calls this one in order to register
1353   // the raw bytes of the FileDescriptorProto representing the file.
1354   //
1355   // We do not actually construct the descriptor objects right away.  We just
1356   // hang on to the bytes until they are actually needed.  We actually construct
1357   // the descriptor the first time one of the following things happens:
1358   // * Someone calls a method like descriptor(), GetDescriptor(), or
1359   //   GetReflection() on the generated types, which requires returning the
1360   //   descriptor or an object based on it.
1361   // * Someone looks up the descriptor in DescriptorPool::generated_pool().
1362   //
1363   // Once one of these happens, the DescriptorPool actually parses the
1364   // FileDescriptorProto and generates a FileDescriptor (and all its children)
1365   // based on it.
1366   //
1367   // Note that FileDescriptorProto is itself a generated protocol message.
1368   // Therefore, when we parse one, we have to be very careful to avoid using
1369   // any descriptor-based operations, since this might cause infinite recursion
1370   // or deadlock.
1371   GOOGLE_CHECK(GeneratedDatabase()->Add(encoded_file_descriptor, size));
1372 }
1373 
1374 
1375 // Find*By* methods ==================================================
1376 
1377 // TODO(kenton):  There's a lot of repeated code here, but I'm not sure if
1378 //   there's any good way to factor it out.  Think about this some time when
1379 //   there's nothing more important to do (read: never).
1380 
FindFileByName(ConstStringParam name) const1381 const FileDescriptor* DescriptorPool::FindFileByName(
1382     ConstStringParam name) const {
1383   MutexLockMaybe lock(mutex_);
1384   if (fallback_database_ != nullptr) {
1385     tables_->known_bad_symbols_.clear();
1386     tables_->known_bad_files_.clear();
1387   }
1388   const FileDescriptor* result = tables_->FindFile(name);
1389   if (result != nullptr) return result;
1390   if (underlay_ != nullptr) {
1391     result = underlay_->FindFileByName(name);
1392     if (result != nullptr) return result;
1393   }
1394   if (TryFindFileInFallbackDatabase(name)) {
1395     result = tables_->FindFile(name);
1396     if (result != nullptr) return result;
1397   }
1398   return nullptr;
1399 }
1400 
FindFileContainingSymbol(ConstStringParam symbol_name) const1401 const FileDescriptor* DescriptorPool::FindFileContainingSymbol(
1402     ConstStringParam symbol_name) const {
1403   MutexLockMaybe lock(mutex_);
1404   if (fallback_database_ != nullptr) {
1405     tables_->known_bad_symbols_.clear();
1406     tables_->known_bad_files_.clear();
1407   }
1408   Symbol result = tables_->FindSymbol(symbol_name);
1409   if (!result.IsNull()) return result.GetFile();
1410   if (underlay_ != nullptr) {
1411     const FileDescriptor* file_result =
1412         underlay_->FindFileContainingSymbol(symbol_name);
1413     if (file_result != nullptr) return file_result;
1414   }
1415   if (TryFindSymbolInFallbackDatabase(symbol_name)) {
1416     result = tables_->FindSymbol(symbol_name);
1417     if (!result.IsNull()) return result.GetFile();
1418   }
1419   return nullptr;
1420 }
1421 
FindMessageTypeByName(ConstStringParam name) const1422 const Descriptor* DescriptorPool::FindMessageTypeByName(
1423     ConstStringParam name) const {
1424   Symbol result = tables_->FindByNameHelper(this, name);
1425   return (result.type == Symbol::MESSAGE) ? result.descriptor : nullptr;
1426 }
1427 
FindFieldByName(ConstStringParam name) const1428 const FieldDescriptor* DescriptorPool::FindFieldByName(
1429     ConstStringParam name) const {
1430   Symbol result = tables_->FindByNameHelper(this, name);
1431   if (result.type == Symbol::FIELD &&
1432       !result.field_descriptor->is_extension()) {
1433     return result.field_descriptor;
1434   } else {
1435     return nullptr;
1436   }
1437 }
1438 
FindExtensionByName(ConstStringParam name) const1439 const FieldDescriptor* DescriptorPool::FindExtensionByName(
1440     ConstStringParam name) const {
1441   Symbol result = tables_->FindByNameHelper(this, name);
1442   if (result.type == Symbol::FIELD && result.field_descriptor->is_extension()) {
1443     return result.field_descriptor;
1444   } else {
1445     return nullptr;
1446   }
1447 }
1448 
FindOneofByName(ConstStringParam name) const1449 const OneofDescriptor* DescriptorPool::FindOneofByName(
1450     ConstStringParam name) const {
1451   Symbol result = tables_->FindByNameHelper(this, name);
1452   return (result.type == Symbol::ONEOF) ? result.oneof_descriptor : nullptr;
1453 }
1454 
FindEnumTypeByName(ConstStringParam name) const1455 const EnumDescriptor* DescriptorPool::FindEnumTypeByName(
1456     ConstStringParam name) const {
1457   Symbol result = tables_->FindByNameHelper(this, name);
1458   return (result.type == Symbol::ENUM) ? result.enum_descriptor : nullptr;
1459 }
1460 
FindEnumValueByName(ConstStringParam name) const1461 const EnumValueDescriptor* DescriptorPool::FindEnumValueByName(
1462     ConstStringParam name) const {
1463   Symbol result = tables_->FindByNameHelper(this, name);
1464   return (result.type == Symbol::ENUM_VALUE) ? result.enum_value_descriptor
1465                                              : nullptr;
1466 }
1467 
FindServiceByName(ConstStringParam name) const1468 const ServiceDescriptor* DescriptorPool::FindServiceByName(
1469     ConstStringParam name) const {
1470   Symbol result = tables_->FindByNameHelper(this, name);
1471   return (result.type == Symbol::SERVICE) ? result.service_descriptor : nullptr;
1472 }
1473 
FindMethodByName(ConstStringParam name) const1474 const MethodDescriptor* DescriptorPool::FindMethodByName(
1475     ConstStringParam name) const {
1476   Symbol result = tables_->FindByNameHelper(this, name);
1477   return (result.type == Symbol::METHOD) ? result.method_descriptor : nullptr;
1478 }
1479 
FindExtensionByNumber(const Descriptor * extendee,int number) const1480 const FieldDescriptor* DescriptorPool::FindExtensionByNumber(
1481     const Descriptor* extendee, int number) const {
1482   if (extendee->extension_range_count() == 0) return nullptr;
1483   // A faster path to reduce lock contention in finding extensions, assuming
1484   // most extensions will be cache hit.
1485   if (mutex_ != nullptr) {
1486     ReaderMutexLock lock(mutex_);
1487     const FieldDescriptor* result = tables_->FindExtension(extendee, number);
1488     if (result != nullptr) {
1489       return result;
1490     }
1491   }
1492   MutexLockMaybe lock(mutex_);
1493   if (fallback_database_ != nullptr) {
1494     tables_->known_bad_symbols_.clear();
1495     tables_->known_bad_files_.clear();
1496   }
1497   const FieldDescriptor* result = tables_->FindExtension(extendee, number);
1498   if (result != nullptr) {
1499     return result;
1500   }
1501   if (underlay_ != nullptr) {
1502     result = underlay_->FindExtensionByNumber(extendee, number);
1503     if (result != nullptr) return result;
1504   }
1505   if (TryFindExtensionInFallbackDatabase(extendee, number)) {
1506     result = tables_->FindExtension(extendee, number);
1507     if (result != nullptr) {
1508       return result;
1509     }
1510   }
1511   return nullptr;
1512 }
1513 
InternalFindExtensionByNumberNoLock(const Descriptor * extendee,int number) const1514 const FieldDescriptor* DescriptorPool::InternalFindExtensionByNumberNoLock(
1515     const Descriptor* extendee, int number) const {
1516   if (extendee->extension_range_count() == 0) return nullptr;
1517 
1518   const FieldDescriptor* result = tables_->FindExtension(extendee, number);
1519   if (result != nullptr) {
1520     return result;
1521   }
1522 
1523   if (underlay_ != nullptr) {
1524     result = underlay_->InternalFindExtensionByNumberNoLock(extendee, number);
1525     if (result != nullptr) return result;
1526   }
1527 
1528   return nullptr;
1529 }
1530 
FindExtensionByPrintableName(const Descriptor * extendee,ConstStringParam printable_name) const1531 const FieldDescriptor* DescriptorPool::FindExtensionByPrintableName(
1532     const Descriptor* extendee, ConstStringParam printable_name) const {
1533   if (extendee->extension_range_count() == 0) return nullptr;
1534   const FieldDescriptor* result = FindExtensionByName(printable_name);
1535   if (result != nullptr && result->containing_type() == extendee) {
1536     return result;
1537   }
1538   if (extendee->options().message_set_wire_format()) {
1539     // MessageSet extensions may be identified by type name.
1540     const Descriptor* type = FindMessageTypeByName(printable_name);
1541     if (type != nullptr) {
1542       // Look for a matching extension in the foreign type's scope.
1543       const int type_extension_count = type->extension_count();
1544       for (int i = 0; i < type_extension_count; i++) {
1545         const FieldDescriptor* extension = type->extension(i);
1546         if (extension->containing_type() == extendee &&
1547             extension->type() == FieldDescriptor::TYPE_MESSAGE &&
1548             extension->is_optional() && extension->message_type() == type) {
1549           // Found it.
1550           return extension;
1551         }
1552       }
1553     }
1554   }
1555   return nullptr;
1556 }
1557 
FindAllExtensions(const Descriptor * extendee,std::vector<const FieldDescriptor * > * out) const1558 void DescriptorPool::FindAllExtensions(
1559     const Descriptor* extendee,
1560     std::vector<const FieldDescriptor*>* out) const {
1561   MutexLockMaybe lock(mutex_);
1562   if (fallback_database_ != nullptr) {
1563     tables_->known_bad_symbols_.clear();
1564     tables_->known_bad_files_.clear();
1565   }
1566 
1567   // Initialize tables_->extensions_ from the fallback database first
1568   // (but do this only once per descriptor).
1569   if (fallback_database_ != nullptr &&
1570       tables_->extensions_loaded_from_db_.count(extendee) == 0) {
1571     std::vector<int> numbers;
1572     if (fallback_database_->FindAllExtensionNumbers(extendee->full_name(),
1573                                                     &numbers)) {
1574       for (int i = 0; i < numbers.size(); ++i) {
1575         int number = numbers[i];
1576         if (tables_->FindExtension(extendee, number) == nullptr) {
1577           TryFindExtensionInFallbackDatabase(extendee, number);
1578         }
1579       }
1580       tables_->extensions_loaded_from_db_.insert(extendee);
1581     }
1582   }
1583 
1584   tables_->FindAllExtensions(extendee, out);
1585   if (underlay_ != nullptr) {
1586     underlay_->FindAllExtensions(extendee, out);
1587   }
1588 }
1589 
1590 
1591 // -------------------------------------------------------------------
1592 
FindFieldByNumber(int key) const1593 const FieldDescriptor* Descriptor::FindFieldByNumber(int key) const {
1594   const FieldDescriptor* result = file()->tables_->FindFieldByNumber(this, key);
1595   if (result == nullptr || result->is_extension()) {
1596     return nullptr;
1597   } else {
1598     return result;
1599   }
1600 }
1601 
FindFieldByLowercaseName(ConstStringParam key) const1602 const FieldDescriptor* Descriptor::FindFieldByLowercaseName(
1603     ConstStringParam key) const {
1604   const FieldDescriptor* result =
1605       file()->tables_->FindFieldByLowercaseName(this, key);
1606   if (result == nullptr || result->is_extension()) {
1607     return nullptr;
1608   } else {
1609     return result;
1610   }
1611 }
1612 
FindFieldByCamelcaseName(ConstStringParam key) const1613 const FieldDescriptor* Descriptor::FindFieldByCamelcaseName(
1614     ConstStringParam key) const {
1615   const FieldDescriptor* result =
1616       file()->tables_->FindFieldByCamelcaseName(this, key);
1617   if (result == nullptr || result->is_extension()) {
1618     return nullptr;
1619   } else {
1620     return result;
1621   }
1622 }
1623 
FindFieldByName(ConstStringParam key) const1624 const FieldDescriptor* Descriptor::FindFieldByName(ConstStringParam key) const {
1625   Symbol result =
1626       file()->tables_->FindNestedSymbolOfType(this, key, Symbol::FIELD);
1627   if (!result.IsNull() && !result.field_descriptor->is_extension()) {
1628     return result.field_descriptor;
1629   } else {
1630     return nullptr;
1631   }
1632 }
1633 
FindOneofByName(ConstStringParam key) const1634 const OneofDescriptor* Descriptor::FindOneofByName(ConstStringParam key) const {
1635   Symbol result =
1636       file()->tables_->FindNestedSymbolOfType(this, key, Symbol::ONEOF);
1637   if (!result.IsNull()) {
1638     return result.oneof_descriptor;
1639   } else {
1640     return nullptr;
1641   }
1642 }
1643 
FindExtensionByName(ConstStringParam key) const1644 const FieldDescriptor* Descriptor::FindExtensionByName(
1645     ConstStringParam key) const {
1646   Symbol result =
1647       file()->tables_->FindNestedSymbolOfType(this, key, Symbol::FIELD);
1648   if (!result.IsNull() && result.field_descriptor->is_extension()) {
1649     return result.field_descriptor;
1650   } else {
1651     return nullptr;
1652   }
1653 }
1654 
FindExtensionByLowercaseName(ConstStringParam key) const1655 const FieldDescriptor* Descriptor::FindExtensionByLowercaseName(
1656     ConstStringParam key) const {
1657   const FieldDescriptor* result =
1658       file()->tables_->FindFieldByLowercaseName(this, key);
1659   if (result == nullptr || !result->is_extension()) {
1660     return nullptr;
1661   } else {
1662     return result;
1663   }
1664 }
1665 
FindExtensionByCamelcaseName(ConstStringParam key) const1666 const FieldDescriptor* Descriptor::FindExtensionByCamelcaseName(
1667     ConstStringParam key) const {
1668   const FieldDescriptor* result =
1669       file()->tables_->FindFieldByCamelcaseName(this, key);
1670   if (result == nullptr || !result->is_extension()) {
1671     return nullptr;
1672   } else {
1673     return result;
1674   }
1675 }
1676 
FindNestedTypeByName(ConstStringParam key) const1677 const Descriptor* Descriptor::FindNestedTypeByName(ConstStringParam key) const {
1678   Symbol result =
1679       file()->tables_->FindNestedSymbolOfType(this, key, Symbol::MESSAGE);
1680   if (!result.IsNull()) {
1681     return result.descriptor;
1682   } else {
1683     return nullptr;
1684   }
1685 }
1686 
FindEnumTypeByName(ConstStringParam key) const1687 const EnumDescriptor* Descriptor::FindEnumTypeByName(
1688     ConstStringParam key) const {
1689   Symbol result =
1690       file()->tables_->FindNestedSymbolOfType(this, key, Symbol::ENUM);
1691   if (!result.IsNull()) {
1692     return result.enum_descriptor;
1693   } else {
1694     return nullptr;
1695   }
1696 }
1697 
FindEnumValueByName(ConstStringParam key) const1698 const EnumValueDescriptor* Descriptor::FindEnumValueByName(
1699     ConstStringParam key) const {
1700   Symbol result =
1701       file()->tables_->FindNestedSymbolOfType(this, key, Symbol::ENUM_VALUE);
1702   if (!result.IsNull()) {
1703     return result.enum_value_descriptor;
1704   } else {
1705     return nullptr;
1706   }
1707 }
1708 
map_key() const1709 const FieldDescriptor* Descriptor::map_key() const {
1710   if (!options().map_entry()) return nullptr;
1711   GOOGLE_DCHECK_EQ(field_count(), 2);
1712   return field(0);
1713 }
1714 
map_value() const1715 const FieldDescriptor* Descriptor::map_value() const {
1716   if (!options().map_entry()) return nullptr;
1717   GOOGLE_DCHECK_EQ(field_count(), 2);
1718   return field(1);
1719 }
1720 
FindValueByName(ConstStringParam key) const1721 const EnumValueDescriptor* EnumDescriptor::FindValueByName(
1722     ConstStringParam key) const {
1723   Symbol result =
1724       file()->tables_->FindNestedSymbolOfType(this, key, Symbol::ENUM_VALUE);
1725   if (!result.IsNull()) {
1726     return result.enum_value_descriptor;
1727   } else {
1728     return nullptr;
1729   }
1730 }
1731 
FindValueByNumber(int key) const1732 const EnumValueDescriptor* EnumDescriptor::FindValueByNumber(int key) const {
1733   return file()->tables_->FindEnumValueByNumber(this, key);
1734 }
1735 
FindValueByNumberCreatingIfUnknown(int key) const1736 const EnumValueDescriptor* EnumDescriptor::FindValueByNumberCreatingIfUnknown(
1737     int key) const {
1738   return file()->tables_->FindEnumValueByNumberCreatingIfUnknown(this, key);
1739 }
1740 
FindMethodByName(ConstStringParam key) const1741 const MethodDescriptor* ServiceDescriptor::FindMethodByName(
1742     ConstStringParam key) const {
1743   Symbol result =
1744       file()->tables_->FindNestedSymbolOfType(this, key, Symbol::METHOD);
1745   if (!result.IsNull()) {
1746     return result.method_descriptor;
1747   } else {
1748     return nullptr;
1749   }
1750 }
1751 
FindMessageTypeByName(ConstStringParam key) const1752 const Descriptor* FileDescriptor::FindMessageTypeByName(
1753     ConstStringParam key) const {
1754   Symbol result = tables_->FindNestedSymbolOfType(this, key, Symbol::MESSAGE);
1755   if (!result.IsNull()) {
1756     return result.descriptor;
1757   } else {
1758     return nullptr;
1759   }
1760 }
1761 
FindEnumTypeByName(ConstStringParam key) const1762 const EnumDescriptor* FileDescriptor::FindEnumTypeByName(
1763     ConstStringParam key) const {
1764   Symbol result = tables_->FindNestedSymbolOfType(this, key, Symbol::ENUM);
1765   if (!result.IsNull()) {
1766     return result.enum_descriptor;
1767   } else {
1768     return nullptr;
1769   }
1770 }
1771 
FindEnumValueByName(ConstStringParam key) const1772 const EnumValueDescriptor* FileDescriptor::FindEnumValueByName(
1773     ConstStringParam key) const {
1774   Symbol result =
1775       tables_->FindNestedSymbolOfType(this, key, Symbol::ENUM_VALUE);
1776   if (!result.IsNull()) {
1777     return result.enum_value_descriptor;
1778   } else {
1779     return nullptr;
1780   }
1781 }
1782 
FindServiceByName(ConstStringParam key) const1783 const ServiceDescriptor* FileDescriptor::FindServiceByName(
1784     ConstStringParam key) const {
1785   Symbol result = tables_->FindNestedSymbolOfType(this, key, Symbol::SERVICE);
1786   if (!result.IsNull()) {
1787     return result.service_descriptor;
1788   } else {
1789     return nullptr;
1790   }
1791 }
1792 
FindExtensionByName(ConstStringParam key) const1793 const FieldDescriptor* FileDescriptor::FindExtensionByName(
1794     ConstStringParam key) const {
1795   Symbol result = tables_->FindNestedSymbolOfType(this, key, Symbol::FIELD);
1796   if (!result.IsNull() && result.field_descriptor->is_extension()) {
1797     return result.field_descriptor;
1798   } else {
1799     return nullptr;
1800   }
1801 }
1802 
FindExtensionByLowercaseName(ConstStringParam key) const1803 const FieldDescriptor* FileDescriptor::FindExtensionByLowercaseName(
1804     ConstStringParam key) const {
1805   const FieldDescriptor* result = tables_->FindFieldByLowercaseName(this, key);
1806   if (result == nullptr || !result->is_extension()) {
1807     return nullptr;
1808   } else {
1809     return result;
1810   }
1811 }
1812 
FindExtensionByCamelcaseName(ConstStringParam key) const1813 const FieldDescriptor* FileDescriptor::FindExtensionByCamelcaseName(
1814     ConstStringParam key) const {
1815   const FieldDescriptor* result = tables_->FindFieldByCamelcaseName(this, key);
1816   if (result == nullptr || !result->is_extension()) {
1817     return nullptr;
1818   } else {
1819     return result;
1820   }
1821 }
1822 
CopyTo(DescriptorProto_ExtensionRange * proto) const1823 void Descriptor::ExtensionRange::CopyTo(
1824     DescriptorProto_ExtensionRange* proto) const {
1825   proto->set_start(this->start);
1826   proto->set_end(this->end);
1827   if (options_ != &ExtensionRangeOptions::default_instance()) {
1828     *proto->mutable_options() = *options_;
1829   }
1830 }
1831 
1832 const Descriptor::ExtensionRange*
FindExtensionRangeContainingNumber(int number) const1833 Descriptor::FindExtensionRangeContainingNumber(int number) const {
1834   // Linear search should be fine because we don't expect a message to have
1835   // more than a couple extension ranges.
1836   for (int i = 0; i < extension_range_count(); i++) {
1837     if (number >= extension_range(i)->start &&
1838         number < extension_range(i)->end) {
1839       return extension_range(i);
1840     }
1841   }
1842   return nullptr;
1843 }
1844 
FindReservedRangeContainingNumber(int number) const1845 const Descriptor::ReservedRange* Descriptor::FindReservedRangeContainingNumber(
1846     int number) const {
1847   // TODO(chrisn): Consider a non-linear search.
1848   for (int i = 0; i < reserved_range_count(); i++) {
1849     if (number >= reserved_range(i)->start && number < reserved_range(i)->end) {
1850       return reserved_range(i);
1851     }
1852   }
1853   return nullptr;
1854 }
1855 
1856 const EnumDescriptor::ReservedRange*
FindReservedRangeContainingNumber(int number) const1857 EnumDescriptor::FindReservedRangeContainingNumber(int number) const {
1858   // TODO(chrisn): Consider a non-linear search.
1859   for (int i = 0; i < reserved_range_count(); i++) {
1860     if (number >= reserved_range(i)->start &&
1861         number <= reserved_range(i)->end) {
1862       return reserved_range(i);
1863     }
1864   }
1865   return nullptr;
1866 }
1867 
1868 // -------------------------------------------------------------------
1869 
TryFindFileInFallbackDatabase(StringPiece name) const1870 bool DescriptorPool::TryFindFileInFallbackDatabase(
1871     StringPiece name) const {
1872   if (fallback_database_ == nullptr) return false;
1873 
1874   auto name_string = std::string(name);
1875   if (tables_->known_bad_files_.count(name_string) > 0) return false;
1876 
1877   FileDescriptorProto file_proto;
1878   if (!fallback_database_->FindFileByName(name_string, &file_proto) ||
1879       BuildFileFromDatabase(file_proto) == nullptr) {
1880     tables_->known_bad_files_.insert(std::move(name_string));
1881     return false;
1882   }
1883   return true;
1884 }
1885 
IsSubSymbolOfBuiltType(StringPiece name) const1886 bool DescriptorPool::IsSubSymbolOfBuiltType(StringPiece name) const {
1887   auto prefix = std::string(name);
1888   for (;;) {
1889     std::string::size_type dot_pos = prefix.find_last_of('.');
1890     if (dot_pos == std::string::npos) {
1891       break;
1892     }
1893     prefix = prefix.substr(0, dot_pos);
1894     Symbol symbol = tables_->FindSymbol(prefix);
1895     // If the symbol type is anything other than PACKAGE, then its complete
1896     // definition is already known.
1897     if (!symbol.IsNull() && symbol.type != Symbol::PACKAGE) {
1898       return true;
1899     }
1900   }
1901   if (underlay_ != nullptr) {
1902     // Check to see if any prefix of this symbol exists in the underlay.
1903     return underlay_->IsSubSymbolOfBuiltType(name);
1904   }
1905   return false;
1906 }
1907 
TryFindSymbolInFallbackDatabase(StringPiece name) const1908 bool DescriptorPool::TryFindSymbolInFallbackDatabase(
1909     StringPiece name) const {
1910   if (fallback_database_ == nullptr) return false;
1911 
1912   auto name_string = std::string(name);
1913   if (tables_->known_bad_symbols_.count(name_string) > 0) return false;
1914 
1915   FileDescriptorProto file_proto;
1916   if (  // We skip looking in the fallback database if the name is a sub-symbol
1917         // of any descriptor that already exists in the descriptor pool (except
1918         // for package descriptors).  This is valid because all symbols except
1919         // for packages are defined in a single file, so if the symbol exists
1920         // then we should already have its definition.
1921         //
1922         // The other reason to do this is to support "overriding" type
1923         // definitions by merging two databases that define the same type. (Yes,
1924         // people do this.)  The main difficulty with making this work is that
1925         // FindFileContainingSymbol() is allowed to return both false positives
1926         // (e.g., SimpleDescriptorDatabase, UpgradedDescriptorDatabase) and
1927         // false negatives (e.g. ProtoFileParser, SourceTreeDescriptorDatabase).
1928         // When two such databases are merged, looking up a non-existent
1929         // sub-symbol of a type that already exists in the descriptor pool can
1930         // result in an attempt to load multiple definitions of the same type.
1931         // The check below avoids this.
1932       IsSubSymbolOfBuiltType(name)
1933 
1934       // Look up file containing this symbol in fallback database.
1935       || !fallback_database_->FindFileContainingSymbol(name_string, &file_proto)
1936 
1937       // Check if we've already built this file. If so, it apparently doesn't
1938       // contain the symbol we're looking for.  Some DescriptorDatabases
1939       // return false positives.
1940       || tables_->FindFile(file_proto.name()) != nullptr
1941 
1942       // Build the file.
1943       || BuildFileFromDatabase(file_proto) == nullptr) {
1944     tables_->known_bad_symbols_.insert(std::move(name_string));
1945     return false;
1946   }
1947 
1948   return true;
1949 }
1950 
TryFindExtensionInFallbackDatabase(const Descriptor * containing_type,int field_number) const1951 bool DescriptorPool::TryFindExtensionInFallbackDatabase(
1952     const Descriptor* containing_type, int field_number) const {
1953   if (fallback_database_ == nullptr) return false;
1954 
1955   FileDescriptorProto file_proto;
1956   if (!fallback_database_->FindFileContainingExtension(
1957           containing_type->full_name(), field_number, &file_proto)) {
1958     return false;
1959   }
1960 
1961   if (tables_->FindFile(file_proto.name()) != nullptr) {
1962     // We've already loaded this file, and it apparently doesn't contain the
1963     // extension we're looking for.  Some DescriptorDatabases return false
1964     // positives.
1965     return false;
1966   }
1967 
1968   if (BuildFileFromDatabase(file_proto) == nullptr) {
1969     return false;
1970   }
1971 
1972   return true;
1973 }
1974 
1975 // ===================================================================
1976 
is_map_message_type() const1977 bool FieldDescriptor::is_map_message_type() const {
1978   return message_type_->options().map_entry();
1979 }
1980 
DefaultValueAsString(bool quote_string_type) const1981 std::string FieldDescriptor::DefaultValueAsString(
1982     bool quote_string_type) const {
1983   GOOGLE_CHECK(has_default_value()) << "No default value";
1984   switch (cpp_type()) {
1985     case CPPTYPE_INT32:
1986       return StrCat(default_value_int32());
1987       break;
1988     case CPPTYPE_INT64:
1989       return StrCat(default_value_int64());
1990       break;
1991     case CPPTYPE_UINT32:
1992       return StrCat(default_value_uint32());
1993       break;
1994     case CPPTYPE_UINT64:
1995       return StrCat(default_value_uint64());
1996       break;
1997     case CPPTYPE_FLOAT:
1998       return SimpleFtoa(default_value_float());
1999       break;
2000     case CPPTYPE_DOUBLE:
2001       return SimpleDtoa(default_value_double());
2002       break;
2003     case CPPTYPE_BOOL:
2004       return default_value_bool() ? "true" : "false";
2005       break;
2006     case CPPTYPE_STRING:
2007       if (quote_string_type) {
2008         return "\"" + CEscape(default_value_string()) + "\"";
2009       } else {
2010         if (type() == TYPE_BYTES) {
2011           return CEscape(default_value_string());
2012         } else {
2013           return default_value_string();
2014         }
2015       }
2016       break;
2017     case CPPTYPE_ENUM:
2018       return default_value_enum()->name();
2019       break;
2020     case CPPTYPE_MESSAGE:
2021       GOOGLE_LOG(DFATAL) << "Messages can't have default values!";
2022       break;
2023   }
2024   GOOGLE_LOG(FATAL) << "Can't get here: failed to get default value as string";
2025   return "";
2026 }
2027 
2028 // CopyTo methods ====================================================
2029 
CopyTo(FileDescriptorProto * proto) const2030 void FileDescriptor::CopyTo(FileDescriptorProto* proto) const {
2031   proto->set_name(name());
2032   if (!package().empty()) proto->set_package(package());
2033   // TODO(liujisi): Also populate when syntax="proto2".
2034   if (syntax() == SYNTAX_PROTO3) proto->set_syntax(SyntaxName(syntax()));
2035 
2036   for (int i = 0; i < dependency_count(); i++) {
2037     proto->add_dependency(dependency(i)->name());
2038   }
2039 
2040   for (int i = 0; i < public_dependency_count(); i++) {
2041     proto->add_public_dependency(public_dependencies_[i]);
2042   }
2043 
2044   for (int i = 0; i < weak_dependency_count(); i++) {
2045     proto->add_weak_dependency(weak_dependencies_[i]);
2046   }
2047 
2048   for (int i = 0; i < message_type_count(); i++) {
2049     message_type(i)->CopyTo(proto->add_message_type());
2050   }
2051   for (int i = 0; i < enum_type_count(); i++) {
2052     enum_type(i)->CopyTo(proto->add_enum_type());
2053   }
2054   for (int i = 0; i < service_count(); i++) {
2055     service(i)->CopyTo(proto->add_service());
2056   }
2057   for (int i = 0; i < extension_count(); i++) {
2058     extension(i)->CopyTo(proto->add_extension());
2059   }
2060 
2061   if (&options() != &FileOptions::default_instance()) {
2062     proto->mutable_options()->CopyFrom(options());
2063   }
2064 }
2065 
CopyJsonNameTo(FileDescriptorProto * proto) const2066 void FileDescriptor::CopyJsonNameTo(FileDescriptorProto* proto) const {
2067   if (message_type_count() != proto->message_type_size() ||
2068       extension_count() != proto->extension_size()) {
2069     GOOGLE_LOG(ERROR) << "Cannot copy json_name to a proto of a different size.";
2070     return;
2071   }
2072   for (int i = 0; i < message_type_count(); i++) {
2073     message_type(i)->CopyJsonNameTo(proto->mutable_message_type(i));
2074   }
2075   for (int i = 0; i < extension_count(); i++) {
2076     extension(i)->CopyJsonNameTo(proto->mutable_extension(i));
2077   }
2078 }
2079 
CopySourceCodeInfoTo(FileDescriptorProto * proto) const2080 void FileDescriptor::CopySourceCodeInfoTo(FileDescriptorProto* proto) const {
2081   if (source_code_info_ &&
2082       source_code_info_ != &SourceCodeInfo::default_instance()) {
2083     proto->mutable_source_code_info()->CopyFrom(*source_code_info_);
2084   }
2085 }
2086 
CopyTo(DescriptorProto * proto) const2087 void Descriptor::CopyTo(DescriptorProto* proto) const {
2088   proto->set_name(name());
2089 
2090   for (int i = 0; i < field_count(); i++) {
2091     field(i)->CopyTo(proto->add_field());
2092   }
2093   for (int i = 0; i < oneof_decl_count(); i++) {
2094     oneof_decl(i)->CopyTo(proto->add_oneof_decl());
2095   }
2096   for (int i = 0; i < nested_type_count(); i++) {
2097     nested_type(i)->CopyTo(proto->add_nested_type());
2098   }
2099   for (int i = 0; i < enum_type_count(); i++) {
2100     enum_type(i)->CopyTo(proto->add_enum_type());
2101   }
2102   for (int i = 0; i < extension_range_count(); i++) {
2103     extension_range(i)->CopyTo(proto->add_extension_range());
2104   }
2105   for (int i = 0; i < extension_count(); i++) {
2106     extension(i)->CopyTo(proto->add_extension());
2107   }
2108   for (int i = 0; i < reserved_range_count(); i++) {
2109     DescriptorProto::ReservedRange* range = proto->add_reserved_range();
2110     range->set_start(reserved_range(i)->start);
2111     range->set_end(reserved_range(i)->end);
2112   }
2113   for (int i = 0; i < reserved_name_count(); i++) {
2114     proto->add_reserved_name(reserved_name(i));
2115   }
2116 
2117   if (&options() != &MessageOptions::default_instance()) {
2118     proto->mutable_options()->CopyFrom(options());
2119   }
2120 }
2121 
CopyJsonNameTo(DescriptorProto * proto) const2122 void Descriptor::CopyJsonNameTo(DescriptorProto* proto) const {
2123   if (field_count() != proto->field_size() ||
2124       nested_type_count() != proto->nested_type_size() ||
2125       extension_count() != proto->extension_size()) {
2126     GOOGLE_LOG(ERROR) << "Cannot copy json_name to a proto of a different size.";
2127     return;
2128   }
2129   for (int i = 0; i < field_count(); i++) {
2130     field(i)->CopyJsonNameTo(proto->mutable_field(i));
2131   }
2132   for (int i = 0; i < nested_type_count(); i++) {
2133     nested_type(i)->CopyJsonNameTo(proto->mutable_nested_type(i));
2134   }
2135   for (int i = 0; i < extension_count(); i++) {
2136     extension(i)->CopyJsonNameTo(proto->mutable_extension(i));
2137   }
2138 }
2139 
CopyTo(FieldDescriptorProto * proto) const2140 void FieldDescriptor::CopyTo(FieldDescriptorProto* proto) const {
2141   proto->set_name(name());
2142   proto->set_number(number());
2143   if (has_json_name_) {
2144     proto->set_json_name(json_name());
2145   }
2146   if (proto3_optional_) {
2147     proto->set_proto3_optional(true);
2148   }
2149   // Some compilers do not allow static_cast directly between two enum types,
2150   // so we must cast to int first.
2151   proto->set_label(static_cast<FieldDescriptorProto::Label>(
2152       implicit_cast<int>(label())));
2153   proto->set_type(static_cast<FieldDescriptorProto::Type>(
2154       implicit_cast<int>(type())));
2155 
2156   if (is_extension()) {
2157     if (!containing_type()->is_unqualified_placeholder_) {
2158       proto->set_extendee(".");
2159     }
2160     proto->mutable_extendee()->append(containing_type()->full_name());
2161   }
2162 
2163   if (cpp_type() == CPPTYPE_MESSAGE) {
2164     if (message_type()->is_placeholder_) {
2165       // We don't actually know if the type is a message type.  It could be
2166       // an enum.
2167       proto->clear_type();
2168     }
2169 
2170     if (!message_type()->is_unqualified_placeholder_) {
2171       proto->set_type_name(".");
2172     }
2173     proto->mutable_type_name()->append(message_type()->full_name());
2174   } else if (cpp_type() == CPPTYPE_ENUM) {
2175     if (!enum_type()->is_unqualified_placeholder_) {
2176       proto->set_type_name(".");
2177     }
2178     proto->mutable_type_name()->append(enum_type()->full_name());
2179   }
2180 
2181   if (has_default_value()) {
2182     proto->set_default_value(DefaultValueAsString(false));
2183   }
2184 
2185   if (containing_oneof() != nullptr && !is_extension()) {
2186     proto->set_oneof_index(containing_oneof()->index());
2187   }
2188 
2189   if (&options() != &FieldOptions::default_instance()) {
2190     proto->mutable_options()->CopyFrom(options());
2191   }
2192 }
2193 
CopyJsonNameTo(FieldDescriptorProto * proto) const2194 void FieldDescriptor::CopyJsonNameTo(FieldDescriptorProto* proto) const {
2195   proto->set_json_name(json_name());
2196 }
2197 
CopyTo(OneofDescriptorProto * proto) const2198 void OneofDescriptor::CopyTo(OneofDescriptorProto* proto) const {
2199   proto->set_name(name());
2200   if (&options() != &OneofOptions::default_instance()) {
2201     proto->mutable_options()->CopyFrom(options());
2202   }
2203 }
2204 
CopyTo(EnumDescriptorProto * proto) const2205 void EnumDescriptor::CopyTo(EnumDescriptorProto* proto) const {
2206   proto->set_name(name());
2207 
2208   for (int i = 0; i < value_count(); i++) {
2209     value(i)->CopyTo(proto->add_value());
2210   }
2211   for (int i = 0; i < reserved_range_count(); i++) {
2212     EnumDescriptorProto::EnumReservedRange* range = proto->add_reserved_range();
2213     range->set_start(reserved_range(i)->start);
2214     range->set_end(reserved_range(i)->end);
2215   }
2216   for (int i = 0; i < reserved_name_count(); i++) {
2217     proto->add_reserved_name(reserved_name(i));
2218   }
2219 
2220   if (&options() != &EnumOptions::default_instance()) {
2221     proto->mutable_options()->CopyFrom(options());
2222   }
2223 }
2224 
CopyTo(EnumValueDescriptorProto * proto) const2225 void EnumValueDescriptor::CopyTo(EnumValueDescriptorProto* proto) const {
2226   proto->set_name(name());
2227   proto->set_number(number());
2228 
2229   if (&options() != &EnumValueOptions::default_instance()) {
2230     proto->mutable_options()->CopyFrom(options());
2231   }
2232 }
2233 
CopyTo(ServiceDescriptorProto * proto) const2234 void ServiceDescriptor::CopyTo(ServiceDescriptorProto* proto) const {
2235   proto->set_name(name());
2236 
2237   for (int i = 0; i < method_count(); i++) {
2238     method(i)->CopyTo(proto->add_method());
2239   }
2240 
2241   if (&options() != &ServiceOptions::default_instance()) {
2242     proto->mutable_options()->CopyFrom(options());
2243   }
2244 }
2245 
CopyTo(MethodDescriptorProto * proto) const2246 void MethodDescriptor::CopyTo(MethodDescriptorProto* proto) const {
2247   proto->set_name(name());
2248 
2249   if (!input_type()->is_unqualified_placeholder_) {
2250     proto->set_input_type(".");
2251   }
2252   proto->mutable_input_type()->append(input_type()->full_name());
2253 
2254   if (!output_type()->is_unqualified_placeholder_) {
2255     proto->set_output_type(".");
2256   }
2257   proto->mutable_output_type()->append(output_type()->full_name());
2258 
2259   if (&options() != &MethodOptions::default_instance()) {
2260     proto->mutable_options()->CopyFrom(options());
2261   }
2262 
2263   if (client_streaming_) {
2264     proto->set_client_streaming(true);
2265   }
2266   if (server_streaming_) {
2267     proto->set_server_streaming(true);
2268   }
2269 }
2270 
2271 // DebugString methods ===============================================
2272 
2273 namespace {
2274 
RetrieveOptionsAssumingRightPool(int depth,const Message & options,std::vector<std::string> * option_entries)2275 bool RetrieveOptionsAssumingRightPool(
2276     int depth, const Message& options,
2277     std::vector<std::string>* option_entries) {
2278   option_entries->clear();
2279   const Reflection* reflection = options.GetReflection();
2280   std::vector<const FieldDescriptor*> fields;
2281   reflection->ListFields(options, &fields);
2282   for (int i = 0; i < fields.size(); i++) {
2283     int count = 1;
2284     bool repeated = false;
2285     if (fields[i]->is_repeated()) {
2286       count = reflection->FieldSize(options, fields[i]);
2287       repeated = true;
2288     }
2289     for (int j = 0; j < count; j++) {
2290       std::string fieldval;
2291       if (fields[i]->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
2292         std::string tmp;
2293         TextFormat::Printer printer;
2294         printer.SetInitialIndentLevel(depth + 1);
2295         printer.PrintFieldValueToString(options, fields[i], repeated ? j : -1,
2296                                         &tmp);
2297         fieldval.append("{\n");
2298         fieldval.append(tmp);
2299         fieldval.append(depth * 2, ' ');
2300         fieldval.append("}");
2301       } else {
2302         TextFormat::PrintFieldValueToString(options, fields[i],
2303                                             repeated ? j : -1, &fieldval);
2304       }
2305       std::string name;
2306       if (fields[i]->is_extension()) {
2307         name = "(." + fields[i]->full_name() + ")";
2308       } else {
2309         name = fields[i]->name();
2310       }
2311       option_entries->push_back(name + " = " + fieldval);
2312     }
2313   }
2314   return !option_entries->empty();
2315 }
2316 
2317 // Used by each of the option formatters.
RetrieveOptions(int depth,const Message & options,const DescriptorPool * pool,std::vector<std::string> * option_entries)2318 bool RetrieveOptions(int depth, const Message& options,
2319                      const DescriptorPool* pool,
2320                      std::vector<std::string>* option_entries) {
2321   // When printing custom options for a descriptor, we must use an options
2322   // message built on top of the same DescriptorPool where the descriptor
2323   // is coming from. This is to ensure we are interpreting custom options
2324   // against the right pool.
2325   if (options.GetDescriptor()->file()->pool() == pool) {
2326     return RetrieveOptionsAssumingRightPool(depth, options, option_entries);
2327   } else {
2328     const Descriptor* option_descriptor =
2329         pool->FindMessageTypeByName(options.GetDescriptor()->full_name());
2330     if (option_descriptor == nullptr) {
2331       // descriptor.proto is not in the pool. This means no custom options are
2332       // used so we are safe to proceed with the compiled options message type.
2333       return RetrieveOptionsAssumingRightPool(depth, options, option_entries);
2334     }
2335     DynamicMessageFactory factory;
2336     std::unique_ptr<Message> dynamic_options(
2337         factory.GetPrototype(option_descriptor)->New());
2338     if (dynamic_options->ParseFromString(options.SerializeAsString())) {
2339       return RetrieveOptionsAssumingRightPool(depth, *dynamic_options,
2340                                               option_entries);
2341     } else {
2342       GOOGLE_LOG(ERROR) << "Found invalid proto option data for: "
2343                  << options.GetDescriptor()->full_name();
2344       return RetrieveOptionsAssumingRightPool(depth, options, option_entries);
2345     }
2346   }
2347 }
2348 
2349 // Formats options that all appear together in brackets. Does not include
2350 // brackets.
FormatBracketedOptions(int depth,const Message & options,const DescriptorPool * pool,std::string * output)2351 bool FormatBracketedOptions(int depth, const Message& options,
2352                             const DescriptorPool* pool, std::string* output) {
2353   std::vector<std::string> all_options;
2354   if (RetrieveOptions(depth, options, pool, &all_options)) {
2355     output->append(Join(all_options, ", "));
2356   }
2357   return !all_options.empty();
2358 }
2359 
2360 // Formats options one per line
FormatLineOptions(int depth,const Message & options,const DescriptorPool * pool,std::string * output)2361 bool FormatLineOptions(int depth, const Message& options,
2362                        const DescriptorPool* pool, std::string* output) {
2363   std::string prefix(depth * 2, ' ');
2364   std::vector<std::string> all_options;
2365   if (RetrieveOptions(depth, options, pool, &all_options)) {
2366     for (int i = 0; i < all_options.size(); i++) {
2367       strings::SubstituteAndAppend(output, "$0option $1;\n", prefix,
2368                                 all_options[i]);
2369     }
2370   }
2371   return !all_options.empty();
2372 }
2373 
2374 class SourceLocationCommentPrinter {
2375  public:
2376   template <typename DescType>
SourceLocationCommentPrinter(const DescType * desc,const std::string & prefix,const DebugStringOptions & options)2377   SourceLocationCommentPrinter(const DescType* desc, const std::string& prefix,
2378                                const DebugStringOptions& options)
2379       : options_(options), prefix_(prefix) {
2380     // Perform the SourceLocation lookup only if we're including user comments,
2381     // because the lookup is fairly expensive.
2382     have_source_loc_ =
2383         options.include_comments && desc->GetSourceLocation(&source_loc_);
2384   }
SourceLocationCommentPrinter(const FileDescriptor * file,const std::vector<int> & path,const std::string & prefix,const DebugStringOptions & options)2385   SourceLocationCommentPrinter(const FileDescriptor* file,
2386                                const std::vector<int>& path,
2387                                const std::string& prefix,
2388                                const DebugStringOptions& options)
2389       : options_(options), prefix_(prefix) {
2390     // Perform the SourceLocation lookup only if we're including user comments,
2391     // because the lookup is fairly expensive.
2392     have_source_loc_ =
2393         options.include_comments && file->GetSourceLocation(path, &source_loc_);
2394   }
AddPreComment(std::string * output)2395   void AddPreComment(std::string* output) {
2396     if (have_source_loc_) {
2397       // Detached leading comments.
2398       for (int i = 0; i < source_loc_.leading_detached_comments.size(); ++i) {
2399         *output += FormatComment(source_loc_.leading_detached_comments[i]);
2400         *output += "\n";
2401       }
2402       // Attached leading comments.
2403       if (!source_loc_.leading_comments.empty()) {
2404         *output += FormatComment(source_loc_.leading_comments);
2405       }
2406     }
2407   }
AddPostComment(std::string * output)2408   void AddPostComment(std::string* output) {
2409     if (have_source_loc_ && source_loc_.trailing_comments.size() > 0) {
2410       *output += FormatComment(source_loc_.trailing_comments);
2411     }
2412   }
2413 
2414   // Format comment such that each line becomes a full-line C++-style comment in
2415   // the DebugString() output.
FormatComment(const std::string & comment_text)2416   std::string FormatComment(const std::string& comment_text) {
2417     std::string stripped_comment = comment_text;
2418     StripWhitespace(&stripped_comment);
2419     std::vector<std::string> lines = Split(stripped_comment, "\n");
2420     std::string output;
2421     for (int i = 0; i < lines.size(); ++i) {
2422       const std::string& line = lines[i];
2423       strings::SubstituteAndAppend(&output, "$0// $1\n", prefix_, line);
2424     }
2425     return output;
2426   }
2427 
2428  private:
2429 
2430   bool have_source_loc_;
2431   SourceLocation source_loc_;
2432   DebugStringOptions options_;
2433   std::string prefix_;
2434 };
2435 
2436 }  // anonymous namespace
2437 
DebugString() const2438 std::string FileDescriptor::DebugString() const {
2439   DebugStringOptions options;  // default options
2440   return DebugStringWithOptions(options);
2441 }
2442 
DebugStringWithOptions(const DebugStringOptions & debug_string_options) const2443 std::string FileDescriptor::DebugStringWithOptions(
2444     const DebugStringOptions& debug_string_options) const {
2445   std::string contents;
2446   {
2447     std::vector<int> path;
2448     path.push_back(FileDescriptorProto::kSyntaxFieldNumber);
2449     SourceLocationCommentPrinter syntax_comment(this, path, "",
2450                                                 debug_string_options);
2451     syntax_comment.AddPreComment(&contents);
2452     strings::SubstituteAndAppend(&contents, "syntax = \"$0\";\n\n",
2453                               SyntaxName(syntax()));
2454     syntax_comment.AddPostComment(&contents);
2455   }
2456 
2457   SourceLocationCommentPrinter comment_printer(this, "", debug_string_options);
2458   comment_printer.AddPreComment(&contents);
2459 
2460   std::set<int> public_dependencies;
2461   std::set<int> weak_dependencies;
2462   public_dependencies.insert(public_dependencies_,
2463                              public_dependencies_ + public_dependency_count_);
2464   weak_dependencies.insert(weak_dependencies_,
2465                            weak_dependencies_ + weak_dependency_count_);
2466 
2467   for (int i = 0; i < dependency_count(); i++) {
2468     if (public_dependencies.count(i) > 0) {
2469       strings::SubstituteAndAppend(&contents, "import public \"$0\";\n",
2470                                 dependency(i)->name());
2471     } else if (weak_dependencies.count(i) > 0) {
2472       strings::SubstituteAndAppend(&contents, "import weak \"$0\";\n",
2473                                 dependency(i)->name());
2474     } else {
2475       strings::SubstituteAndAppend(&contents, "import \"$0\";\n",
2476                                 dependency(i)->name());
2477     }
2478   }
2479 
2480   if (!package().empty()) {
2481     std::vector<int> path;
2482     path.push_back(FileDescriptorProto::kPackageFieldNumber);
2483     SourceLocationCommentPrinter package_comment(this, path, "",
2484                                                  debug_string_options);
2485     package_comment.AddPreComment(&contents);
2486     strings::SubstituteAndAppend(&contents, "package $0;\n\n", package());
2487     package_comment.AddPostComment(&contents);
2488   }
2489 
2490   if (FormatLineOptions(0, options(), pool(), &contents)) {
2491     contents.append("\n");  // add some space if we had options
2492   }
2493 
2494   for (int i = 0; i < enum_type_count(); i++) {
2495     enum_type(i)->DebugString(0, &contents, debug_string_options);
2496     contents.append("\n");
2497   }
2498 
2499   // Find all the 'group' type extensions; we will not output their nested
2500   // definitions (those will be done with their group field descriptor).
2501   std::set<const Descriptor*> groups;
2502   for (int i = 0; i < extension_count(); i++) {
2503     if (extension(i)->type() == FieldDescriptor::TYPE_GROUP) {
2504       groups.insert(extension(i)->message_type());
2505     }
2506   }
2507 
2508   for (int i = 0; i < message_type_count(); i++) {
2509     if (groups.count(message_type(i)) == 0) {
2510       message_type(i)->DebugString(0, &contents, debug_string_options,
2511                                    /* include_opening_clause */ true);
2512       contents.append("\n");
2513     }
2514   }
2515 
2516   for (int i = 0; i < service_count(); i++) {
2517     service(i)->DebugString(&contents, debug_string_options);
2518     contents.append("\n");
2519   }
2520 
2521   const Descriptor* containing_type = nullptr;
2522   for (int i = 0; i < extension_count(); i++) {
2523     if (extension(i)->containing_type() != containing_type) {
2524       if (i > 0) contents.append("}\n\n");
2525       containing_type = extension(i)->containing_type();
2526       strings::SubstituteAndAppend(&contents, "extend .$0 {\n",
2527                                 containing_type->full_name());
2528     }
2529     extension(i)->DebugString(1, &contents, debug_string_options);
2530   }
2531   if (extension_count() > 0) contents.append("}\n\n");
2532 
2533   comment_printer.AddPostComment(&contents);
2534 
2535   return contents;
2536 }
2537 
DebugString() const2538 std::string Descriptor::DebugString() const {
2539   DebugStringOptions options;  // default options
2540   return DebugStringWithOptions(options);
2541 }
2542 
DebugStringWithOptions(const DebugStringOptions & options) const2543 std::string Descriptor::DebugStringWithOptions(
2544     const DebugStringOptions& options) const {
2545   std::string contents;
2546   DebugString(0, &contents, options, /* include_opening_clause */ true);
2547   return contents;
2548 }
2549 
DebugString(int depth,std::string * contents,const DebugStringOptions & debug_string_options,bool include_opening_clause) const2550 void Descriptor::DebugString(int depth, std::string* contents,
2551                              const DebugStringOptions& debug_string_options,
2552                              bool include_opening_clause) const {
2553   if (options().map_entry()) {
2554     // Do not generate debug string for auto-generated map-entry type.
2555     return;
2556   }
2557   std::string prefix(depth * 2, ' ');
2558   ++depth;
2559 
2560   SourceLocationCommentPrinter comment_printer(this, prefix,
2561                                                debug_string_options);
2562   comment_printer.AddPreComment(contents);
2563 
2564   if (include_opening_clause) {
2565     strings::SubstituteAndAppend(contents, "$0message $1", prefix, name());
2566   }
2567   contents->append(" {\n");
2568 
2569   FormatLineOptions(depth, options(), file()->pool(), contents);
2570 
2571   // Find all the 'group' types for fields and extensions; we will not output
2572   // their nested definitions (those will be done with their group field
2573   // descriptor).
2574   std::set<const Descriptor*> groups;
2575   for (int i = 0; i < field_count(); i++) {
2576     if (field(i)->type() == FieldDescriptor::TYPE_GROUP) {
2577       groups.insert(field(i)->message_type());
2578     }
2579   }
2580   for (int i = 0; i < extension_count(); i++) {
2581     if (extension(i)->type() == FieldDescriptor::TYPE_GROUP) {
2582       groups.insert(extension(i)->message_type());
2583     }
2584   }
2585 
2586   for (int i = 0; i < nested_type_count(); i++) {
2587     if (groups.count(nested_type(i)) == 0) {
2588       nested_type(i)->DebugString(depth, contents, debug_string_options,
2589                                   /* include_opening_clause */ true);
2590     }
2591   }
2592   for (int i = 0; i < enum_type_count(); i++) {
2593     enum_type(i)->DebugString(depth, contents, debug_string_options);
2594   }
2595   for (int i = 0; i < field_count(); i++) {
2596     if (field(i)->containing_oneof() == nullptr) {
2597       field(i)->DebugString(depth, contents, debug_string_options);
2598     } else if (field(i)->containing_oneof()->field(0) == field(i)) {
2599       // This is the first field in this oneof, so print the whole oneof.
2600       field(i)->containing_oneof()->DebugString(depth, contents,
2601                                                 debug_string_options);
2602     }
2603   }
2604 
2605   for (int i = 0; i < extension_range_count(); i++) {
2606     strings::SubstituteAndAppend(contents, "$0  extensions $1 to $2;\n", prefix,
2607                               extension_range(i)->start,
2608                               extension_range(i)->end - 1);
2609   }
2610 
2611   // Group extensions by what they extend, so they can be printed out together.
2612   const Descriptor* containing_type = nullptr;
2613   for (int i = 0; i < extension_count(); i++) {
2614     if (extension(i)->containing_type() != containing_type) {
2615       if (i > 0) strings::SubstituteAndAppend(contents, "$0  }\n", prefix);
2616       containing_type = extension(i)->containing_type();
2617       strings::SubstituteAndAppend(contents, "$0  extend .$1 {\n", prefix,
2618                                 containing_type->full_name());
2619     }
2620     extension(i)->DebugString(depth + 1, contents, debug_string_options);
2621   }
2622   if (extension_count() > 0)
2623     strings::SubstituteAndAppend(contents, "$0  }\n", prefix);
2624 
2625   if (reserved_range_count() > 0) {
2626     strings::SubstituteAndAppend(contents, "$0  reserved ", prefix);
2627     for (int i = 0; i < reserved_range_count(); i++) {
2628       const Descriptor::ReservedRange* range = reserved_range(i);
2629       if (range->end == range->start + 1) {
2630         strings::SubstituteAndAppend(contents, "$0, ", range->start);
2631       } else if (range->end > FieldDescriptor::kMaxNumber) {
2632         strings::SubstituteAndAppend(contents, "$0 to max, ", range->start);
2633       } else {
2634         strings::SubstituteAndAppend(contents, "$0 to $1, ", range->start,
2635                                   range->end - 1);
2636       }
2637     }
2638     contents->replace(contents->size() - 2, 2, ";\n");
2639   }
2640 
2641   if (reserved_name_count() > 0) {
2642     strings::SubstituteAndAppend(contents, "$0  reserved ", prefix);
2643     for (int i = 0; i < reserved_name_count(); i++) {
2644       strings::SubstituteAndAppend(contents, "\"$0\", ",
2645                                 CEscape(reserved_name(i)));
2646     }
2647     contents->replace(contents->size() - 2, 2, ";\n");
2648   }
2649 
2650   strings::SubstituteAndAppend(contents, "$0}\n", prefix);
2651   comment_printer.AddPostComment(contents);
2652 }
2653 
DebugString() const2654 std::string FieldDescriptor::DebugString() const {
2655   DebugStringOptions options;  // default options
2656   return DebugStringWithOptions(options);
2657 }
2658 
DebugStringWithOptions(const DebugStringOptions & debug_string_options) const2659 std::string FieldDescriptor::DebugStringWithOptions(
2660     const DebugStringOptions& debug_string_options) const {
2661   std::string contents;
2662   int depth = 0;
2663   if (is_extension()) {
2664     strings::SubstituteAndAppend(&contents, "extend .$0 {\n",
2665                               containing_type()->full_name());
2666     depth = 1;
2667   }
2668   DebugString(depth, &contents, debug_string_options);
2669   if (is_extension()) {
2670     contents.append("}\n");
2671   }
2672   return contents;
2673 }
2674 
2675 // The field type string used in FieldDescriptor::DebugString()
FieldTypeNameDebugString() const2676 std::string FieldDescriptor::FieldTypeNameDebugString() const {
2677   switch (type()) {
2678     case TYPE_MESSAGE:
2679       return "." + message_type()->full_name();
2680     case TYPE_ENUM:
2681       return "." + enum_type()->full_name();
2682     default:
2683       return kTypeToName[type()];
2684   }
2685 }
2686 
DebugString(int depth,std::string * contents,const DebugStringOptions & debug_string_options) const2687 void FieldDescriptor::DebugString(
2688     int depth, std::string* contents,
2689     const DebugStringOptions& debug_string_options) const {
2690   std::string prefix(depth * 2, ' ');
2691   std::string field_type;
2692 
2693   // Special case map fields.
2694   if (is_map()) {
2695     strings::SubstituteAndAppend(
2696         &field_type, "map<$0, $1>",
2697         message_type()->field(0)->FieldTypeNameDebugString(),
2698         message_type()->field(1)->FieldTypeNameDebugString());
2699   } else {
2700     field_type = FieldTypeNameDebugString();
2701   }
2702 
2703   std::string label = StrCat(kLabelToName[this->label()], " ");
2704 
2705   // Label is omitted for maps, oneof, and plain proto3 fields.
2706   if (is_map() || containing_oneof() ||
2707       (is_optional() && !has_optional_keyword())) {
2708     label.clear();
2709   }
2710 
2711   SourceLocationCommentPrinter comment_printer(this, prefix,
2712                                                debug_string_options);
2713   comment_printer.AddPreComment(contents);
2714 
2715   strings::SubstituteAndAppend(
2716       contents, "$0$1$2 $3 = $4", prefix, label, field_type,
2717       type() == TYPE_GROUP ? message_type()->name() : name(), number());
2718 
2719   bool bracketed = false;
2720   if (has_default_value()) {
2721     bracketed = true;
2722     strings::SubstituteAndAppend(contents, " [default = $0",
2723                               DefaultValueAsString(true));
2724   }
2725   if (has_json_name_) {
2726     if (!bracketed) {
2727       bracketed = true;
2728       contents->append("[");
2729     } else {
2730       contents->append(", ");
2731     }
2732     contents->append("json_name = \"");
2733     contents->append(CEscape(json_name()));
2734     contents->append("\"");
2735   }
2736 
2737   std::string formatted_options;
2738   if (FormatBracketedOptions(depth, options(), file()->pool(),
2739                              &formatted_options)) {
2740     contents->append(bracketed ? ", " : " [");
2741     bracketed = true;
2742     contents->append(formatted_options);
2743   }
2744 
2745   if (bracketed) {
2746     contents->append("]");
2747   }
2748 
2749   if (type() == TYPE_GROUP) {
2750     if (debug_string_options.elide_group_body) {
2751       contents->append(" { ... };\n");
2752     } else {
2753       message_type()->DebugString(depth, contents, debug_string_options,
2754                                   /* include_opening_clause */ false);
2755     }
2756   } else {
2757     contents->append(";\n");
2758   }
2759 
2760   comment_printer.AddPostComment(contents);
2761 }
2762 
DebugString() const2763 std::string OneofDescriptor::DebugString() const {
2764   DebugStringOptions options;  // default values
2765   return DebugStringWithOptions(options);
2766 }
2767 
DebugStringWithOptions(const DebugStringOptions & options) const2768 std::string OneofDescriptor::DebugStringWithOptions(
2769     const DebugStringOptions& options) const {
2770   std::string contents;
2771   DebugString(0, &contents, options);
2772   return contents;
2773 }
2774 
DebugString(int depth,std::string * contents,const DebugStringOptions & debug_string_options) const2775 void OneofDescriptor::DebugString(
2776     int depth, std::string* contents,
2777     const DebugStringOptions& debug_string_options) const {
2778   std::string prefix(depth * 2, ' ');
2779   ++depth;
2780   SourceLocationCommentPrinter comment_printer(this, prefix,
2781                                                debug_string_options);
2782   comment_printer.AddPreComment(contents);
2783   strings::SubstituteAndAppend(contents, "$0oneof $1 {", prefix, name());
2784 
2785   FormatLineOptions(depth, options(), containing_type()->file()->pool(),
2786                     contents);
2787 
2788   if (debug_string_options.elide_oneof_body) {
2789     contents->append(" ... }\n");
2790   } else {
2791     contents->append("\n");
2792     for (int i = 0; i < field_count(); i++) {
2793       field(i)->DebugString(depth, contents, debug_string_options);
2794     }
2795     strings::SubstituteAndAppend(contents, "$0}\n", prefix);
2796   }
2797   comment_printer.AddPostComment(contents);
2798 }
2799 
DebugString() const2800 std::string EnumDescriptor::DebugString() const {
2801   DebugStringOptions options;  // default values
2802   return DebugStringWithOptions(options);
2803 }
2804 
DebugStringWithOptions(const DebugStringOptions & options) const2805 std::string EnumDescriptor::DebugStringWithOptions(
2806     const DebugStringOptions& options) const {
2807   std::string contents;
2808   DebugString(0, &contents, options);
2809   return contents;
2810 }
2811 
DebugString(int depth,std::string * contents,const DebugStringOptions & debug_string_options) const2812 void EnumDescriptor::DebugString(
2813     int depth, std::string* contents,
2814     const DebugStringOptions& debug_string_options) const {
2815   std::string prefix(depth * 2, ' ');
2816   ++depth;
2817 
2818   SourceLocationCommentPrinter comment_printer(this, prefix,
2819                                                debug_string_options);
2820   comment_printer.AddPreComment(contents);
2821 
2822   strings::SubstituteAndAppend(contents, "$0enum $1 {\n", prefix, name());
2823 
2824   FormatLineOptions(depth, options(), file()->pool(), contents);
2825 
2826   for (int i = 0; i < value_count(); i++) {
2827     value(i)->DebugString(depth, contents, debug_string_options);
2828   }
2829 
2830   if (reserved_range_count() > 0) {
2831     strings::SubstituteAndAppend(contents, "$0  reserved ", prefix);
2832     for (int i = 0; i < reserved_range_count(); i++) {
2833       const EnumDescriptor::ReservedRange* range = reserved_range(i);
2834       if (range->end == range->start) {
2835         strings::SubstituteAndAppend(contents, "$0, ", range->start);
2836       } else if (range->end == INT_MAX) {
2837         strings::SubstituteAndAppend(contents, "$0 to max, ", range->start);
2838       } else {
2839         strings::SubstituteAndAppend(contents, "$0 to $1, ", range->start,
2840                                   range->end);
2841       }
2842     }
2843     contents->replace(contents->size() - 2, 2, ";\n");
2844   }
2845 
2846   if (reserved_name_count() > 0) {
2847     strings::SubstituteAndAppend(contents, "$0  reserved ", prefix);
2848     for (int i = 0; i < reserved_name_count(); i++) {
2849       strings::SubstituteAndAppend(contents, "\"$0\", ",
2850                                 CEscape(reserved_name(i)));
2851     }
2852     contents->replace(contents->size() - 2, 2, ";\n");
2853   }
2854 
2855   strings::SubstituteAndAppend(contents, "$0}\n", prefix);
2856 
2857   comment_printer.AddPostComment(contents);
2858 }
2859 
DebugString() const2860 std::string EnumValueDescriptor::DebugString() const {
2861   DebugStringOptions options;  // default values
2862   return DebugStringWithOptions(options);
2863 }
2864 
DebugStringWithOptions(const DebugStringOptions & options) const2865 std::string EnumValueDescriptor::DebugStringWithOptions(
2866     const DebugStringOptions& options) const {
2867   std::string contents;
2868   DebugString(0, &contents, options);
2869   return contents;
2870 }
2871 
DebugString(int depth,std::string * contents,const DebugStringOptions & debug_string_options) const2872 void EnumValueDescriptor::DebugString(
2873     int depth, std::string* contents,
2874     const DebugStringOptions& debug_string_options) const {
2875   std::string prefix(depth * 2, ' ');
2876 
2877   SourceLocationCommentPrinter comment_printer(this, prefix,
2878                                                debug_string_options);
2879   comment_printer.AddPreComment(contents);
2880 
2881   strings::SubstituteAndAppend(contents, "$0$1 = $2", prefix, name(), number());
2882 
2883   std::string formatted_options;
2884   if (FormatBracketedOptions(depth, options(), type()->file()->pool(),
2885                              &formatted_options)) {
2886     strings::SubstituteAndAppend(contents, " [$0]", formatted_options);
2887   }
2888   contents->append(";\n");
2889 
2890   comment_printer.AddPostComment(contents);
2891 }
2892 
DebugString() const2893 std::string ServiceDescriptor::DebugString() const {
2894   DebugStringOptions options;  // default values
2895   return DebugStringWithOptions(options);
2896 }
2897 
DebugStringWithOptions(const DebugStringOptions & options) const2898 std::string ServiceDescriptor::DebugStringWithOptions(
2899     const DebugStringOptions& options) const {
2900   std::string contents;
2901   DebugString(&contents, options);
2902   return contents;
2903 }
2904 
DebugString(std::string * contents,const DebugStringOptions & debug_string_options) const2905 void ServiceDescriptor::DebugString(
2906     std::string* contents,
2907     const DebugStringOptions& debug_string_options) const {
2908   SourceLocationCommentPrinter comment_printer(this, /* prefix */ "",
2909                                                debug_string_options);
2910   comment_printer.AddPreComment(contents);
2911 
2912   strings::SubstituteAndAppend(contents, "service $0 {\n", name());
2913 
2914   FormatLineOptions(1, options(), file()->pool(), contents);
2915 
2916   for (int i = 0; i < method_count(); i++) {
2917     method(i)->DebugString(1, contents, debug_string_options);
2918   }
2919 
2920   contents->append("}\n");
2921 
2922   comment_printer.AddPostComment(contents);
2923 }
2924 
DebugString() const2925 std::string MethodDescriptor::DebugString() const {
2926   DebugStringOptions options;  // default values
2927   return DebugStringWithOptions(options);
2928 }
2929 
DebugStringWithOptions(const DebugStringOptions & options) const2930 std::string MethodDescriptor::DebugStringWithOptions(
2931     const DebugStringOptions& options) const {
2932   std::string contents;
2933   DebugString(0, &contents, options);
2934   return contents;
2935 }
2936 
DebugString(int depth,std::string * contents,const DebugStringOptions & debug_string_options) const2937 void MethodDescriptor::DebugString(
2938     int depth, std::string* contents,
2939     const DebugStringOptions& debug_string_options) const {
2940   std::string prefix(depth * 2, ' ');
2941   ++depth;
2942 
2943   SourceLocationCommentPrinter comment_printer(this, prefix,
2944                                                debug_string_options);
2945   comment_printer.AddPreComment(contents);
2946 
2947   strings::SubstituteAndAppend(
2948       contents, "$0rpc $1($4.$2) returns ($5.$3)", prefix, name(),
2949       input_type()->full_name(), output_type()->full_name(),
2950       client_streaming() ? "stream " : "", server_streaming() ? "stream " : "");
2951 
2952   std::string formatted_options;
2953   if (FormatLineOptions(depth, options(), service()->file()->pool(),
2954                         &formatted_options)) {
2955     strings::SubstituteAndAppend(contents, " {\n$0$1}\n", formatted_options,
2956                               prefix);
2957   } else {
2958     contents->append(";\n");
2959   }
2960 
2961   comment_printer.AddPostComment(contents);
2962 }
2963 
2964 
2965 // Location methods ===============================================
2966 
GetSourceLocation(const std::vector<int> & path,SourceLocation * out_location) const2967 bool FileDescriptor::GetSourceLocation(const std::vector<int>& path,
2968                                        SourceLocation* out_location) const {
2969   GOOGLE_CHECK(out_location != nullptr);
2970   if (source_code_info_) {
2971     if (const SourceCodeInfo_Location* loc =
2972             tables_->GetSourceLocation(path, source_code_info_)) {
2973       const RepeatedField<int32>& span = loc->span();
2974       if (span.size() == 3 || span.size() == 4) {
2975         out_location->start_line = span.Get(0);
2976         out_location->start_column = span.Get(1);
2977         out_location->end_line = span.Get(span.size() == 3 ? 0 : 2);
2978         out_location->end_column = span.Get(span.size() - 1);
2979 
2980         out_location->leading_comments = loc->leading_comments();
2981         out_location->trailing_comments = loc->trailing_comments();
2982         out_location->leading_detached_comments.assign(
2983             loc->leading_detached_comments().begin(),
2984             loc->leading_detached_comments().end());
2985         return true;
2986       }
2987     }
2988   }
2989   return false;
2990 }
2991 
GetSourceLocation(SourceLocation * out_location) const2992 bool FileDescriptor::GetSourceLocation(SourceLocation* out_location) const {
2993   std::vector<int> path;  // empty path for root FileDescriptor
2994   return GetSourceLocation(path, out_location);
2995 }
2996 
is_packed() const2997 bool FieldDescriptor::is_packed() const {
2998   if (!is_packable()) return false;
2999   if (file_->syntax() == FileDescriptor::SYNTAX_PROTO2) {
3000     return (options_ != nullptr) && options_->packed();
3001   } else {
3002     return options_ == nullptr || !options_->has_packed() || options_->packed();
3003   }
3004 }
3005 
GetSourceLocation(SourceLocation * out_location) const3006 bool Descriptor::GetSourceLocation(SourceLocation* out_location) const {
3007   std::vector<int> path;
3008   GetLocationPath(&path);
3009   return file()->GetSourceLocation(path, out_location);
3010 }
3011 
GetSourceLocation(SourceLocation * out_location) const3012 bool FieldDescriptor::GetSourceLocation(SourceLocation* out_location) const {
3013   std::vector<int> path;
3014   GetLocationPath(&path);
3015   return file()->GetSourceLocation(path, out_location);
3016 }
3017 
GetSourceLocation(SourceLocation * out_location) const3018 bool OneofDescriptor::GetSourceLocation(SourceLocation* out_location) const {
3019   std::vector<int> path;
3020   GetLocationPath(&path);
3021   return containing_type()->file()->GetSourceLocation(path, out_location);
3022 }
3023 
GetSourceLocation(SourceLocation * out_location) const3024 bool EnumDescriptor::GetSourceLocation(SourceLocation* out_location) const {
3025   std::vector<int> path;
3026   GetLocationPath(&path);
3027   return file()->GetSourceLocation(path, out_location);
3028 }
3029 
GetSourceLocation(SourceLocation * out_location) const3030 bool MethodDescriptor::GetSourceLocation(SourceLocation* out_location) const {
3031   std::vector<int> path;
3032   GetLocationPath(&path);
3033   return service()->file()->GetSourceLocation(path, out_location);
3034 }
3035 
GetSourceLocation(SourceLocation * out_location) const3036 bool ServiceDescriptor::GetSourceLocation(SourceLocation* out_location) const {
3037   std::vector<int> path;
3038   GetLocationPath(&path);
3039   return file()->GetSourceLocation(path, out_location);
3040 }
3041 
GetSourceLocation(SourceLocation * out_location) const3042 bool EnumValueDescriptor::GetSourceLocation(
3043     SourceLocation* out_location) const {
3044   std::vector<int> path;
3045   GetLocationPath(&path);
3046   return type()->file()->GetSourceLocation(path, out_location);
3047 }
3048 
GetLocationPath(std::vector<int> * output) const3049 void Descriptor::GetLocationPath(std::vector<int>* output) const {
3050   if (containing_type()) {
3051     containing_type()->GetLocationPath(output);
3052     output->push_back(DescriptorProto::kNestedTypeFieldNumber);
3053     output->push_back(index());
3054   } else {
3055     output->push_back(FileDescriptorProto::kMessageTypeFieldNumber);
3056     output->push_back(index());
3057   }
3058 }
3059 
GetLocationPath(std::vector<int> * output) const3060 void FieldDescriptor::GetLocationPath(std::vector<int>* output) const {
3061   if (is_extension()) {
3062     if (extension_scope() == nullptr) {
3063       output->push_back(FileDescriptorProto::kExtensionFieldNumber);
3064       output->push_back(index());
3065     } else {
3066       extension_scope()->GetLocationPath(output);
3067       output->push_back(DescriptorProto::kExtensionFieldNumber);
3068       output->push_back(index());
3069     }
3070   } else {
3071     containing_type()->GetLocationPath(output);
3072     output->push_back(DescriptorProto::kFieldFieldNumber);
3073     output->push_back(index());
3074   }
3075 }
3076 
GetLocationPath(std::vector<int> * output) const3077 void OneofDescriptor::GetLocationPath(std::vector<int>* output) const {
3078   containing_type()->GetLocationPath(output);
3079   output->push_back(DescriptorProto::kOneofDeclFieldNumber);
3080   output->push_back(index());
3081 }
3082 
GetLocationPath(std::vector<int> * output) const3083 void EnumDescriptor::GetLocationPath(std::vector<int>* output) const {
3084   if (containing_type()) {
3085     containing_type()->GetLocationPath(output);
3086     output->push_back(DescriptorProto::kEnumTypeFieldNumber);
3087     output->push_back(index());
3088   } else {
3089     output->push_back(FileDescriptorProto::kEnumTypeFieldNumber);
3090     output->push_back(index());
3091   }
3092 }
3093 
GetLocationPath(std::vector<int> * output) const3094 void EnumValueDescriptor::GetLocationPath(std::vector<int>* output) const {
3095   type()->GetLocationPath(output);
3096   output->push_back(EnumDescriptorProto::kValueFieldNumber);
3097   output->push_back(index());
3098 }
3099 
GetLocationPath(std::vector<int> * output) const3100 void ServiceDescriptor::GetLocationPath(std::vector<int>* output) const {
3101   output->push_back(FileDescriptorProto::kServiceFieldNumber);
3102   output->push_back(index());
3103 }
3104 
GetLocationPath(std::vector<int> * output) const3105 void MethodDescriptor::GetLocationPath(std::vector<int>* output) const {
3106   service()->GetLocationPath(output);
3107   output->push_back(ServiceDescriptorProto::kMethodFieldNumber);
3108   output->push_back(index());
3109 }
3110 
3111 // ===================================================================
3112 
3113 namespace {
3114 
3115 // Represents an options message to interpret. Extension names in the option
3116 // name are resolved relative to name_scope. element_name and orig_opt are
3117 // used only for error reporting (since the parser records locations against
3118 // pointers in the original options, not the mutable copy). The Message must be
3119 // one of the Options messages in descriptor.proto.
3120 struct OptionsToInterpret {
OptionsToInterpretgoogle::protobuf::__anon0db35b980511::OptionsToInterpret3121   OptionsToInterpret(const std::string& ns, const std::string& el,
3122                      const std::vector<int>& path, const Message* orig_opt,
3123                      Message* opt)
3124       : name_scope(ns),
3125         element_name(el),
3126         element_path(path),
3127         original_options(orig_opt),
3128         options(opt) {}
3129   std::string name_scope;
3130   std::string element_name;
3131   std::vector<int> element_path;
3132   const Message* original_options;
3133   Message* options;
3134 };
3135 
3136 }  // namespace
3137 
3138 class DescriptorBuilder {
3139  public:
3140   DescriptorBuilder(const DescriptorPool* pool, DescriptorPool::Tables* tables,
3141                     DescriptorPool::ErrorCollector* error_collector);
3142   ~DescriptorBuilder();
3143 
3144   const FileDescriptor* BuildFile(const FileDescriptorProto& proto);
3145 
3146  private:
3147   friend class OptionInterpreter;
3148 
3149   // Non-recursive part of BuildFile functionality.
3150   FileDescriptor* BuildFileImpl(const FileDescriptorProto& proto);
3151 
3152   const DescriptorPool* pool_;
3153   DescriptorPool::Tables* tables_;  // for convenience
3154   DescriptorPool::ErrorCollector* error_collector_;
3155 
3156   // As we build descriptors we store copies of the options messages in
3157   // them. We put pointers to those copies in this vector, as we build, so we
3158   // can later (after cross-linking) interpret those options.
3159   std::vector<OptionsToInterpret> options_to_interpret_;
3160 
3161   bool had_errors_;
3162   std::string filename_;
3163   FileDescriptor* file_;
3164   FileDescriptorTables* file_tables_;
3165   std::set<const FileDescriptor*> dependencies_;
3166 
3167   // unused_dependency_ is used to record the unused imported files.
3168   // Note: public import is not considered.
3169   std::set<const FileDescriptor*> unused_dependency_;
3170 
3171   // If LookupSymbol() finds a symbol that is in a file which is not a declared
3172   // dependency of this file, it will fail, but will set
3173   // possible_undeclared_dependency_ to point at that file.  This is only used
3174   // by AddNotDefinedError() to report a more useful error message.
3175   // possible_undeclared_dependency_name_ is the name of the symbol that was
3176   // actually found in possible_undeclared_dependency_, which may be a parent
3177   // of the symbol actually looked for.
3178   const FileDescriptor* possible_undeclared_dependency_;
3179   std::string possible_undeclared_dependency_name_;
3180 
3181   // If LookupSymbol() could resolve a symbol which is not defined,
3182   // record the resolved name.  This is only used by AddNotDefinedError()
3183   // to report a more useful error message.
3184   std::string undefine_resolved_name_;
3185 
3186   void AddError(const std::string& element_name, const Message& descriptor,
3187                 DescriptorPool::ErrorCollector::ErrorLocation location,
3188                 const std::string& error);
3189   void AddError(const std::string& element_name, const Message& descriptor,
3190                 DescriptorPool::ErrorCollector::ErrorLocation location,
3191                 const char* error);
3192   void AddRecursiveImportError(const FileDescriptorProto& proto, int from_here);
3193   void AddTwiceListedError(const FileDescriptorProto& proto, int index);
3194   void AddImportError(const FileDescriptorProto& proto, int index);
3195 
3196   // Adds an error indicating that undefined_symbol was not defined.  Must
3197   // only be called after LookupSymbol() fails.
3198   void AddNotDefinedError(
3199       const std::string& element_name, const Message& descriptor,
3200       DescriptorPool::ErrorCollector::ErrorLocation location,
3201       const std::string& undefined_symbol);
3202 
3203   void AddWarning(const std::string& element_name, const Message& descriptor,
3204                   DescriptorPool::ErrorCollector::ErrorLocation location,
3205                   const std::string& error);
3206 
3207   // Silly helper which determines if the given file is in the given package.
3208   // I.e., either file->package() == package_name or file->package() is a
3209   // nested package within package_name.
3210   bool IsInPackage(const FileDescriptor* file, const std::string& package_name);
3211 
3212   // Helper function which finds all public dependencies of the given file, and
3213   // stores the them in the dependencies_ set in the builder.
3214   void RecordPublicDependencies(const FileDescriptor* file);
3215 
3216   // Like tables_->FindSymbol(), but additionally:
3217   // - Search the pool's underlay if not found in tables_.
3218   // - Insure that the resulting Symbol is from one of the file's declared
3219   //   dependencies.
3220   Symbol FindSymbol(const std::string& name, bool build_it = true);
3221 
3222   // Like FindSymbol() but does not require that the symbol is in one of the
3223   // file's declared dependencies.
3224   Symbol FindSymbolNotEnforcingDeps(const std::string& name,
3225                                     bool build_it = true);
3226 
3227   // This implements the body of FindSymbolNotEnforcingDeps().
3228   Symbol FindSymbolNotEnforcingDepsHelper(const DescriptorPool* pool,
3229                                           const std::string& name,
3230                                           bool build_it = true);
3231 
3232   // Like FindSymbol(), but looks up the name relative to some other symbol
3233   // name.  This first searches siblings of relative_to, then siblings of its
3234   // parents, etc.  For example, LookupSymbol("foo.bar", "baz.qux.corge") makes
3235   // the following calls, returning the first non-null result:
3236   // FindSymbol("baz.qux.foo.bar"), FindSymbol("baz.foo.bar"),
3237   // FindSymbol("foo.bar").  If AllowUnknownDependencies() has been called
3238   // on the DescriptorPool, this will generate a placeholder type if
3239   // the name is not found (unless the name itself is malformed).  The
3240   // placeholder_type parameter indicates what kind of placeholder should be
3241   // constructed in this case.  The resolve_mode parameter determines whether
3242   // any symbol is returned, or only symbols that are types.  Note, however,
3243   // that LookupSymbol may still return a non-type symbol in LOOKUP_TYPES mode,
3244   // if it believes that's all it could refer to.  The caller should always
3245   // check that it receives the type of symbol it was expecting.
3246   enum ResolveMode { LOOKUP_ALL, LOOKUP_TYPES };
3247   Symbol LookupSymbol(const std::string& name, const std::string& relative_to,
3248                       DescriptorPool::PlaceholderType placeholder_type =
3249                           DescriptorPool::PLACEHOLDER_MESSAGE,
3250                       ResolveMode resolve_mode = LOOKUP_ALL,
3251                       bool build_it = true);
3252 
3253   // Like LookupSymbol() but will not return a placeholder even if
3254   // AllowUnknownDependencies() has been used.
3255   Symbol LookupSymbolNoPlaceholder(const std::string& name,
3256                                    const std::string& relative_to,
3257                                    ResolveMode resolve_mode = LOOKUP_ALL,
3258                                    bool build_it = true);
3259 
3260   // Calls tables_->AddSymbol() and records an error if it fails.  Returns
3261   // true if successful or false if failed, though most callers can ignore
3262   // the return value since an error has already been recorded.
3263   bool AddSymbol(const std::string& full_name, const void* parent,
3264                  const std::string& name, const Message& proto, Symbol symbol);
3265 
3266   // Like AddSymbol(), but succeeds if the symbol is already defined as long
3267   // as the existing definition is also a package (because it's OK to define
3268   // the same package in two different files).  Also adds all parents of the
3269   // package to the symbol table (e.g. AddPackage("foo.bar", ...) will add
3270   // "foo.bar" and "foo" to the table).
3271   void AddPackage(const std::string& name, const Message& proto,
3272                   const FileDescriptor* file);
3273 
3274   // Checks that the symbol name contains only alphanumeric characters and
3275   // underscores.  Records an error otherwise.
3276   void ValidateSymbolName(const std::string& name, const std::string& full_name,
3277                           const Message& proto);
3278 
3279   // Used by BUILD_ARRAY macro (below) to avoid having to have the type
3280   // specified as a macro parameter.
3281   template <typename Type>
AllocateArray(int size,Type ** output)3282   inline void AllocateArray(int size, Type** output) {
3283     *output = tables_->AllocateArray<Type>(size);
3284   }
3285 
3286   // Allocates a copy of orig_options in tables_ and stores it in the
3287   // descriptor. Remembers its uninterpreted options, to be interpreted
3288   // later. DescriptorT must be one of the Descriptor messages from
3289   // descriptor.proto.
3290   template <class DescriptorT>
3291   void AllocateOptions(const typename DescriptorT::OptionsType& orig_options,
3292                        DescriptorT* descriptor, int options_field_tag,
3293                        const std::string& option_name);
3294   // Specialization for FileOptions.
3295   void AllocateOptions(const FileOptions& orig_options,
3296                        FileDescriptor* descriptor);
3297 
3298   // Implementation for AllocateOptions(). Don't call this directly.
3299   template <class DescriptorT>
3300   void AllocateOptionsImpl(
3301       const std::string& name_scope, const std::string& element_name,
3302       const typename DescriptorT::OptionsType& orig_options,
3303       DescriptorT* descriptor, const std::vector<int>& options_path,
3304       const std::string& option_name);
3305 
3306   // Allocate string on the string pool and initialize it to full proto name.
3307   // Full proto name is "scope.proto_name" if scope is non-empty and
3308   // "proto_name" otherwise.
3309   std::string* AllocateNameString(const std::string& scope,
3310                                   const std::string& proto_name);
3311 
3312   // These methods all have the same signature for the sake of the BUILD_ARRAY
3313   // macro, below.
3314   void BuildMessage(const DescriptorProto& proto, const Descriptor* parent,
3315                     Descriptor* result);
3316   void BuildFieldOrExtension(const FieldDescriptorProto& proto,
3317                              Descriptor* parent, FieldDescriptor* result,
3318                              bool is_extension);
BuildField(const FieldDescriptorProto & proto,Descriptor * parent,FieldDescriptor * result)3319   void BuildField(const FieldDescriptorProto& proto, Descriptor* parent,
3320                   FieldDescriptor* result) {
3321     BuildFieldOrExtension(proto, parent, result, false);
3322   }
BuildExtension(const FieldDescriptorProto & proto,Descriptor * parent,FieldDescriptor * result)3323   void BuildExtension(const FieldDescriptorProto& proto, Descriptor* parent,
3324                       FieldDescriptor* result) {
3325     BuildFieldOrExtension(proto, parent, result, true);
3326   }
3327   void BuildExtensionRange(const DescriptorProto::ExtensionRange& proto,
3328                            const Descriptor* parent,
3329                            Descriptor::ExtensionRange* result);
3330   void BuildReservedRange(const DescriptorProto::ReservedRange& proto,
3331                           const Descriptor* parent,
3332                           Descriptor::ReservedRange* result);
3333   void BuildReservedRange(const EnumDescriptorProto::EnumReservedRange& proto,
3334                           const EnumDescriptor* parent,
3335                           EnumDescriptor::ReservedRange* result);
3336   void BuildOneof(const OneofDescriptorProto& proto, Descriptor* parent,
3337                   OneofDescriptor* result);
3338   void CheckEnumValueUniqueness(const EnumDescriptorProto& proto,
3339                                 const EnumDescriptor* result);
3340   void BuildEnum(const EnumDescriptorProto& proto, const Descriptor* parent,
3341                  EnumDescriptor* result);
3342   void BuildEnumValue(const EnumValueDescriptorProto& proto,
3343                       const EnumDescriptor* parent,
3344                       EnumValueDescriptor* result);
3345   void BuildService(const ServiceDescriptorProto& proto, const void* dummy,
3346                     ServiceDescriptor* result);
3347   void BuildMethod(const MethodDescriptorProto& proto,
3348                    const ServiceDescriptor* parent, MethodDescriptor* result);
3349 
3350   void LogUnusedDependency(const FileDescriptorProto& proto,
3351                            const FileDescriptor* result);
3352 
3353   // Must be run only after building.
3354   //
3355   // NOTE: Options will not be available during cross-linking, as they
3356   // have not yet been interpreted. Defer any handling of options to the
3357   // Validate*Options methods.
3358   void CrossLinkFile(FileDescriptor* file, const FileDescriptorProto& proto);
3359   void CrossLinkMessage(Descriptor* message, const DescriptorProto& proto);
3360   void CrossLinkField(FieldDescriptor* field,
3361                       const FieldDescriptorProto& proto);
3362   void CrossLinkExtensionRange(Descriptor::ExtensionRange* range,
3363                                const DescriptorProto::ExtensionRange& proto);
3364   void CrossLinkEnum(EnumDescriptor* enum_type,
3365                      const EnumDescriptorProto& proto);
3366   void CrossLinkEnumValue(EnumValueDescriptor* enum_value,
3367                           const EnumValueDescriptorProto& proto);
3368   void CrossLinkService(ServiceDescriptor* service,
3369                         const ServiceDescriptorProto& proto);
3370   void CrossLinkMethod(MethodDescriptor* method,
3371                        const MethodDescriptorProto& proto);
3372 
3373   // Must be run only after cross-linking.
3374   void InterpretOptions();
3375 
3376   // A helper class for interpreting options.
3377   class OptionInterpreter {
3378    public:
3379     // Creates an interpreter that operates in the context of the pool of the
3380     // specified builder, which must not be nullptr. We don't take ownership of
3381     // the builder.
3382     explicit OptionInterpreter(DescriptorBuilder* builder);
3383 
3384     ~OptionInterpreter();
3385 
3386     // Interprets the uninterpreted options in the specified Options message.
3387     // On error, calls AddError() on the underlying builder and returns false.
3388     // Otherwise returns true.
3389     bool InterpretOptions(OptionsToInterpret* options_to_interpret);
3390 
3391     // Updates the given source code info by re-writing uninterpreted option
3392     // locations to refer to the corresponding interpreted option.
3393     void UpdateSourceCodeInfo(SourceCodeInfo* info);
3394 
3395     class AggregateOptionFinder;
3396 
3397    private:
3398     // Interprets uninterpreted_option_ on the specified message, which
3399     // must be the mutable copy of the original options message to which
3400     // uninterpreted_option_ belongs. The given src_path is the source
3401     // location path to the uninterpreted option, and options_path is the
3402     // source location path to the options message. The location paths are
3403     // recorded and then used in UpdateSourceCodeInfo.
3404     bool InterpretSingleOption(Message* options,
3405                                const std::vector<int>& src_path,
3406                                const std::vector<int>& options_path);
3407 
3408     // Adds the uninterpreted_option to the given options message verbatim.
3409     // Used when AllowUnknownDependencies() is in effect and we can't find
3410     // the option's definition.
3411     void AddWithoutInterpreting(const UninterpretedOption& uninterpreted_option,
3412                                 Message* options);
3413 
3414     // A recursive helper function that drills into the intermediate fields
3415     // in unknown_fields to check if field innermost_field is set on the
3416     // innermost message. Returns false and sets an error if so.
3417     bool ExamineIfOptionIsSet(
3418         std::vector<const FieldDescriptor*>::const_iterator
3419             intermediate_fields_iter,
3420         std::vector<const FieldDescriptor*>::const_iterator
3421             intermediate_fields_end,
3422         const FieldDescriptor* innermost_field,
3423         const std::string& debug_msg_name,
3424         const UnknownFieldSet& unknown_fields);
3425 
3426     // Validates the value for the option field of the currently interpreted
3427     // option and then sets it on the unknown_field.
3428     bool SetOptionValue(const FieldDescriptor* option_field,
3429                         UnknownFieldSet* unknown_fields);
3430 
3431     // Parses an aggregate value for a CPPTYPE_MESSAGE option and
3432     // saves it into *unknown_fields.
3433     bool SetAggregateOption(const FieldDescriptor* option_field,
3434                             UnknownFieldSet* unknown_fields);
3435 
3436     // Convenience functions to set an int field the right way, depending on
3437     // its wire type (a single int CppType can represent multiple wire types).
3438     void SetInt32(int number, int32 value, FieldDescriptor::Type type,
3439                   UnknownFieldSet* unknown_fields);
3440     void SetInt64(int number, int64 value, FieldDescriptor::Type type,
3441                   UnknownFieldSet* unknown_fields);
3442     void SetUInt32(int number, uint32 value, FieldDescriptor::Type type,
3443                    UnknownFieldSet* unknown_fields);
3444     void SetUInt64(int number, uint64 value, FieldDescriptor::Type type,
3445                    UnknownFieldSet* unknown_fields);
3446 
3447 
3448     // A helper function that adds an error at the specified location of the
3449     // option we're currently interpreting, and returns false.
AddOptionError(DescriptorPool::ErrorCollector::ErrorLocation location,const std::string & msg)3450     bool AddOptionError(DescriptorPool::ErrorCollector::ErrorLocation location,
3451                         const std::string& msg) {
3452       builder_->AddError(options_to_interpret_->element_name,
3453                          *uninterpreted_option_, location, msg);
3454       return false;
3455     }
3456 
3457     // A helper function that adds an error at the location of the option name
3458     // and returns false.
AddNameError(const std::string & msg)3459     bool AddNameError(const std::string& msg) {
3460       return AddOptionError(DescriptorPool::ErrorCollector::OPTION_NAME, msg);
3461     }
3462 
3463     // A helper function that adds an error at the location of the option name
3464     // and returns false.
AddValueError(const std::string & msg)3465     bool AddValueError(const std::string& msg) {
3466       return AddOptionError(DescriptorPool::ErrorCollector::OPTION_VALUE, msg);
3467     }
3468 
3469     // We interpret against this builder's pool. Is never nullptr. We don't own
3470     // this pointer.
3471     DescriptorBuilder* builder_;
3472 
3473     // The options we're currently interpreting, or nullptr if we're not in a
3474     // call to InterpretOptions.
3475     const OptionsToInterpret* options_to_interpret_;
3476 
3477     // The option we're currently interpreting within options_to_interpret_, or
3478     // nullptr if we're not in a call to InterpretOptions(). This points to a
3479     // submessage of the original option, not the mutable copy. Therefore we
3480     // can use it to find locations recorded by the parser.
3481     const UninterpretedOption* uninterpreted_option_;
3482 
3483     // This maps the element path of uninterpreted options to the element path
3484     // of the resulting interpreted option. This is used to modify a file's
3485     // source code info to account for option interpretation.
3486     std::map<std::vector<int>, std::vector<int>> interpreted_paths_;
3487 
3488     // This maps the path to a repeated option field to the known number of
3489     // elements the field contains. This is used to track the compute the
3490     // index portion of the element path when interpreting a single option.
3491     std::map<std::vector<int>, int> repeated_option_counts_;
3492 
3493     // Factory used to create the dynamic messages we need to parse
3494     // any aggregate option values we encounter.
3495     DynamicMessageFactory dynamic_factory_;
3496 
3497     GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(OptionInterpreter);
3498   };
3499 
3500   // Work-around for broken compilers:  According to the C++ standard,
3501   // OptionInterpreter should have access to the private members of any class
3502   // which has declared DescriptorBuilder as a friend.  Unfortunately some old
3503   // versions of GCC and other compilers do not implement this correctly.  So,
3504   // we have to have these intermediate methods to provide access.  We also
3505   // redundantly declare OptionInterpreter a friend just to make things extra
3506   // clear for these bad compilers.
3507   friend class OptionInterpreter;
3508   friend class OptionInterpreter::AggregateOptionFinder;
3509 
get_allow_unknown(const DescriptorPool * pool)3510   static inline bool get_allow_unknown(const DescriptorPool* pool) {
3511     return pool->allow_unknown_;
3512   }
get_enforce_weak(const DescriptorPool * pool)3513   static inline bool get_enforce_weak(const DescriptorPool* pool) {
3514     return pool->enforce_weak_;
3515   }
get_is_placeholder(const Descriptor * descriptor)3516   static inline bool get_is_placeholder(const Descriptor* descriptor) {
3517     return descriptor != nullptr && descriptor->is_placeholder_;
3518   }
assert_mutex_held(const DescriptorPool * pool)3519   static inline void assert_mutex_held(const DescriptorPool* pool) {
3520     if (pool->mutex_ != nullptr) {
3521       pool->mutex_->AssertHeld();
3522     }
3523   }
3524 
3525   // Must be run only after options have been interpreted.
3526   //
3527   // NOTE: Validation code must only reference the options in the mutable
3528   // descriptors, which are the ones that have been interpreted. The const
3529   // proto references are passed in only so they can be provided to calls to
3530   // AddError(). Do not look at their options, which have not been interpreted.
3531   void ValidateFileOptions(FileDescriptor* file,
3532                            const FileDescriptorProto& proto);
3533   void ValidateMessageOptions(Descriptor* message,
3534                               const DescriptorProto& proto);
3535   void ValidateFieldOptions(FieldDescriptor* field,
3536                             const FieldDescriptorProto& proto);
3537   void ValidateEnumOptions(EnumDescriptor* enm,
3538                            const EnumDescriptorProto& proto);
3539   void ValidateEnumValueOptions(EnumValueDescriptor* enum_value,
3540                                 const EnumValueDescriptorProto& proto);
3541   void ValidateExtensionRangeOptions(
3542       const std::string& full_name, Descriptor::ExtensionRange* extension_range,
3543       const DescriptorProto_ExtensionRange& proto);
3544   void ValidateServiceOptions(ServiceDescriptor* service,
3545                               const ServiceDescriptorProto& proto);
3546   void ValidateMethodOptions(MethodDescriptor* method,
3547                              const MethodDescriptorProto& proto);
3548   void ValidateProto3(FileDescriptor* file, const FileDescriptorProto& proto);
3549   void ValidateProto3Message(Descriptor* message, const DescriptorProto& proto);
3550   void ValidateProto3Field(FieldDescriptor* field,
3551                            const FieldDescriptorProto& proto);
3552   void ValidateProto3Enum(EnumDescriptor* enm,
3553                           const EnumDescriptorProto& proto);
3554 
3555   // Returns true if the map entry message is compatible with the
3556   // auto-generated entry message from map fields syntax.
3557   bool ValidateMapEntry(FieldDescriptor* field,
3558                         const FieldDescriptorProto& proto);
3559 
3560   // Recursively detects naming conflicts with map entry types for a
3561   // better error message.
3562   void DetectMapConflicts(const Descriptor* message,
3563                           const DescriptorProto& proto);
3564 
3565   void ValidateJSType(FieldDescriptor* field,
3566                       const FieldDescriptorProto& proto);
3567 };
3568 
BuildFile(const FileDescriptorProto & proto)3569 const FileDescriptor* DescriptorPool::BuildFile(
3570     const FileDescriptorProto& proto) {
3571   GOOGLE_CHECK(fallback_database_ == nullptr)
3572       << "Cannot call BuildFile on a DescriptorPool that uses a "
3573          "DescriptorDatabase.  You must instead find a way to get your file "
3574          "into the underlying database.";
3575   GOOGLE_CHECK(mutex_ == nullptr);  // Implied by the above GOOGLE_CHECK.
3576   tables_->known_bad_symbols_.clear();
3577   tables_->known_bad_files_.clear();
3578   return DescriptorBuilder(this, tables_.get(), nullptr).BuildFile(proto);
3579 }
3580 
BuildFileCollectingErrors(const FileDescriptorProto & proto,ErrorCollector * error_collector)3581 const FileDescriptor* DescriptorPool::BuildFileCollectingErrors(
3582     const FileDescriptorProto& proto, ErrorCollector* error_collector) {
3583   GOOGLE_CHECK(fallback_database_ == nullptr)
3584       << "Cannot call BuildFile on a DescriptorPool that uses a "
3585          "DescriptorDatabase.  You must instead find a way to get your file "
3586          "into the underlying database.";
3587   GOOGLE_CHECK(mutex_ == nullptr);  // Implied by the above GOOGLE_CHECK.
3588   tables_->known_bad_symbols_.clear();
3589   tables_->known_bad_files_.clear();
3590   return DescriptorBuilder(this, tables_.get(), error_collector)
3591       .BuildFile(proto);
3592 }
3593 
BuildFileFromDatabase(const FileDescriptorProto & proto) const3594 const FileDescriptor* DescriptorPool::BuildFileFromDatabase(
3595     const FileDescriptorProto& proto) const {
3596   mutex_->AssertHeld();
3597   if (tables_->known_bad_files_.count(proto.name()) > 0) {
3598     return nullptr;
3599   }
3600   const FileDescriptor* result =
3601       DescriptorBuilder(this, tables_.get(), default_error_collector_)
3602           .BuildFile(proto);
3603   if (result == nullptr) {
3604     tables_->known_bad_files_.insert(proto.name());
3605   }
3606   return result;
3607 }
3608 
DescriptorBuilder(const DescriptorPool * pool,DescriptorPool::Tables * tables,DescriptorPool::ErrorCollector * error_collector)3609 DescriptorBuilder::DescriptorBuilder(
3610     const DescriptorPool* pool, DescriptorPool::Tables* tables,
3611     DescriptorPool::ErrorCollector* error_collector)
3612     : pool_(pool),
3613       tables_(tables),
3614       error_collector_(error_collector),
3615       had_errors_(false),
3616       possible_undeclared_dependency_(nullptr),
3617       undefine_resolved_name_("") {}
3618 
~DescriptorBuilder()3619 DescriptorBuilder::~DescriptorBuilder() {}
3620 
AddError(const std::string & element_name,const Message & descriptor,DescriptorPool::ErrorCollector::ErrorLocation location,const std::string & error)3621 void DescriptorBuilder::AddError(
3622     const std::string& element_name, const Message& descriptor,
3623     DescriptorPool::ErrorCollector::ErrorLocation location,
3624     const std::string& error) {
3625   if (error_collector_ == nullptr) {
3626     if (!had_errors_) {
3627       GOOGLE_LOG(ERROR) << "Invalid proto descriptor for file \"" << filename_
3628                  << "\":";
3629     }
3630     GOOGLE_LOG(ERROR) << "  " << element_name << ": " << error;
3631   } else {
3632     error_collector_->AddError(filename_, element_name, &descriptor, location,
3633                                error);
3634   }
3635   had_errors_ = true;
3636 }
3637 
AddError(const std::string & element_name,const Message & descriptor,DescriptorPool::ErrorCollector::ErrorLocation location,const char * error)3638 void DescriptorBuilder::AddError(
3639     const std::string& element_name, const Message& descriptor,
3640     DescriptorPool::ErrorCollector::ErrorLocation location, const char* error) {
3641   AddError(element_name, descriptor, location, std::string(error));
3642 }
3643 
AddNotDefinedError(const std::string & element_name,const Message & descriptor,DescriptorPool::ErrorCollector::ErrorLocation location,const std::string & undefined_symbol)3644 void DescriptorBuilder::AddNotDefinedError(
3645     const std::string& element_name, const Message& descriptor,
3646     DescriptorPool::ErrorCollector::ErrorLocation location,
3647     const std::string& undefined_symbol) {
3648   if (possible_undeclared_dependency_ == nullptr &&
3649       undefine_resolved_name_.empty()) {
3650     AddError(element_name, descriptor, location,
3651              "\"" + undefined_symbol + "\" is not defined.");
3652   } else {
3653     if (possible_undeclared_dependency_ != nullptr) {
3654       AddError(element_name, descriptor, location,
3655                "\"" + possible_undeclared_dependency_name_ +
3656                    "\" seems to be defined in \"" +
3657                    possible_undeclared_dependency_->name() +
3658                    "\", which is not "
3659                    "imported by \"" +
3660                    filename_ +
3661                    "\".  To use it here, please "
3662                    "add the necessary import.");
3663     }
3664     if (!undefine_resolved_name_.empty()) {
3665       AddError(element_name, descriptor, location,
3666                "\"" + undefined_symbol + "\" is resolved to \"" +
3667                    undefine_resolved_name_ +
3668                    "\", which is not defined. "
3669                    "The innermost scope is searched first in name resolution. "
3670                    "Consider using a leading '.'(i.e., \"." +
3671                    undefined_symbol + "\") to start from the outermost scope.");
3672     }
3673   }
3674 }
3675 
AddWarning(const std::string & element_name,const Message & descriptor,DescriptorPool::ErrorCollector::ErrorLocation location,const std::string & error)3676 void DescriptorBuilder::AddWarning(
3677     const std::string& element_name, const Message& descriptor,
3678     DescriptorPool::ErrorCollector::ErrorLocation location,
3679     const std::string& error) {
3680   if (error_collector_ == nullptr) {
3681     GOOGLE_LOG(WARNING) << filename_ << " " << element_name << ": " << error;
3682   } else {
3683     error_collector_->AddWarning(filename_, element_name, &descriptor, location,
3684                                  error);
3685   }
3686 }
3687 
IsInPackage(const FileDescriptor * file,const std::string & package_name)3688 bool DescriptorBuilder::IsInPackage(const FileDescriptor* file,
3689                                     const std::string& package_name) {
3690   return HasPrefixString(file->package(), package_name) &&
3691          (file->package().size() == package_name.size() ||
3692           file->package()[package_name.size()] == '.');
3693 }
3694 
RecordPublicDependencies(const FileDescriptor * file)3695 void DescriptorBuilder::RecordPublicDependencies(const FileDescriptor* file) {
3696   if (file == nullptr || !dependencies_.insert(file).second) return;
3697   for (int i = 0; file != nullptr && i < file->public_dependency_count(); i++) {
3698     RecordPublicDependencies(file->public_dependency(i));
3699   }
3700 }
3701 
FindSymbolNotEnforcingDepsHelper(const DescriptorPool * pool,const std::string & name,bool build_it)3702 Symbol DescriptorBuilder::FindSymbolNotEnforcingDepsHelper(
3703     const DescriptorPool* pool, const std::string& name, bool build_it) {
3704   // If we are looking at an underlay, we must lock its mutex_, since we are
3705   // accessing the underlay's tables_ directly.
3706   MutexLockMaybe lock((pool == pool_) ? nullptr : pool->mutex_);
3707 
3708   Symbol result = pool->tables_->FindSymbol(name);
3709   if (result.IsNull() && pool->underlay_ != nullptr) {
3710     // Symbol not found; check the underlay.
3711     result = FindSymbolNotEnforcingDepsHelper(pool->underlay_, name);
3712   }
3713 
3714   if (result.IsNull()) {
3715     // With lazily_build_dependencies_, a symbol lookup at cross link time is
3716     // not guaranteed to be successful. In most cases, build_it will be false,
3717     // which intentionally prevents us from building an import until it's
3718     // actually needed. In some cases, like registering an extension, we want
3719     // to build the file containing the symbol, and build_it will be set.
3720     // Also, build_it will be true when !lazily_build_dependencies_, to provide
3721     // better error reporting of missing dependencies.
3722     if (build_it && pool->TryFindSymbolInFallbackDatabase(name)) {
3723       result = pool->tables_->FindSymbol(name);
3724     }
3725   }
3726 
3727   return result;
3728 }
3729 
FindSymbolNotEnforcingDeps(const std::string & name,bool build_it)3730 Symbol DescriptorBuilder::FindSymbolNotEnforcingDeps(const std::string& name,
3731                                                      bool build_it) {
3732   Symbol result = FindSymbolNotEnforcingDepsHelper(pool_, name, build_it);
3733   // Only find symbols which were defined in this file or one of its
3734   // dependencies.
3735   const FileDescriptor* file = result.GetFile();
3736   if (file == file_ || dependencies_.count(file) > 0) {
3737     unused_dependency_.erase(file);
3738   }
3739   return result;
3740 }
3741 
FindSymbol(const std::string & name,bool build_it)3742 Symbol DescriptorBuilder::FindSymbol(const std::string& name, bool build_it) {
3743   Symbol result = FindSymbolNotEnforcingDeps(name, build_it);
3744 
3745   if (result.IsNull()) return result;
3746 
3747   if (!pool_->enforce_dependencies_) {
3748     // Hack for CompilerUpgrader, and also used for lazily_build_dependencies_
3749     return result;
3750   }
3751 
3752   // Only find symbols which were defined in this file or one of its
3753   // dependencies.
3754   const FileDescriptor* file = result.GetFile();
3755   if (file == file_ || dependencies_.count(file) > 0) {
3756     return result;
3757   }
3758 
3759   if (result.type == Symbol::PACKAGE) {
3760     // Arg, this is overcomplicated.  The symbol is a package name.  It could
3761     // be that the package was defined in multiple files.  result.GetFile()
3762     // returns the first file we saw that used this package.  We've determined
3763     // that that file is not a direct dependency of the file we are currently
3764     // building, but it could be that some other file which *is* a direct
3765     // dependency also defines the same package.  We can't really rule out this
3766     // symbol unless none of the dependencies define it.
3767     if (IsInPackage(file_, name)) return result;
3768     for (std::set<const FileDescriptor*>::const_iterator it =
3769              dependencies_.begin();
3770          it != dependencies_.end(); ++it) {
3771       // Note:  A dependency may be nullptr if it was not found or had errors.
3772       if (*it != nullptr && IsInPackage(*it, name)) return result;
3773     }
3774   }
3775 
3776   possible_undeclared_dependency_ = file;
3777   possible_undeclared_dependency_name_ = name;
3778   return kNullSymbol;
3779 }
3780 
LookupSymbolNoPlaceholder(const std::string & name,const std::string & relative_to,ResolveMode resolve_mode,bool build_it)3781 Symbol DescriptorBuilder::LookupSymbolNoPlaceholder(
3782     const std::string& name, const std::string& relative_to,
3783     ResolveMode resolve_mode, bool build_it) {
3784   possible_undeclared_dependency_ = nullptr;
3785   undefine_resolved_name_.clear();
3786 
3787   if (!name.empty() && name[0] == '.') {
3788     // Fully-qualified name.
3789     return FindSymbol(name.substr(1), build_it);
3790   }
3791 
3792   // If name is something like "Foo.Bar.baz", and symbols named "Foo" are
3793   // defined in multiple parent scopes, we only want to find "Bar.baz" in the
3794   // innermost one.  E.g., the following should produce an error:
3795   //   message Bar { message Baz {} }
3796   //   message Foo {
3797   //     message Bar {
3798   //     }
3799   //     optional Bar.Baz baz = 1;
3800   //   }
3801   // So, we look for just "Foo" first, then look for "Bar.baz" within it if
3802   // found.
3803   std::string::size_type name_dot_pos = name.find_first_of('.');
3804   std::string first_part_of_name;
3805   if (name_dot_pos == std::string::npos) {
3806     first_part_of_name = name;
3807   } else {
3808     first_part_of_name = name.substr(0, name_dot_pos);
3809   }
3810 
3811   std::string scope_to_try(relative_to);
3812 
3813   while (true) {
3814     // Chop off the last component of the scope.
3815     std::string::size_type dot_pos = scope_to_try.find_last_of('.');
3816     if (dot_pos == std::string::npos) {
3817       return FindSymbol(name, build_it);
3818     } else {
3819       scope_to_try.erase(dot_pos);
3820     }
3821 
3822     // Append ".first_part_of_name" and try to find.
3823     std::string::size_type old_size = scope_to_try.size();
3824     scope_to_try.append(1, '.');
3825     scope_to_try.append(first_part_of_name);
3826     Symbol result = FindSymbol(scope_to_try, build_it);
3827     if (!result.IsNull()) {
3828       if (first_part_of_name.size() < name.size()) {
3829         // name is a compound symbol, of which we only found the first part.
3830         // Now try to look up the rest of it.
3831         if (result.IsAggregate()) {
3832           scope_to_try.append(name, first_part_of_name.size(),
3833                               name.size() - first_part_of_name.size());
3834           result = FindSymbol(scope_to_try, build_it);
3835           if (result.IsNull()) {
3836             undefine_resolved_name_ = scope_to_try;
3837           }
3838           return result;
3839         } else {
3840           // We found a symbol but it's not an aggregate.  Continue the loop.
3841         }
3842       } else {
3843         if (resolve_mode == LOOKUP_TYPES && !result.IsType()) {
3844           // We found a symbol but it's not a type.  Continue the loop.
3845         } else {
3846           return result;
3847         }
3848       }
3849     }
3850 
3851     // Not found.  Remove the name so we can try again.
3852     scope_to_try.erase(old_size);
3853   }
3854 }
3855 
LookupSymbol(const std::string & name,const std::string & relative_to,DescriptorPool::PlaceholderType placeholder_type,ResolveMode resolve_mode,bool build_it)3856 Symbol DescriptorBuilder::LookupSymbol(
3857     const std::string& name, const std::string& relative_to,
3858     DescriptorPool::PlaceholderType placeholder_type, ResolveMode resolve_mode,
3859     bool build_it) {
3860   Symbol result =
3861       LookupSymbolNoPlaceholder(name, relative_to, resolve_mode, build_it);
3862   if (result.IsNull() && pool_->allow_unknown_) {
3863     // Not found, but AllowUnknownDependencies() is enabled.  Return a
3864     // placeholder instead.
3865     result = pool_->NewPlaceholderWithMutexHeld(name, placeholder_type);
3866   }
3867   return result;
3868 }
3869 
ValidateQualifiedName(StringPiece name)3870 static bool ValidateQualifiedName(StringPiece name) {
3871   bool last_was_period = false;
3872 
3873   for (int i = 0; i < name.size(); i++) {
3874     // I don't trust isalnum() due to locales.  :(
3875     if (('a' <= name[i] && name[i] <= 'z') ||
3876         ('A' <= name[i] && name[i] <= 'Z') ||
3877         ('0' <= name[i] && name[i] <= '9') || (name[i] == '_')) {
3878       last_was_period = false;
3879     } else if (name[i] == '.') {
3880       if (last_was_period) return false;
3881       last_was_period = true;
3882     } else {
3883       return false;
3884     }
3885   }
3886 
3887   return !name.empty() && !last_was_period;
3888 }
3889 
NewPlaceholder(StringPiece name,PlaceholderType placeholder_type) const3890 Symbol DescriptorPool::NewPlaceholder(StringPiece name,
3891                                       PlaceholderType placeholder_type) const {
3892   MutexLockMaybe lock(mutex_);
3893   return NewPlaceholderWithMutexHeld(name, placeholder_type);
3894 }
3895 
NewPlaceholderWithMutexHeld(StringPiece name,PlaceholderType placeholder_type) const3896 Symbol DescriptorPool::NewPlaceholderWithMutexHeld(
3897     StringPiece name, PlaceholderType placeholder_type) const {
3898   if (mutex_) {
3899     mutex_->AssertHeld();
3900   }
3901   // Compute names.
3902   const std::string* placeholder_full_name;
3903   const std::string* placeholder_name;
3904   const std::string* placeholder_package;
3905 
3906   if (!ValidateQualifiedName(name)) return kNullSymbol;
3907   if (name[0] == '.') {
3908     // Fully-qualified.
3909     placeholder_full_name = tables_->AllocateString(name.substr(1));
3910   } else {
3911     placeholder_full_name = tables_->AllocateString(name);
3912   }
3913 
3914   std::string::size_type dotpos = placeholder_full_name->find_last_of('.');
3915   if (dotpos != std::string::npos) {
3916     placeholder_package =
3917         tables_->AllocateString(placeholder_full_name->substr(0, dotpos));
3918     placeholder_name =
3919         tables_->AllocateString(placeholder_full_name->substr(dotpos + 1));
3920   } else {
3921     placeholder_package = &internal::GetEmptyString();
3922     placeholder_name = placeholder_full_name;
3923   }
3924 
3925   // Create the placeholders.
3926   FileDescriptor* placeholder_file = NewPlaceholderFileWithMutexHeld(
3927       *placeholder_full_name + ".placeholder.proto");
3928   placeholder_file->package_ = placeholder_package;
3929 
3930   if (placeholder_type == PLACEHOLDER_ENUM) {
3931     placeholder_file->enum_type_count_ = 1;
3932     placeholder_file->enum_types_ = tables_->AllocateArray<EnumDescriptor>(1);
3933 
3934     EnumDescriptor* placeholder_enum = &placeholder_file->enum_types_[0];
3935     memset(static_cast<void*>(placeholder_enum), 0, sizeof(*placeholder_enum));
3936 
3937     placeholder_enum->full_name_ = placeholder_full_name;
3938     placeholder_enum->name_ = placeholder_name;
3939     placeholder_enum->file_ = placeholder_file;
3940     placeholder_enum->options_ = &EnumOptions::default_instance();
3941     placeholder_enum->is_placeholder_ = true;
3942     placeholder_enum->is_unqualified_placeholder_ = (name[0] != '.');
3943 
3944     // Enums must have at least one value.
3945     placeholder_enum->value_count_ = 1;
3946     placeholder_enum->values_ = tables_->AllocateArray<EnumValueDescriptor>(1);
3947 
3948     EnumValueDescriptor* placeholder_value = &placeholder_enum->values_[0];
3949     memset(static_cast<void*>(placeholder_value), 0,
3950            sizeof(*placeholder_value));
3951 
3952     placeholder_value->name_ = tables_->AllocateString("PLACEHOLDER_VALUE");
3953     // Note that enum value names are siblings of their type, not children.
3954     placeholder_value->full_name_ =
3955         placeholder_package->empty()
3956             ? placeholder_value->name_
3957             : tables_->AllocateString(*placeholder_package +
3958                                       ".PLACEHOLDER_VALUE");
3959 
3960     placeholder_value->number_ = 0;
3961     placeholder_value->type_ = placeholder_enum;
3962     placeholder_value->options_ = &EnumValueOptions::default_instance();
3963 
3964     return Symbol(placeholder_enum);
3965   } else {
3966     placeholder_file->message_type_count_ = 1;
3967     placeholder_file->message_types_ = tables_->AllocateArray<Descriptor>(1);
3968 
3969     Descriptor* placeholder_message = &placeholder_file->message_types_[0];
3970     memset(static_cast<void*>(placeholder_message), 0,
3971            sizeof(*placeholder_message));
3972 
3973     placeholder_message->full_name_ = placeholder_full_name;
3974     placeholder_message->name_ = placeholder_name;
3975     placeholder_message->file_ = placeholder_file;
3976     placeholder_message->options_ = &MessageOptions::default_instance();
3977     placeholder_message->is_placeholder_ = true;
3978     placeholder_message->is_unqualified_placeholder_ = (name[0] != '.');
3979 
3980     if (placeholder_type == PLACEHOLDER_EXTENDABLE_MESSAGE) {
3981       placeholder_message->extension_range_count_ = 1;
3982       placeholder_message->extension_ranges_ =
3983           tables_->AllocateArray<Descriptor::ExtensionRange>(1);
3984       placeholder_message->extension_ranges_->start = 1;
3985       // kMaxNumber + 1 because ExtensionRange::end is exclusive.
3986       placeholder_message->extension_ranges_->end =
3987           FieldDescriptor::kMaxNumber + 1;
3988     }
3989 
3990     return Symbol(placeholder_message);
3991   }
3992 }
3993 
NewPlaceholderFile(StringPiece name) const3994 FileDescriptor* DescriptorPool::NewPlaceholderFile(
3995     StringPiece name) const {
3996   MutexLockMaybe lock(mutex_);
3997   return NewPlaceholderFileWithMutexHeld(name);
3998 }
3999 
NewPlaceholderFileWithMutexHeld(StringPiece name) const4000 FileDescriptor* DescriptorPool::NewPlaceholderFileWithMutexHeld(
4001     StringPiece name) const {
4002   if (mutex_) {
4003     mutex_->AssertHeld();
4004   }
4005   FileDescriptor* placeholder = tables_->Allocate<FileDescriptor>();
4006   memset(static_cast<void*>(placeholder), 0, sizeof(*placeholder));
4007 
4008   placeholder->name_ = tables_->AllocateString(name);
4009   placeholder->package_ = &internal::GetEmptyString();
4010   placeholder->pool_ = this;
4011   placeholder->options_ = &FileOptions::default_instance();
4012   placeholder->tables_ = &FileDescriptorTables::GetEmptyInstance();
4013   placeholder->source_code_info_ = &SourceCodeInfo::default_instance();
4014   placeholder->is_placeholder_ = true;
4015   placeholder->syntax_ = FileDescriptor::SYNTAX_UNKNOWN;
4016   placeholder->finished_building_ = true;
4017   // All other fields are zero or nullptr.
4018 
4019   return placeholder;
4020 }
4021 
AddSymbol(const std::string & full_name,const void * parent,const std::string & name,const Message & proto,Symbol symbol)4022 bool DescriptorBuilder::AddSymbol(const std::string& full_name,
4023                                   const void* parent, const std::string& name,
4024                                   const Message& proto, Symbol symbol) {
4025   // If the caller passed nullptr for the parent, the symbol is at file scope.
4026   // Use its file as the parent instead.
4027   if (parent == nullptr) parent = file_;
4028 
4029   if (full_name.find('\0') != std::string::npos) {
4030     AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME,
4031              "\"" + full_name + "\" contains null character.");
4032     return false;
4033   }
4034 
4035   if (tables_->AddSymbol(full_name, symbol)) {
4036     if (!file_tables_->AddAliasUnderParent(parent, name, symbol)) {
4037       // This is only possible if there was already an error adding something of
4038       // the same name.
4039       if (!had_errors_) {
4040         GOOGLE_LOG(DFATAL) << "\"" << full_name
4041                     << "\" not previously defined in "
4042                        "symbols_by_name_, but was defined in "
4043                        "symbols_by_parent_; this shouldn't be possible.";
4044       }
4045       return false;
4046     }
4047     return true;
4048   } else {
4049     const FileDescriptor* other_file = tables_->FindSymbol(full_name).GetFile();
4050     if (other_file == file_) {
4051       std::string::size_type dot_pos = full_name.find_last_of('.');
4052       if (dot_pos == std::string::npos) {
4053         AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME,
4054                  "\"" + full_name + "\" is already defined.");
4055       } else {
4056         AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME,
4057                  "\"" + full_name.substr(dot_pos + 1) +
4058                      "\" is already defined in \"" +
4059                      full_name.substr(0, dot_pos) + "\".");
4060       }
4061     } else {
4062       // Symbol seems to have been defined in a different file.
4063       AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME,
4064                "\"" + full_name + "\" is already defined in file \"" +
4065                    other_file->name() + "\".");
4066     }
4067     return false;
4068   }
4069 }
4070 
AddPackage(const std::string & name,const Message & proto,const FileDescriptor * file)4071 void DescriptorBuilder::AddPackage(const std::string& name,
4072                                    const Message& proto,
4073                                    const FileDescriptor* file) {
4074   if (name.find('\0') != std::string::npos) {
4075     AddError(name, proto, DescriptorPool::ErrorCollector::NAME,
4076              "\"" + name + "\" contains null character.");
4077     return;
4078   }
4079   if (tables_->AddSymbol(name, Symbol(file))) {
4080     // Success.  Also add parent package, if any.
4081     std::string::size_type dot_pos = name.find_last_of('.');
4082     if (dot_pos == std::string::npos) {
4083       // No parents.
4084       ValidateSymbolName(name, name, proto);
4085     } else {
4086       // Has parent.
4087       std::string* parent_name =
4088           tables_->AllocateString(name.substr(0, dot_pos));
4089       AddPackage(*parent_name, proto, file);
4090       ValidateSymbolName(name.substr(dot_pos + 1), name, proto);
4091     }
4092   } else {
4093     Symbol existing_symbol = tables_->FindSymbol(name);
4094     // It's OK to redefine a package.
4095     if (existing_symbol.type != Symbol::PACKAGE) {
4096       // Symbol seems to have been defined in a different file.
4097       AddError(name, proto, DescriptorPool::ErrorCollector::NAME,
4098                "\"" + name +
4099                    "\" is already defined (as something other than "
4100                    "a package) in file \"" +
4101                    existing_symbol.GetFile()->name() + "\".");
4102     }
4103   }
4104 }
4105 
ValidateSymbolName(const std::string & name,const std::string & full_name,const Message & proto)4106 void DescriptorBuilder::ValidateSymbolName(const std::string& name,
4107                                            const std::string& full_name,
4108                                            const Message& proto) {
4109   if (name.empty()) {
4110     AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME,
4111              "Missing name.");
4112   } else {
4113     for (int i = 0; i < name.size(); i++) {
4114       // I don't trust isalnum() due to locales.  :(
4115       if ((name[i] < 'a' || 'z' < name[i]) &&
4116           (name[i] < 'A' || 'Z' < name[i]) &&
4117           (name[i] < '0' || '9' < name[i]) && (name[i] != '_')) {
4118         AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME,
4119                  "\"" + name + "\" is not a valid identifier.");
4120       }
4121     }
4122   }
4123 }
4124 
4125 // -------------------------------------------------------------------
4126 
4127 // This generic implementation is good for all descriptors except
4128 // FileDescriptor.
4129 template <class DescriptorT>
AllocateOptions(const typename DescriptorT::OptionsType & orig_options,DescriptorT * descriptor,int options_field_tag,const std::string & option_name)4130 void DescriptorBuilder::AllocateOptions(
4131     const typename DescriptorT::OptionsType& orig_options,
4132     DescriptorT* descriptor, int options_field_tag,
4133     const std::string& option_name) {
4134   std::vector<int> options_path;
4135   descriptor->GetLocationPath(&options_path);
4136   options_path.push_back(options_field_tag);
4137   AllocateOptionsImpl(descriptor->full_name(), descriptor->full_name(),
4138                       orig_options, descriptor, options_path, option_name);
4139 }
4140 
4141 // We specialize for FileDescriptor.
AllocateOptions(const FileOptions & orig_options,FileDescriptor * descriptor)4142 void DescriptorBuilder::AllocateOptions(const FileOptions& orig_options,
4143                                         FileDescriptor* descriptor) {
4144   std::vector<int> options_path;
4145   options_path.push_back(FileDescriptorProto::kOptionsFieldNumber);
4146   // We add the dummy token so that LookupSymbol does the right thing.
4147   AllocateOptionsImpl(descriptor->package() + ".dummy", descriptor->name(),
4148                       orig_options, descriptor, options_path,
4149                       "google.protobuf.FileOptions");
4150 }
4151 
4152 template <class DescriptorT>
AllocateOptionsImpl(const std::string & name_scope,const std::string & element_name,const typename DescriptorT::OptionsType & orig_options,DescriptorT * descriptor,const std::vector<int> & options_path,const std::string & option_name)4153 void DescriptorBuilder::AllocateOptionsImpl(
4154     const std::string& name_scope, const std::string& element_name,
4155     const typename DescriptorT::OptionsType& orig_options,
4156     DescriptorT* descriptor, const std::vector<int>& options_path,
4157     const std::string& option_name) {
4158   // We need to use a dummy pointer to work around a bug in older versions of
4159   // GCC.  Otherwise, the following two lines could be replaced with:
4160   //   typename DescriptorT::OptionsType* options =
4161   //       tables_->AllocateMessage<typename DescriptorT::OptionsType>();
4162   typename DescriptorT::OptionsType* const dummy = nullptr;
4163   typename DescriptorT::OptionsType* options = tables_->AllocateMessage(dummy);
4164 
4165   if (!orig_options.IsInitialized()) {
4166     AddError(name_scope + "." + element_name, orig_options,
4167              DescriptorPool::ErrorCollector::OPTION_NAME,
4168              "Uninterpreted option is missing name or value.");
4169     return;
4170   }
4171 
4172   // Avoid using MergeFrom()/CopyFrom() in this class to make it -fno-rtti
4173   // friendly. Without RTTI, MergeFrom() and CopyFrom() will fallback to the
4174   // reflection based method, which requires the Descriptor. However, we are in
4175   // the middle of building the descriptors, thus the deadlock.
4176   options->ParseFromString(orig_options.SerializeAsString());
4177   descriptor->options_ = options;
4178 
4179   // Don't add to options_to_interpret_ unless there were uninterpreted
4180   // options.  This not only avoids unnecessary work, but prevents a
4181   // bootstrapping problem when building descriptors for descriptor.proto.
4182   // descriptor.proto does not contain any uninterpreted options, but
4183   // attempting to interpret options anyway will cause
4184   // OptionsType::GetDescriptor() to be called which may then deadlock since
4185   // we're still trying to build it.
4186   if (options->uninterpreted_option_size() > 0) {
4187     options_to_interpret_.push_back(OptionsToInterpret(
4188         name_scope, element_name, options_path, &orig_options, options));
4189   }
4190 
4191   // If the custom option is in unknown fields, no need to interpret it.
4192   // Remove the dependency file from unused_dependency.
4193   const UnknownFieldSet& unknown_fields = orig_options.unknown_fields();
4194   if (!unknown_fields.empty()) {
4195     // Can not use options->GetDescriptor() which may case deadlock.
4196     Symbol msg_symbol = tables_->FindSymbol(option_name);
4197     if (msg_symbol.type == Symbol::MESSAGE) {
4198       for (int i = 0; i < unknown_fields.field_count(); ++i) {
4199         assert_mutex_held(pool_);
4200         const FieldDescriptor* field =
4201             pool_->InternalFindExtensionByNumberNoLock(
4202                 msg_symbol.descriptor, unknown_fields.field(i).number());
4203         if (field) {
4204           unused_dependency_.erase(field->file());
4205         }
4206       }
4207     }
4208   }
4209 }
4210 
4211 // A common pattern:  We want to convert a repeated field in the descriptor
4212 // to an array of values, calling some method to build each value.
4213 #define BUILD_ARRAY(INPUT, OUTPUT, NAME, METHOD, PARENT) \
4214   OUTPUT->NAME##_count_ = INPUT.NAME##_size();           \
4215   AllocateArray(INPUT.NAME##_size(), &OUTPUT->NAME##s_); \
4216   for (int i = 0; i < INPUT.NAME##_size(); i++) {        \
4217     METHOD(INPUT.NAME(i), PARENT, OUTPUT->NAME##s_ + i); \
4218   }
4219 
AddRecursiveImportError(const FileDescriptorProto & proto,int from_here)4220 void DescriptorBuilder::AddRecursiveImportError(
4221     const FileDescriptorProto& proto, int from_here) {
4222   std::string error_message("File recursively imports itself: ");
4223   for (int i = from_here; i < tables_->pending_files_.size(); i++) {
4224     error_message.append(tables_->pending_files_[i]);
4225     error_message.append(" -> ");
4226   }
4227   error_message.append(proto.name());
4228 
4229   if (from_here < tables_->pending_files_.size() - 1) {
4230     AddError(tables_->pending_files_[from_here + 1], proto,
4231              DescriptorPool::ErrorCollector::IMPORT, error_message);
4232   } else {
4233     AddError(proto.name(), proto, DescriptorPool::ErrorCollector::IMPORT,
4234              error_message);
4235   }
4236 }
4237 
AddTwiceListedError(const FileDescriptorProto & proto,int index)4238 void DescriptorBuilder::AddTwiceListedError(const FileDescriptorProto& proto,
4239                                             int index) {
4240   AddError(proto.dependency(index), proto,
4241            DescriptorPool::ErrorCollector::IMPORT,
4242            "Import \"" + proto.dependency(index) + "\" was listed twice.");
4243 }
4244 
AddImportError(const FileDescriptorProto & proto,int index)4245 void DescriptorBuilder::AddImportError(const FileDescriptorProto& proto,
4246                                        int index) {
4247   std::string message;
4248   if (pool_->fallback_database_ == nullptr) {
4249     message = "Import \"" + proto.dependency(index) + "\" has not been loaded.";
4250   } else {
4251     message = "Import \"" + proto.dependency(index) +
4252               "\" was not found or had errors.";
4253   }
4254   AddError(proto.dependency(index), proto,
4255            DescriptorPool::ErrorCollector::IMPORT, message);
4256 }
4257 
ExistingFileMatchesProto(const FileDescriptor * existing_file,const FileDescriptorProto & proto)4258 static bool ExistingFileMatchesProto(const FileDescriptor* existing_file,
4259                                      const FileDescriptorProto& proto) {
4260   FileDescriptorProto existing_proto;
4261   existing_file->CopyTo(&existing_proto);
4262   // TODO(liujisi): Remove it when CopyTo supports copying syntax params when
4263   // syntax="proto2".
4264   if (existing_file->syntax() == FileDescriptor::SYNTAX_PROTO2 &&
4265       proto.has_syntax()) {
4266     existing_proto.set_syntax(
4267         existing_file->SyntaxName(existing_file->syntax()));
4268   }
4269 
4270   return existing_proto.SerializeAsString() == proto.SerializeAsString();
4271 }
4272 
BuildFile(const FileDescriptorProto & proto)4273 const FileDescriptor* DescriptorBuilder::BuildFile(
4274     const FileDescriptorProto& proto) {
4275   filename_ = proto.name();
4276 
4277   // Check if the file already exists and is identical to the one being built.
4278   // Note:  This only works if the input is canonical -- that is, it
4279   //   fully-qualifies all type names, has no UninterpretedOptions, etc.
4280   //   This is fine, because this idempotency "feature" really only exists to
4281   //   accommodate one hack in the proto1->proto2 migration layer.
4282   const FileDescriptor* existing_file = tables_->FindFile(filename_);
4283   if (existing_file != nullptr) {
4284     // File already in pool.  Compare the existing one to the input.
4285     if (ExistingFileMatchesProto(existing_file, proto)) {
4286       // They're identical.  Return the existing descriptor.
4287       return existing_file;
4288     }
4289 
4290     // Not a match.  The error will be detected and handled later.
4291   }
4292 
4293   // Check to see if this file is already on the pending files list.
4294   // TODO(kenton):  Allow recursive imports?  It may not work with some
4295   //   (most?) programming languages.  E.g., in C++, a forward declaration
4296   //   of a type is not sufficient to allow it to be used even in a
4297   //   generated header file due to inlining.  This could perhaps be
4298   //   worked around using tricks involving inserting #include statements
4299   //   mid-file, but that's pretty ugly, and I'm pretty sure there are
4300   //   some languages out there that do not allow recursive dependencies
4301   //   at all.
4302   for (int i = 0; i < tables_->pending_files_.size(); i++) {
4303     if (tables_->pending_files_[i] == proto.name()) {
4304       AddRecursiveImportError(proto, i);
4305       return nullptr;
4306     }
4307   }
4308 
4309   // If we have a fallback_database_, and we aren't doing lazy import building,
4310   // attempt to load all dependencies now, before checkpointing tables_.  This
4311   // avoids confusion with recursive checkpoints.
4312   if (!pool_->lazily_build_dependencies_) {
4313     if (pool_->fallback_database_ != nullptr) {
4314       tables_->pending_files_.push_back(proto.name());
4315       for (int i = 0; i < proto.dependency_size(); i++) {
4316         if (tables_->FindFile(proto.dependency(i)) == nullptr &&
4317             (pool_->underlay_ == nullptr ||
4318              pool_->underlay_->FindFileByName(proto.dependency(i)) ==
4319                  nullptr)) {
4320           // We don't care what this returns since we'll find out below anyway.
4321           pool_->TryFindFileInFallbackDatabase(proto.dependency(i));
4322         }
4323       }
4324       tables_->pending_files_.pop_back();
4325     }
4326   }
4327 
4328   // Checkpoint the tables so that we can roll back if something goes wrong.
4329   tables_->AddCheckpoint();
4330 
4331   FileDescriptor* result = BuildFileImpl(proto);
4332 
4333   file_tables_->FinalizeTables();
4334   if (result) {
4335     tables_->ClearLastCheckpoint();
4336     result->finished_building_ = true;
4337   } else {
4338     tables_->RollbackToLastCheckpoint();
4339   }
4340 
4341   return result;
4342 }
4343 
BuildFileImpl(const FileDescriptorProto & proto)4344 FileDescriptor* DescriptorBuilder::BuildFileImpl(
4345     const FileDescriptorProto& proto) {
4346   FileDescriptor* result = tables_->Allocate<FileDescriptor>();
4347   file_ = result;
4348 
4349   result->is_placeholder_ = false;
4350   result->finished_building_ = false;
4351   SourceCodeInfo* info = nullptr;
4352   if (proto.has_source_code_info()) {
4353     info = tables_->AllocateMessage<SourceCodeInfo>();
4354     info->CopyFrom(proto.source_code_info());
4355     result->source_code_info_ = info;
4356   } else {
4357     result->source_code_info_ = &SourceCodeInfo::default_instance();
4358   }
4359 
4360   file_tables_ = tables_->AllocateFileTables();
4361   file_->tables_ = file_tables_;
4362 
4363   if (!proto.has_name()) {
4364     AddError("", proto, DescriptorPool::ErrorCollector::OTHER,
4365              "Missing field: FileDescriptorProto.name.");
4366   }
4367 
4368   // TODO(liujisi): Report error when the syntax is empty after all the protos
4369   // have added the syntax statement.
4370   if (proto.syntax().empty() || proto.syntax() == "proto2") {
4371     file_->syntax_ = FileDescriptor::SYNTAX_PROTO2;
4372   } else if (proto.syntax() == "proto3") {
4373     file_->syntax_ = FileDescriptor::SYNTAX_PROTO3;
4374   } else {
4375     file_->syntax_ = FileDescriptor::SYNTAX_UNKNOWN;
4376     AddError(proto.name(), proto, DescriptorPool::ErrorCollector::OTHER,
4377              "Unrecognized syntax: " + proto.syntax());
4378   }
4379 
4380   result->name_ = tables_->AllocateString(proto.name());
4381   if (proto.has_package()) {
4382     result->package_ = tables_->AllocateString(proto.package());
4383   } else {
4384     // We cannot rely on proto.package() returning a valid string if
4385     // proto.has_package() is false, because we might be running at static
4386     // initialization time, in which case default values have not yet been
4387     // initialized.
4388     result->package_ = tables_->AllocateString("");
4389   }
4390   result->pool_ = pool_;
4391 
4392   if (result->name().find('\0') != std::string::npos) {
4393     AddError(result->name(), proto, DescriptorPool::ErrorCollector::NAME,
4394              "\"" + result->name() + "\" contains null character.");
4395     return nullptr;
4396   }
4397 
4398   // Add to tables.
4399   if (!tables_->AddFile(result)) {
4400     AddError(proto.name(), proto, DescriptorPool::ErrorCollector::OTHER,
4401              "A file with this name is already in the pool.");
4402     // Bail out early so that if this is actually the exact same file, we
4403     // don't end up reporting that every single symbol is already defined.
4404     return nullptr;
4405   }
4406   if (!result->package().empty()) {
4407     AddPackage(result->package(), proto, result);
4408   }
4409 
4410   // Make sure all dependencies are loaded.
4411   std::set<std::string> seen_dependencies;
4412   result->dependency_count_ = proto.dependency_size();
4413   result->dependencies_ =
4414       tables_->AllocateArray<const FileDescriptor*>(proto.dependency_size());
4415   if (pool_->lazily_build_dependencies_) {
4416     result->dependencies_once_ = tables_->AllocateOnceDynamic();
4417     result->dependencies_names_ =
4418         tables_->AllocateArray<const std::string*>(proto.dependency_size());
4419     if (proto.dependency_size() > 0) {
4420       memset(result->dependencies_names_, 0,
4421              sizeof(*result->dependencies_names_) * proto.dependency_size());
4422     }
4423   } else {
4424     result->dependencies_once_ = nullptr;
4425     result->dependencies_names_ = nullptr;
4426   }
4427   unused_dependency_.clear();
4428   std::set<int> weak_deps;
4429   for (int i = 0; i < proto.weak_dependency_size(); ++i) {
4430     weak_deps.insert(proto.weak_dependency(i));
4431   }
4432   for (int i = 0; i < proto.dependency_size(); i++) {
4433     if (!seen_dependencies.insert(proto.dependency(i)).second) {
4434       AddTwiceListedError(proto, i);
4435     }
4436 
4437     const FileDescriptor* dependency = tables_->FindFile(proto.dependency(i));
4438     if (dependency == nullptr && pool_->underlay_ != nullptr) {
4439       dependency = pool_->underlay_->FindFileByName(proto.dependency(i));
4440     }
4441 
4442     if (dependency == result) {
4443       // Recursive import.  dependency/result is not fully initialized, and it's
4444       // dangerous to try to do anything with it.  The recursive import error
4445       // will be detected and reported in DescriptorBuilder::BuildFile().
4446       return nullptr;
4447     }
4448 
4449     if (dependency == nullptr) {
4450       if (!pool_->lazily_build_dependencies_) {
4451         if (pool_->allow_unknown_ ||
4452             (!pool_->enforce_weak_ && weak_deps.find(i) != weak_deps.end())) {
4453           dependency =
4454               pool_->NewPlaceholderFileWithMutexHeld(proto.dependency(i));
4455         } else {
4456           AddImportError(proto, i);
4457         }
4458       }
4459     } else {
4460       // Add to unused_dependency_ to track unused imported files.
4461       // Note: do not track unused imported files for public import.
4462       if (pool_->enforce_dependencies_ &&
4463           (pool_->unused_import_track_files_.find(proto.name()) !=
4464            pool_->unused_import_track_files_.end()) &&
4465           (dependency->public_dependency_count() == 0)) {
4466         unused_dependency_.insert(dependency);
4467       }
4468     }
4469 
4470     result->dependencies_[i] = dependency;
4471     if (pool_->lazily_build_dependencies_ && !dependency) {
4472       result->dependencies_names_[i] =
4473           tables_->AllocateString(proto.dependency(i));
4474     }
4475   }
4476 
4477   // Check public dependencies.
4478   int public_dependency_count = 0;
4479   result->public_dependencies_ =
4480       tables_->AllocateArray<int>(proto.public_dependency_size());
4481   for (int i = 0; i < proto.public_dependency_size(); i++) {
4482     // Only put valid public dependency indexes.
4483     int index = proto.public_dependency(i);
4484     if (index >= 0 && index < proto.dependency_size()) {
4485       result->public_dependencies_[public_dependency_count++] = index;
4486       // Do not track unused imported files for public import.
4487       // Calling dependency(i) builds that file when doing lazy imports,
4488       // need to avoid doing this. Unused dependency detection isn't done
4489       // when building lazily, anyways.
4490       if (!pool_->lazily_build_dependencies_) {
4491         unused_dependency_.erase(result->dependency(index));
4492       }
4493     } else {
4494       AddError(proto.name(), proto, DescriptorPool::ErrorCollector::OTHER,
4495                "Invalid public dependency index.");
4496     }
4497   }
4498   result->public_dependency_count_ = public_dependency_count;
4499 
4500   // Build dependency set
4501   dependencies_.clear();
4502   // We don't/can't do proper dependency error checking when
4503   // lazily_build_dependencies_, and calling dependency(i) will force
4504   // a dependency to be built, which we don't want.
4505   if (!pool_->lazily_build_dependencies_) {
4506     for (int i = 0; i < result->dependency_count(); i++) {
4507       RecordPublicDependencies(result->dependency(i));
4508     }
4509   }
4510 
4511   // Check weak dependencies.
4512   int weak_dependency_count = 0;
4513   result->weak_dependencies_ =
4514       tables_->AllocateArray<int>(proto.weak_dependency_size());
4515   for (int i = 0; i < proto.weak_dependency_size(); i++) {
4516     int index = proto.weak_dependency(i);
4517     if (index >= 0 && index < proto.dependency_size()) {
4518       result->weak_dependencies_[weak_dependency_count++] = index;
4519     } else {
4520       AddError(proto.name(), proto, DescriptorPool::ErrorCollector::OTHER,
4521                "Invalid weak dependency index.");
4522     }
4523   }
4524   result->weak_dependency_count_ = weak_dependency_count;
4525 
4526   // Convert children.
4527   BUILD_ARRAY(proto, result, message_type, BuildMessage, nullptr);
4528   BUILD_ARRAY(proto, result, enum_type, BuildEnum, nullptr);
4529   BUILD_ARRAY(proto, result, service, BuildService, nullptr);
4530   BUILD_ARRAY(proto, result, extension, BuildExtension, nullptr);
4531 
4532   // Copy options.
4533   result->options_ = nullptr;  // Set to default_instance later if necessary.
4534   if (proto.has_options()) {
4535     AllocateOptions(proto.options(), result);
4536   }
4537 
4538   // Note that the following steps must occur in exactly the specified order.
4539 
4540   // Cross-link.
4541   CrossLinkFile(result, proto);
4542 
4543   // Interpret any remaining uninterpreted options gathered into
4544   // options_to_interpret_ during descriptor building.  Cross-linking has made
4545   // extension options known, so all interpretations should now succeed.
4546   if (!had_errors_) {
4547     OptionInterpreter option_interpreter(this);
4548     for (std::vector<OptionsToInterpret>::iterator iter =
4549              options_to_interpret_.begin();
4550          iter != options_to_interpret_.end(); ++iter) {
4551       option_interpreter.InterpretOptions(&(*iter));
4552     }
4553     options_to_interpret_.clear();
4554     if (info != nullptr) {
4555       option_interpreter.UpdateSourceCodeInfo(info);
4556     }
4557   }
4558 
4559   // Validate options. See comments at InternalSetLazilyBuildDependencies about
4560   // error checking and lazy import building.
4561   if (!had_errors_ && !pool_->lazily_build_dependencies_) {
4562     ValidateFileOptions(result, proto);
4563   }
4564 
4565   // Additional naming conflict check for map entry types. Only need to check
4566   // this if there are already errors.
4567   if (had_errors_) {
4568     for (int i = 0; i < proto.message_type_size(); ++i) {
4569       DetectMapConflicts(result->message_type(i), proto.message_type(i));
4570     }
4571   }
4572 
4573 
4574   // Again, see comments at InternalSetLazilyBuildDependencies about error
4575   // checking. Also, don't log unused dependencies if there were previous
4576   // errors, since the results might be inaccurate.
4577   if (!had_errors_ && !unused_dependency_.empty() &&
4578       !pool_->lazily_build_dependencies_) {
4579     LogUnusedDependency(proto, result);
4580   }
4581 
4582   if (had_errors_) {
4583     return nullptr;
4584   } else {
4585     return result;
4586   }
4587 }
4588 
4589 
AllocateNameString(const std::string & scope,const std::string & proto_name)4590 std::string* DescriptorBuilder::AllocateNameString(
4591     const std::string& scope, const std::string& proto_name) {
4592   std::string* full_name;
4593   if (scope.empty()) {
4594     full_name = tables_->AllocateString(proto_name);
4595   } else {
4596     full_name = tables_->AllocateEmptyString();
4597     *full_name = StrCat(scope, ".", proto_name);
4598   }
4599   return full_name;
4600 }
4601 
BuildMessage(const DescriptorProto & proto,const Descriptor * parent,Descriptor * result)4602 void DescriptorBuilder::BuildMessage(const DescriptorProto& proto,
4603                                      const Descriptor* parent,
4604                                      Descriptor* result) {
4605   const std::string& scope =
4606       (parent == nullptr) ? file_->package() : parent->full_name();
4607   std::string* full_name = AllocateNameString(scope, proto.name());
4608   ValidateSymbolName(proto.name(), *full_name, proto);
4609 
4610   result->name_ = tables_->AllocateString(proto.name());
4611   result->full_name_ = full_name;
4612   result->file_ = file_;
4613   result->containing_type_ = parent;
4614   result->is_placeholder_ = false;
4615   result->is_unqualified_placeholder_ = false;
4616   result->well_known_type_ = Descriptor::WELLKNOWNTYPE_UNSPECIFIED;
4617 
4618   auto it = pool_->tables_->well_known_types_.find(*full_name);
4619   if (it != pool_->tables_->well_known_types_.end()) {
4620     result->well_known_type_ = it->second;
4621   }
4622 
4623   // Build oneofs first so that fields and extension ranges can refer to them.
4624   BUILD_ARRAY(proto, result, oneof_decl, BuildOneof, result);
4625   BUILD_ARRAY(proto, result, field, BuildField, result);
4626   BUILD_ARRAY(proto, result, nested_type, BuildMessage, result);
4627   BUILD_ARRAY(proto, result, enum_type, BuildEnum, result);
4628   BUILD_ARRAY(proto, result, extension_range, BuildExtensionRange, result);
4629   BUILD_ARRAY(proto, result, extension, BuildExtension, result);
4630   BUILD_ARRAY(proto, result, reserved_range, BuildReservedRange, result);
4631 
4632   // Copy reserved names.
4633   int reserved_name_count = proto.reserved_name_size();
4634   result->reserved_name_count_ = reserved_name_count;
4635   result->reserved_names_ =
4636       tables_->AllocateArray<const std::string*>(reserved_name_count);
4637   for (int i = 0; i < reserved_name_count; ++i) {
4638     result->reserved_names_[i] =
4639         tables_->AllocateString(proto.reserved_name(i));
4640   }
4641 
4642   // Copy options.
4643   result->options_ = nullptr;  // Set to default_instance later if necessary.
4644   if (proto.has_options()) {
4645     AllocateOptions(proto.options(), result,
4646                     DescriptorProto::kOptionsFieldNumber,
4647                     "google.protobuf.MessageOptions");
4648   }
4649 
4650   AddSymbol(result->full_name(), parent, result->name(), proto, Symbol(result));
4651 
4652   for (int i = 0; i < proto.reserved_range_size(); i++) {
4653     const DescriptorProto_ReservedRange& range1 = proto.reserved_range(i);
4654     for (int j = i + 1; j < proto.reserved_range_size(); j++) {
4655       const DescriptorProto_ReservedRange& range2 = proto.reserved_range(j);
4656       if (range1.end() > range2.start() && range2.end() > range1.start()) {
4657         AddError(result->full_name(), proto.reserved_range(i),
4658                  DescriptorPool::ErrorCollector::NUMBER,
4659                  strings::Substitute("Reserved range $0 to $1 overlaps with "
4660                                   "already-defined range $2 to $3.",
4661                                   range2.start(), range2.end() - 1,
4662                                   range1.start(), range1.end() - 1));
4663       }
4664     }
4665   }
4666 
4667   HASH_SET<std::string> reserved_name_set;
4668   for (int i = 0; i < proto.reserved_name_size(); i++) {
4669     const std::string& name = proto.reserved_name(i);
4670     if (reserved_name_set.find(name) == reserved_name_set.end()) {
4671       reserved_name_set.insert(name);
4672     } else {
4673       AddError(name, proto, DescriptorPool::ErrorCollector::NAME,
4674                strings::Substitute("Field name \"$0\" is reserved multiple times.",
4675                                 name));
4676     }
4677   }
4678 
4679 
4680   for (int i = 0; i < result->field_count(); i++) {
4681     const FieldDescriptor* field = result->field(i);
4682     for (int j = 0; j < result->extension_range_count(); j++) {
4683       const Descriptor::ExtensionRange* range = result->extension_range(j);
4684       if (range->start <= field->number() && field->number() < range->end) {
4685         AddError(
4686             field->full_name(), proto.extension_range(j),
4687             DescriptorPool::ErrorCollector::NUMBER,
4688             strings::Substitute(
4689                 "Extension range $0 to $1 includes field \"$2\" ($3).",
4690                 range->start, range->end - 1, field->name(), field->number()));
4691       }
4692     }
4693     for (int j = 0; j < result->reserved_range_count(); j++) {
4694       const Descriptor::ReservedRange* range = result->reserved_range(j);
4695       if (range->start <= field->number() && field->number() < range->end) {
4696         AddError(field->full_name(), proto.reserved_range(j),
4697                  DescriptorPool::ErrorCollector::NUMBER,
4698                  strings::Substitute("Field \"$0\" uses reserved number $1.",
4699                                   field->name(), field->number()));
4700       }
4701     }
4702     if (reserved_name_set.find(field->name()) != reserved_name_set.end()) {
4703       AddError(
4704           field->full_name(), proto.field(i),
4705           DescriptorPool::ErrorCollector::NAME,
4706           strings::Substitute("Field name \"$0\" is reserved.", field->name()));
4707     }
4708 
4709   }
4710 
4711   // Check that extension ranges don't overlap and don't include
4712   // reserved field numbers or names.
4713   for (int i = 0; i < result->extension_range_count(); i++) {
4714     const Descriptor::ExtensionRange* range1 = result->extension_range(i);
4715     for (int j = 0; j < result->reserved_range_count(); j++) {
4716       const Descriptor::ReservedRange* range2 = result->reserved_range(j);
4717       if (range1->end > range2->start && range2->end > range1->start) {
4718         AddError(result->full_name(), proto.extension_range(i),
4719                  DescriptorPool::ErrorCollector::NUMBER,
4720                  strings::Substitute("Extension range $0 to $1 overlaps with "
4721                                   "reserved range $2 to $3.",
4722                                   range1->start, range1->end - 1, range2->start,
4723                                   range2->end - 1));
4724       }
4725     }
4726     for (int j = i + 1; j < result->extension_range_count(); j++) {
4727       const Descriptor::ExtensionRange* range2 = result->extension_range(j);
4728       if (range1->end > range2->start && range2->end > range1->start) {
4729         AddError(result->full_name(), proto.extension_range(i),
4730                  DescriptorPool::ErrorCollector::NUMBER,
4731                  strings::Substitute("Extension range $0 to $1 overlaps with "
4732                                   "already-defined range $2 to $3.",
4733                                   range2->start, range2->end - 1, range1->start,
4734                                   range1->end - 1));
4735       }
4736     }
4737   }
4738 }
4739 
BuildFieldOrExtension(const FieldDescriptorProto & proto,Descriptor * parent,FieldDescriptor * result,bool is_extension)4740 void DescriptorBuilder::BuildFieldOrExtension(const FieldDescriptorProto& proto,
4741                                               Descriptor* parent,
4742                                               FieldDescriptor* result,
4743                                               bool is_extension) {
4744   const std::string& scope =
4745       (parent == nullptr) ? file_->package() : parent->full_name();
4746   std::string* full_name = AllocateNameString(scope, proto.name());
4747   ValidateSymbolName(proto.name(), *full_name, proto);
4748 
4749   result->name_ = tables_->AllocateString(proto.name());
4750   result->full_name_ = full_name;
4751   result->file_ = file_;
4752   result->number_ = proto.number();
4753   result->is_extension_ = is_extension;
4754   result->proto3_optional_ = proto.proto3_optional();
4755 
4756   if (proto.proto3_optional() &&
4757       file_->syntax() != FileDescriptor::SYNTAX_PROTO3) {
4758     AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
4759              "The [proto3_optional=true] option may only be set on proto3"
4760              "fields, not " +
4761                  result->full_name());
4762   }
4763 
4764   // If .proto files follow the style guide then the name should already be
4765   // lower-cased.  If that's the case we can just reuse the string we
4766   // already allocated rather than allocate a new one.
4767   std::string lowercase_name(proto.name());
4768   LowerString(&lowercase_name);
4769   if (lowercase_name == proto.name()) {
4770     result->lowercase_name_ = result->name_;
4771   } else {
4772     result->lowercase_name_ = tables_->AllocateString(lowercase_name);
4773   }
4774 
4775   // Don't bother with the above optimization for camel-case names since
4776   // .proto files that follow the guide shouldn't be using names in this
4777   // format, so the optimization wouldn't help much.
4778   result->camelcase_name_ =
4779       tables_->AllocateString(ToCamelCase(proto.name(),
4780                                           /* lower_first = */ true));
4781 
4782   if (proto.has_json_name()) {
4783     result->has_json_name_ = true;
4784     result->json_name_ = tables_->AllocateString(proto.json_name());
4785   } else {
4786     result->has_json_name_ = false;
4787     result->json_name_ = tables_->AllocateString(ToJsonName(proto.name()));
4788   }
4789 
4790   // Some compilers do not allow static_cast directly between two enum types,
4791   // so we must cast to int first.
4792   result->type_ = static_cast<FieldDescriptor::Type>(
4793       implicit_cast<int>(proto.type()));
4794   result->label_ = static_cast<FieldDescriptor::Label>(
4795       implicit_cast<int>(proto.label()));
4796 
4797   if (result->label_ == FieldDescriptor::LABEL_REQUIRED) {
4798     // An extension cannot have a required field (b/13365836).
4799     if (result->is_extension_) {
4800       AddError(result->full_name(), proto,
4801                // Error location `TYPE`: we would really like to indicate
4802                // `LABEL`, but the `ErrorLocation` enum has no entry for this,
4803                // and we don't necessarily know about all implementations of the
4804                // `ErrorCollector` interface to extend them to handle the new
4805                // error location type properly.
4806                DescriptorPool::ErrorCollector::TYPE,
4807                "The extension " + result->full_name() + " cannot be required.");
4808     }
4809   }
4810 
4811   // Some of these may be filled in when cross-linking.
4812   result->containing_type_ = nullptr;
4813   result->extension_scope_ = nullptr;
4814   result->message_type_ = nullptr;
4815   result->enum_type_ = nullptr;
4816   result->type_name_ = nullptr;
4817   result->type_once_ = nullptr;
4818   result->default_value_enum_ = nullptr;
4819   result->default_value_enum_name_ = nullptr;
4820 
4821   result->has_default_value_ = proto.has_default_value();
4822   if (proto.has_default_value() && result->is_repeated()) {
4823     AddError(result->full_name(), proto,
4824              DescriptorPool::ErrorCollector::DEFAULT_VALUE,
4825              "Repeated fields can't have default values.");
4826   }
4827 
4828   if (proto.has_type()) {
4829     if (proto.has_default_value()) {
4830       char* end_pos = nullptr;
4831       switch (result->cpp_type()) {
4832         case FieldDescriptor::CPPTYPE_INT32:
4833           result->default_value_int32_ =
4834               strtol(proto.default_value().c_str(), &end_pos, 0);
4835           break;
4836         case FieldDescriptor::CPPTYPE_INT64:
4837           result->default_value_int64_ =
4838               strto64(proto.default_value().c_str(), &end_pos, 0);
4839           break;
4840         case FieldDescriptor::CPPTYPE_UINT32:
4841           result->default_value_uint32_ =
4842               strtoul(proto.default_value().c_str(), &end_pos, 0);
4843           break;
4844         case FieldDescriptor::CPPTYPE_UINT64:
4845           result->default_value_uint64_ =
4846               strtou64(proto.default_value().c_str(), &end_pos, 0);
4847           break;
4848         case FieldDescriptor::CPPTYPE_FLOAT:
4849           if (proto.default_value() == "inf") {
4850             result->default_value_float_ =
4851                 std::numeric_limits<float>::infinity();
4852           } else if (proto.default_value() == "-inf") {
4853             result->default_value_float_ =
4854                 -std::numeric_limits<float>::infinity();
4855           } else if (proto.default_value() == "nan") {
4856             result->default_value_float_ =
4857                 std::numeric_limits<float>::quiet_NaN();
4858           } else {
4859             result->default_value_float_ = io::SafeDoubleToFloat(
4860                 io::NoLocaleStrtod(proto.default_value().c_str(), &end_pos));
4861           }
4862           break;
4863         case FieldDescriptor::CPPTYPE_DOUBLE:
4864           if (proto.default_value() == "inf") {
4865             result->default_value_double_ =
4866                 std::numeric_limits<double>::infinity();
4867           } else if (proto.default_value() == "-inf") {
4868             result->default_value_double_ =
4869                 -std::numeric_limits<double>::infinity();
4870           } else if (proto.default_value() == "nan") {
4871             result->default_value_double_ =
4872                 std::numeric_limits<double>::quiet_NaN();
4873           } else {
4874             result->default_value_double_ =
4875                 io::NoLocaleStrtod(proto.default_value().c_str(), &end_pos);
4876           }
4877           break;
4878         case FieldDescriptor::CPPTYPE_BOOL:
4879           if (proto.default_value() == "true") {
4880             result->default_value_bool_ = true;
4881           } else if (proto.default_value() == "false") {
4882             result->default_value_bool_ = false;
4883           } else {
4884             AddError(result->full_name(), proto,
4885                      DescriptorPool::ErrorCollector::DEFAULT_VALUE,
4886                      "Boolean default must be true or false.");
4887           }
4888           break;
4889         case FieldDescriptor::CPPTYPE_ENUM:
4890           // This will be filled in when cross-linking.
4891           result->default_value_enum_ = nullptr;
4892           break;
4893         case FieldDescriptor::CPPTYPE_STRING:
4894           if (result->type() == FieldDescriptor::TYPE_BYTES) {
4895             result->default_value_string_ = tables_->AllocateString(
4896                 UnescapeCEscapeString(proto.default_value()));
4897           } else {
4898             result->default_value_string_ =
4899                 tables_->AllocateString(proto.default_value());
4900           }
4901           break;
4902         case FieldDescriptor::CPPTYPE_MESSAGE:
4903           AddError(result->full_name(), proto,
4904                    DescriptorPool::ErrorCollector::DEFAULT_VALUE,
4905                    "Messages can't have default values.");
4906           result->has_default_value_ = false;
4907           break;
4908       }
4909 
4910       if (end_pos != nullptr) {
4911         // end_pos is only set non-null by the parsers for numeric types,
4912         // above. This checks that the default was non-empty and had no extra
4913         // junk after the end of the number.
4914         if (proto.default_value().empty() || *end_pos != '\0') {
4915           AddError(result->full_name(), proto,
4916                    DescriptorPool::ErrorCollector::DEFAULT_VALUE,
4917                    "Couldn't parse default value \"" + proto.default_value() +
4918                        "\".");
4919         }
4920       }
4921     } else {
4922       // No explicit default value
4923       switch (result->cpp_type()) {
4924         case FieldDescriptor::CPPTYPE_INT32:
4925           result->default_value_int32_ = 0;
4926           break;
4927         case FieldDescriptor::CPPTYPE_INT64:
4928           result->default_value_int64_ = 0;
4929           break;
4930         case FieldDescriptor::CPPTYPE_UINT32:
4931           result->default_value_uint32_ = 0;
4932           break;
4933         case FieldDescriptor::CPPTYPE_UINT64:
4934           result->default_value_uint64_ = 0;
4935           break;
4936         case FieldDescriptor::CPPTYPE_FLOAT:
4937           result->default_value_float_ = 0.0f;
4938           break;
4939         case FieldDescriptor::CPPTYPE_DOUBLE:
4940           result->default_value_double_ = 0.0;
4941           break;
4942         case FieldDescriptor::CPPTYPE_BOOL:
4943           result->default_value_bool_ = false;
4944           break;
4945         case FieldDescriptor::CPPTYPE_ENUM:
4946           // This will be filled in when cross-linking.
4947           result->default_value_enum_ = nullptr;
4948           break;
4949         case FieldDescriptor::CPPTYPE_STRING:
4950           result->default_value_string_ = &internal::GetEmptyString();
4951           break;
4952         case FieldDescriptor::CPPTYPE_MESSAGE:
4953           break;
4954       }
4955     }
4956   }
4957 
4958   if (result->number() <= 0) {
4959     AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER,
4960              "Field numbers must be positive integers.");
4961   } else if (!is_extension && result->number() > FieldDescriptor::kMaxNumber) {
4962     // Only validate that the number is within the valid field range if it is
4963     // not an extension. Since extension numbers are validated with the
4964     // extendee's valid set of extension numbers, and those are in turn
4965     // validated against the max allowed number, the check is unnecessary for
4966     // extension fields.
4967     // This avoids cross-linking issues that arise when attempting to check if
4968     // the extendee is a message_set_wire_format message, which has a higher max
4969     // on extension numbers.
4970     AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER,
4971              strings::Substitute("Field numbers cannot be greater than $0.",
4972                               FieldDescriptor::kMaxNumber));
4973   } else if (result->number() >= FieldDescriptor::kFirstReservedNumber &&
4974              result->number() <= FieldDescriptor::kLastReservedNumber) {
4975     AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER,
4976              strings::Substitute(
4977                  "Field numbers $0 through $1 are reserved for the protocol "
4978                  "buffer library implementation.",
4979                  FieldDescriptor::kFirstReservedNumber,
4980                  FieldDescriptor::kLastReservedNumber));
4981   }
4982 
4983   if (is_extension) {
4984     if (!proto.has_extendee()) {
4985       AddError(result->full_name(), proto,
4986                DescriptorPool::ErrorCollector::EXTENDEE,
4987                "FieldDescriptorProto.extendee not set for extension field.");
4988     }
4989 
4990     result->extension_scope_ = parent;
4991 
4992     if (proto.has_oneof_index()) {
4993       AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
4994                "FieldDescriptorProto.oneof_index should not be set for "
4995                "extensions.");
4996     }
4997 
4998     // Fill in later (maybe).
4999     result->containing_oneof_ = nullptr;
5000   } else {
5001     if (proto.has_extendee()) {
5002       AddError(result->full_name(), proto,
5003                DescriptorPool::ErrorCollector::EXTENDEE,
5004                "FieldDescriptorProto.extendee set for non-extension field.");
5005     }
5006 
5007     result->containing_type_ = parent;
5008 
5009     if (proto.has_oneof_index()) {
5010       if (proto.oneof_index() < 0 ||
5011           proto.oneof_index() >= parent->oneof_decl_count()) {
5012         AddError(result->full_name(), proto,
5013                  DescriptorPool::ErrorCollector::TYPE,
5014                  strings::Substitute("FieldDescriptorProto.oneof_index $0 is "
5015                                   "out of range for type \"$1\".",
5016                                   proto.oneof_index(), parent->name()));
5017         result->containing_oneof_ = nullptr;
5018       } else {
5019         result->containing_oneof_ = parent->oneof_decl(proto.oneof_index());
5020       }
5021     } else {
5022       result->containing_oneof_ = nullptr;
5023     }
5024   }
5025 
5026   // Copy options.
5027   result->options_ = nullptr;  // Set to default_instance later if necessary.
5028   if (proto.has_options()) {
5029     AllocateOptions(proto.options(), result,
5030                     FieldDescriptorProto::kOptionsFieldNumber,
5031                     "google.protobuf.FieldOptions");
5032   }
5033 
5034 
5035   AddSymbol(result->full_name(), parent, result->name(), proto, Symbol(result));
5036 }
5037 
BuildExtensionRange(const DescriptorProto::ExtensionRange & proto,const Descriptor * parent,Descriptor::ExtensionRange * result)5038 void DescriptorBuilder::BuildExtensionRange(
5039     const DescriptorProto::ExtensionRange& proto, const Descriptor* parent,
5040     Descriptor::ExtensionRange* result) {
5041   result->start = proto.start();
5042   result->end = proto.end();
5043   if (result->start <= 0) {
5044     AddError(parent->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER,
5045              "Extension numbers must be positive integers.");
5046   }
5047 
5048   // Checking of the upper bound of the extension range is deferred until after
5049   // options interpreting. This allows messages with message_set_wire_format to
5050   // have extensions beyond FieldDescriptor::kMaxNumber, since the extension
5051   // numbers are actually used as int32s in the message_set_wire_format.
5052 
5053   if (result->start >= result->end) {
5054     AddError(parent->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER,
5055              "Extension range end number must be greater than start number.");
5056   }
5057 
5058   result->options_ = nullptr;  // Set to default_instance later if necessary.
5059   if (proto.has_options()) {
5060     std::vector<int> options_path;
5061     parent->GetLocationPath(&options_path);
5062     options_path.push_back(DescriptorProto::kExtensionRangeFieldNumber);
5063     // find index of this extension range in order to compute path
5064     int index;
5065     for (index = 0; parent->extension_ranges_ + index != result; index++) {
5066     }
5067     options_path.push_back(index);
5068     options_path.push_back(DescriptorProto_ExtensionRange::kOptionsFieldNumber);
5069     AllocateOptionsImpl(parent->full_name(), parent->full_name(),
5070                         proto.options(), result, options_path,
5071                         "google.protobuf.ExtensionRangeOptions");
5072   }
5073 }
5074 
BuildReservedRange(const DescriptorProto::ReservedRange & proto,const Descriptor * parent,Descriptor::ReservedRange * result)5075 void DescriptorBuilder::BuildReservedRange(
5076     const DescriptorProto::ReservedRange& proto, const Descriptor* parent,
5077     Descriptor::ReservedRange* result) {
5078   result->start = proto.start();
5079   result->end = proto.end();
5080   if (result->start <= 0) {
5081     AddError(parent->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER,
5082              "Reserved numbers must be positive integers.");
5083   }
5084 }
5085 
BuildReservedRange(const EnumDescriptorProto::EnumReservedRange & proto,const EnumDescriptor * parent,EnumDescriptor::ReservedRange * result)5086 void DescriptorBuilder::BuildReservedRange(
5087     const EnumDescriptorProto::EnumReservedRange& proto,
5088     const EnumDescriptor* parent, EnumDescriptor::ReservedRange* result) {
5089   result->start = proto.start();
5090   result->end = proto.end();
5091 
5092   if (result->start > result->end) {
5093     AddError(parent->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER,
5094              "Reserved range end number must be greater than start number.");
5095   }
5096 }
5097 
BuildOneof(const OneofDescriptorProto & proto,Descriptor * parent,OneofDescriptor * result)5098 void DescriptorBuilder::BuildOneof(const OneofDescriptorProto& proto,
5099                                    Descriptor* parent,
5100                                    OneofDescriptor* result) {
5101   std::string* full_name =
5102       AllocateNameString(parent->full_name(), proto.name());
5103   ValidateSymbolName(proto.name(), *full_name, proto);
5104 
5105   result->name_ = tables_->AllocateString(proto.name());
5106   result->full_name_ = full_name;
5107 
5108   result->containing_type_ = parent;
5109 
5110   // We need to fill these in later.
5111   result->field_count_ = 0;
5112   result->fields_ = nullptr;
5113   result->options_ = nullptr;
5114 
5115   // Copy options.
5116   if (proto.has_options()) {
5117     AllocateOptions(proto.options(), result,
5118                     OneofDescriptorProto::kOptionsFieldNumber,
5119                     "google.protobuf.OneofOptions");
5120   }
5121 
5122   AddSymbol(result->full_name(), parent, result->name(), proto, Symbol(result));
5123 }
5124 
CheckEnumValueUniqueness(const EnumDescriptorProto & proto,const EnumDescriptor * result)5125 void DescriptorBuilder::CheckEnumValueUniqueness(
5126     const EnumDescriptorProto& proto, const EnumDescriptor* result) {
5127 
5128   // Check that enum labels are still unique when we remove the enum prefix from
5129   // values that have it.
5130   //
5131   // This will fail for something like:
5132   //
5133   //   enum MyEnum {
5134   //     MY_ENUM_FOO = 0;
5135   //     FOO = 1;
5136   //   }
5137   //
5138   // By enforcing this reasonable constraint, we allow code generators to strip
5139   // the prefix and/or PascalCase it without creating conflicts.  This can lead
5140   // to much nicer language-specific enums like:
5141   //
5142   //   enum NameType {
5143   //     FirstName = 1,
5144   //     LastName = 2,
5145   //   }
5146   //
5147   // Instead of:
5148   //
5149   //   enum NameType {
5150   //     NAME_TYPE_FIRST_NAME = 1,
5151   //     NAME_TYPE_LAST_NAME = 2,
5152   //   }
5153   PrefixRemover remover(result->name());
5154   std::map<std::string, const EnumValueDescriptor*> values;
5155   for (int i = 0; i < result->value_count(); i++) {
5156     const EnumValueDescriptor* value = result->value(i);
5157     std::string stripped =
5158         EnumValueToPascalCase(remover.MaybeRemove(value->name()));
5159     std::pair<std::map<std::string, const EnumValueDescriptor*>::iterator, bool>
5160         insert_result = values.insert(std::make_pair(stripped, value));
5161     bool inserted = insert_result.second;
5162 
5163     // We don't throw the error if the two conflicting symbols are identical, or
5164     // if they map to the same number.  In the former case, the normal symbol
5165     // duplication error will fire so we don't need to (and its error message
5166     // will make more sense). We allow the latter case so users can create
5167     // aliases which add or remove the prefix (code generators that do prefix
5168     // stripping should de-dup the labels in this case).
5169     if (!inserted && insert_result.first->second->name() != value->name() &&
5170         insert_result.first->second->number() != value->number()) {
5171       std::string error_message =
5172           "Enum name " + value->name() + " has the same name as " +
5173           values[stripped]->name() +
5174           " if you ignore case and strip out the enum name prefix (if any). "
5175           "This is error-prone and can lead to undefined behavior. "
5176           "Please avoid doing this. If you are using allow_alias, please "
5177           "assign the same numeric value to both enums.";
5178       // There are proto2 enums out there with conflicting names, so to preserve
5179       // compatibility we issue only a warning for proto2.
5180       if (result->file()->syntax() == FileDescriptor::SYNTAX_PROTO2) {
5181         AddWarning(value->full_name(), proto.value(i),
5182                    DescriptorPool::ErrorCollector::NAME, error_message);
5183       } else {
5184         AddError(value->full_name(), proto.value(i),
5185                  DescriptorPool::ErrorCollector::NAME, error_message);
5186       }
5187     }
5188   }
5189 }
5190 
BuildEnum(const EnumDescriptorProto & proto,const Descriptor * parent,EnumDescriptor * result)5191 void DescriptorBuilder::BuildEnum(const EnumDescriptorProto& proto,
5192                                   const Descriptor* parent,
5193                                   EnumDescriptor* result) {
5194   const std::string& scope =
5195       (parent == nullptr) ? file_->package() : parent->full_name();
5196   std::string* full_name = AllocateNameString(scope, proto.name());
5197   ValidateSymbolName(proto.name(), *full_name, proto);
5198 
5199   result->name_ = tables_->AllocateString(proto.name());
5200   result->full_name_ = full_name;
5201   result->file_ = file_;
5202   result->containing_type_ = parent;
5203   result->is_placeholder_ = false;
5204   result->is_unqualified_placeholder_ = false;
5205 
5206   if (proto.value_size() == 0) {
5207     // We cannot allow enums with no values because this would mean there
5208     // would be no valid default value for fields of this type.
5209     AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::NAME,
5210              "Enums must contain at least one value.");
5211   }
5212 
5213   BUILD_ARRAY(proto, result, value, BuildEnumValue, result);
5214   BUILD_ARRAY(proto, result, reserved_range, BuildReservedRange, result);
5215 
5216   // Copy reserved names.
5217   int reserved_name_count = proto.reserved_name_size();
5218   result->reserved_name_count_ = reserved_name_count;
5219   result->reserved_names_ =
5220       tables_->AllocateArray<const std::string*>(reserved_name_count);
5221   for (int i = 0; i < reserved_name_count; ++i) {
5222     result->reserved_names_[i] =
5223         tables_->AllocateString(proto.reserved_name(i));
5224   }
5225 
5226   CheckEnumValueUniqueness(proto, result);
5227 
5228   // Copy options.
5229   result->options_ = nullptr;  // Set to default_instance later if necessary.
5230   if (proto.has_options()) {
5231     AllocateOptions(proto.options(), result,
5232                     EnumDescriptorProto::kOptionsFieldNumber,
5233                     "google.protobuf.EnumOptions");
5234   }
5235 
5236   AddSymbol(result->full_name(), parent, result->name(), proto, Symbol(result));
5237 
5238   for (int i = 0; i < proto.reserved_range_size(); i++) {
5239     const EnumDescriptorProto_EnumReservedRange& range1 =
5240         proto.reserved_range(i);
5241     for (int j = i + 1; j < proto.reserved_range_size(); j++) {
5242       const EnumDescriptorProto_EnumReservedRange& range2 =
5243           proto.reserved_range(j);
5244       if (range1.end() >= range2.start() && range2.end() >= range1.start()) {
5245         AddError(result->full_name(), proto.reserved_range(i),
5246                  DescriptorPool::ErrorCollector::NUMBER,
5247                  strings::Substitute("Reserved range $0 to $1 overlaps with "
5248                                   "already-defined range $2 to $3.",
5249                                   range2.start(), range2.end(), range1.start(),
5250                                   range1.end()));
5251       }
5252     }
5253   }
5254 
5255   HASH_SET<std::string> reserved_name_set;
5256   for (int i = 0; i < proto.reserved_name_size(); i++) {
5257     const std::string& name = proto.reserved_name(i);
5258     if (reserved_name_set.find(name) == reserved_name_set.end()) {
5259       reserved_name_set.insert(name);
5260     } else {
5261       AddError(name, proto, DescriptorPool::ErrorCollector::NAME,
5262                strings::Substitute("Enum value \"$0\" is reserved multiple times.",
5263                                 name));
5264     }
5265   }
5266 
5267   for (int i = 0; i < result->value_count(); i++) {
5268     const EnumValueDescriptor* value = result->value(i);
5269     for (int j = 0; j < result->reserved_range_count(); j++) {
5270       const EnumDescriptor::ReservedRange* range = result->reserved_range(j);
5271       if (range->start <= value->number() && value->number() <= range->end) {
5272         AddError(value->full_name(), proto.reserved_range(j),
5273                  DescriptorPool::ErrorCollector::NUMBER,
5274                  strings::Substitute("Enum value \"$0\" uses reserved number $1.",
5275                                   value->name(), value->number()));
5276       }
5277     }
5278     if (reserved_name_set.find(value->name()) != reserved_name_set.end()) {
5279       AddError(
5280           value->full_name(), proto.value(i),
5281           DescriptorPool::ErrorCollector::NAME,
5282           strings::Substitute("Enum value \"$0\" is reserved.", value->name()));
5283     }
5284   }
5285 }
5286 
BuildEnumValue(const EnumValueDescriptorProto & proto,const EnumDescriptor * parent,EnumValueDescriptor * result)5287 void DescriptorBuilder::BuildEnumValue(const EnumValueDescriptorProto& proto,
5288                                        const EnumDescriptor* parent,
5289                                        EnumValueDescriptor* result) {
5290   result->name_ = tables_->AllocateString(proto.name());
5291   result->number_ = proto.number();
5292   result->type_ = parent;
5293 
5294   // Note:  full_name for enum values is a sibling to the parent's name, not a
5295   //   child of it.
5296   std::string* full_name = tables_->AllocateEmptyString();
5297   size_t scope_len = parent->full_name_->size() - parent->name_->size();
5298   full_name->reserve(scope_len + result->name_->size());
5299   full_name->append(parent->full_name_->data(), scope_len);
5300   full_name->append(*result->name_);
5301   result->full_name_ = full_name;
5302 
5303   ValidateSymbolName(proto.name(), *full_name, proto);
5304 
5305   // Copy options.
5306   result->options_ = nullptr;  // Set to default_instance later if necessary.
5307   if (proto.has_options()) {
5308     AllocateOptions(proto.options(), result,
5309                     EnumValueDescriptorProto::kOptionsFieldNumber,
5310                     "google.protobuf.EnumValueOptions");
5311   }
5312 
5313   // Again, enum values are weird because we makes them appear as siblings
5314   // of the enum type instead of children of it.  So, we use
5315   // parent->containing_type() as the value's parent.
5316   bool added_to_outer_scope =
5317       AddSymbol(result->full_name(), parent->containing_type(), result->name(),
5318                 proto, Symbol(result));
5319 
5320   // However, we also want to be able to search for values within a single
5321   // enum type, so we add it as a child of the enum type itself, too.
5322   // Note:  This could fail, but if it does, the error has already been
5323   //   reported by the above AddSymbol() call, so we ignore the return code.
5324   bool added_to_inner_scope =
5325       file_tables_->AddAliasUnderParent(parent, result->name(), Symbol(result));
5326 
5327   if (added_to_inner_scope && !added_to_outer_scope) {
5328     // This value did not conflict with any values defined in the same enum,
5329     // but it did conflict with some other symbol defined in the enum type's
5330     // scope.  Let's print an additional error to explain this.
5331     std::string outer_scope;
5332     if (parent->containing_type() == nullptr) {
5333       outer_scope = file_->package();
5334     } else {
5335       outer_scope = parent->containing_type()->full_name();
5336     }
5337 
5338     if (outer_scope.empty()) {
5339       outer_scope = "the global scope";
5340     } else {
5341       outer_scope = "\"" + outer_scope + "\"";
5342     }
5343 
5344     AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::NAME,
5345              "Note that enum values use C++ scoping rules, meaning that "
5346              "enum values are siblings of their type, not children of it.  "
5347              "Therefore, \"" +
5348                  result->name() + "\" must be unique within " + outer_scope +
5349                  ", not just within \"" + parent->name() + "\".");
5350   }
5351 
5352   // An enum is allowed to define two numbers that refer to the same value.
5353   // FindValueByNumber() should return the first such value, so we simply
5354   // ignore AddEnumValueByNumber()'s return code.
5355   file_tables_->AddEnumValueByNumber(result);
5356 }
5357 
BuildService(const ServiceDescriptorProto & proto,const void *,ServiceDescriptor * result)5358 void DescriptorBuilder::BuildService(const ServiceDescriptorProto& proto,
5359                                      const void* /* dummy */,
5360                                      ServiceDescriptor* result) {
5361   std::string* full_name = AllocateNameString(file_->package(), proto.name());
5362   ValidateSymbolName(proto.name(), *full_name, proto);
5363 
5364   result->name_ = tables_->AllocateString(proto.name());
5365   result->full_name_ = full_name;
5366   result->file_ = file_;
5367 
5368   BUILD_ARRAY(proto, result, method, BuildMethod, result);
5369 
5370   // Copy options.
5371   result->options_ = nullptr;  // Set to default_instance later if necessary.
5372   if (proto.has_options()) {
5373     AllocateOptions(proto.options(), result,
5374                     ServiceDescriptorProto::kOptionsFieldNumber,
5375                     "google.protobuf.ServiceOptions");
5376   }
5377 
5378   AddSymbol(result->full_name(), nullptr, result->name(), proto,
5379             Symbol(result));
5380 }
5381 
BuildMethod(const MethodDescriptorProto & proto,const ServiceDescriptor * parent,MethodDescriptor * result)5382 void DescriptorBuilder::BuildMethod(const MethodDescriptorProto& proto,
5383                                     const ServiceDescriptor* parent,
5384                                     MethodDescriptor* result) {
5385   result->name_ = tables_->AllocateString(proto.name());
5386   result->service_ = parent;
5387 
5388   std::string* full_name =
5389       AllocateNameString(parent->full_name(), *result->name_);
5390   result->full_name_ = full_name;
5391 
5392   ValidateSymbolName(proto.name(), *full_name, proto);
5393 
5394   // These will be filled in when cross-linking.
5395   result->input_type_.Init();
5396   result->output_type_.Init();
5397 
5398   // Copy options.
5399   result->options_ = nullptr;  // Set to default_instance later if necessary.
5400   if (proto.has_options()) {
5401     AllocateOptions(proto.options(), result,
5402                     MethodDescriptorProto::kOptionsFieldNumber,
5403                     "google.protobuf.MethodOptions");
5404   }
5405 
5406   result->client_streaming_ = proto.client_streaming();
5407   result->server_streaming_ = proto.server_streaming();
5408 
5409   AddSymbol(result->full_name(), parent, result->name(), proto, Symbol(result));
5410 }
5411 
5412 #undef BUILD_ARRAY
5413 
5414 // -------------------------------------------------------------------
5415 
CrossLinkFile(FileDescriptor * file,const FileDescriptorProto & proto)5416 void DescriptorBuilder::CrossLinkFile(FileDescriptor* file,
5417                                       const FileDescriptorProto& proto) {
5418   if (file->options_ == nullptr) {
5419     file->options_ = &FileOptions::default_instance();
5420   }
5421 
5422   for (int i = 0; i < file->message_type_count(); i++) {
5423     CrossLinkMessage(&file->message_types_[i], proto.message_type(i));
5424   }
5425 
5426   for (int i = 0; i < file->extension_count(); i++) {
5427     CrossLinkField(&file->extensions_[i], proto.extension(i));
5428   }
5429 
5430   for (int i = 0; i < file->enum_type_count(); i++) {
5431     CrossLinkEnum(&file->enum_types_[i], proto.enum_type(i));
5432   }
5433 
5434   for (int i = 0; i < file->service_count(); i++) {
5435     CrossLinkService(&file->services_[i], proto.service(i));
5436   }
5437 }
5438 
CrossLinkMessage(Descriptor * message,const DescriptorProto & proto)5439 void DescriptorBuilder::CrossLinkMessage(Descriptor* message,
5440                                          const DescriptorProto& proto) {
5441   if (message->options_ == nullptr) {
5442     message->options_ = &MessageOptions::default_instance();
5443   }
5444 
5445   for (int i = 0; i < message->nested_type_count(); i++) {
5446     CrossLinkMessage(&message->nested_types_[i], proto.nested_type(i));
5447   }
5448 
5449   for (int i = 0; i < message->enum_type_count(); i++) {
5450     CrossLinkEnum(&message->enum_types_[i], proto.enum_type(i));
5451   }
5452 
5453   for (int i = 0; i < message->field_count(); i++) {
5454     CrossLinkField(&message->fields_[i], proto.field(i));
5455   }
5456 
5457   for (int i = 0; i < message->extension_count(); i++) {
5458     CrossLinkField(&message->extensions_[i], proto.extension(i));
5459   }
5460 
5461   for (int i = 0; i < message->extension_range_count(); i++) {
5462     CrossLinkExtensionRange(&message->extension_ranges_[i],
5463                             proto.extension_range(i));
5464   }
5465 
5466   // Set up field array for each oneof.
5467 
5468   // First count the number of fields per oneof.
5469   for (int i = 0; i < message->field_count(); i++) {
5470     const OneofDescriptor* oneof_decl = message->field(i)->containing_oneof();
5471     if (oneof_decl != nullptr) {
5472       // Make sure fields belonging to the same oneof are defined consecutively.
5473       // This enables optimizations in codegens and reflection libraries to
5474       // skip fields in the oneof group, as only one of the field can be set.
5475       // Note that field_count() returns how many fields in this oneof we have
5476       // seen so far. field_count() > 0 guarantees that i > 0, so field(i-1) is
5477       // safe.
5478       if (oneof_decl->field_count() > 0 &&
5479           message->field(i - 1)->containing_oneof() != oneof_decl) {
5480         AddError(message->full_name() + "." + message->field(i - 1)->name(),
5481                  proto.field(i - 1), DescriptorPool::ErrorCollector::TYPE,
5482                  strings::Substitute(
5483                      "Fields in the same oneof must be defined consecutively. "
5484                      "\"$0\" cannot be defined before the completion of the "
5485                      "\"$1\" oneof definition.",
5486                      message->field(i - 1)->name(), oneof_decl->name()));
5487       }
5488       // Must go through oneof_decls_ array to get a non-const version of the
5489       // OneofDescriptor.
5490       ++message->oneof_decls_[oneof_decl->index()].field_count_;
5491     }
5492   }
5493 
5494   // Then allocate the arrays.
5495   for (int i = 0; i < message->oneof_decl_count(); i++) {
5496     OneofDescriptor* oneof_decl = &message->oneof_decls_[i];
5497 
5498     if (oneof_decl->field_count() == 0) {
5499       AddError(message->full_name() + "." + oneof_decl->name(),
5500                proto.oneof_decl(i), DescriptorPool::ErrorCollector::NAME,
5501                "Oneof must have at least one field.");
5502     }
5503 
5504     oneof_decl->fields_ = tables_->AllocateArray<const FieldDescriptor*>(
5505         oneof_decl->field_count_);
5506     oneof_decl->field_count_ = 0;
5507 
5508     if (oneof_decl->options_ == nullptr) {
5509       oneof_decl->options_ = &OneofOptions::default_instance();
5510     }
5511   }
5512 
5513   // Then fill them in.
5514   for (int i = 0; i < message->field_count(); i++) {
5515     const OneofDescriptor* oneof_decl = message->field(i)->containing_oneof();
5516     if (oneof_decl != nullptr) {
5517       OneofDescriptor* mutable_oneof_decl =
5518           &message->oneof_decls_[oneof_decl->index()];
5519       message->fields_[i].index_in_oneof_ = mutable_oneof_decl->field_count_;
5520       mutable_oneof_decl->fields_[mutable_oneof_decl->field_count_++] =
5521           message->field(i);
5522     }
5523   }
5524 
5525   for (int i = 0; i < message->field_count(); i++) {
5526     const FieldDescriptor* field = message->field(i);
5527     if (field->proto3_optional_) {
5528       if (!field->containing_oneof() ||
5529           !field->containing_oneof()->is_synthetic()) {
5530         AddError(message->full_name(), proto.field(i),
5531                  DescriptorPool::ErrorCollector::OTHER,
5532                  "Fields with proto3_optional set must be "
5533                  "a member of a one-field oneof");
5534       }
5535     }
5536   }
5537 
5538   // Synthetic oneofs must be last.
5539   int first_synthetic = -1;
5540   for (int i = 0; i < message->oneof_decl_count(); i++) {
5541     const OneofDescriptor* oneof = message->oneof_decl(i);
5542     if (oneof->is_synthetic()) {
5543       if (first_synthetic == -1) {
5544         first_synthetic = i;
5545       }
5546     } else {
5547       if (first_synthetic != -1) {
5548         AddError(message->full_name(), proto.oneof_decl(i),
5549                  DescriptorPool::ErrorCollector::OTHER,
5550                  "Synthetic oneofs must be after all other oneofs");
5551       }
5552     }
5553   }
5554 
5555   if (first_synthetic == -1) {
5556     message->real_oneof_decl_count_ = message->oneof_decl_count_;
5557   } else {
5558     message->real_oneof_decl_count_ = first_synthetic;
5559   }
5560 }
5561 
CrossLinkExtensionRange(Descriptor::ExtensionRange * range,const DescriptorProto::ExtensionRange & proto)5562 void DescriptorBuilder::CrossLinkExtensionRange(
5563     Descriptor::ExtensionRange* range,
5564     const DescriptorProto::ExtensionRange& proto) {
5565   if (range->options_ == nullptr) {
5566     range->options_ = &ExtensionRangeOptions::default_instance();
5567   }
5568 }
5569 
CrossLinkField(FieldDescriptor * field,const FieldDescriptorProto & proto)5570 void DescriptorBuilder::CrossLinkField(FieldDescriptor* field,
5571                                        const FieldDescriptorProto& proto) {
5572   if (field->options_ == nullptr) {
5573     field->options_ = &FieldOptions::default_instance();
5574   }
5575 
5576   // Add the field to the lowercase-name and camelcase-name tables.
5577   file_tables_->AddFieldByStylizedNames(field);
5578 
5579   if (proto.has_extendee()) {
5580     Symbol extendee =
5581         LookupSymbol(proto.extendee(), field->full_name(),
5582                      DescriptorPool::PLACEHOLDER_EXTENDABLE_MESSAGE);
5583     if (extendee.IsNull()) {
5584       AddNotDefinedError(field->full_name(), proto,
5585                          DescriptorPool::ErrorCollector::EXTENDEE,
5586                          proto.extendee());
5587       return;
5588     } else if (extendee.type != Symbol::MESSAGE) {
5589       AddError(field->full_name(), proto,
5590                DescriptorPool::ErrorCollector::EXTENDEE,
5591                "\"" + proto.extendee() + "\" is not a message type.");
5592       return;
5593     }
5594     field->containing_type_ = extendee.descriptor;
5595 
5596     const Descriptor::ExtensionRange* extension_range =
5597         field->containing_type()->FindExtensionRangeContainingNumber(
5598             field->number());
5599 
5600     if (extension_range == nullptr) {
5601       // Set of valid extension numbers for MessageSet is different (< 2^32)
5602       // from other extendees (< 2^29). If unknown deps are allowed, we may not
5603       // have that information, and wrongly deem the extension as invalid.
5604       auto skip_check = get_allow_unknown(pool_) &&
5605                         proto.extendee() == "google.protobuf.bridge.MessageSet";
5606       if (!skip_check) {
5607         AddError(field->full_name(), proto,
5608                  DescriptorPool::ErrorCollector::NUMBER,
5609                  strings::Substitute("\"$0\" does not declare $1 as an "
5610                                   "extension number.",
5611                                   field->containing_type()->full_name(),
5612                                   field->number()));
5613       }
5614     }
5615   }
5616 
5617   if (field->containing_oneof() != nullptr) {
5618     if (field->label() != FieldDescriptor::LABEL_OPTIONAL) {
5619       // Note that this error will never happen when parsing .proto files.
5620       // It can only happen if you manually construct a FileDescriptorProto
5621       // that is incorrect.
5622       AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::NAME,
5623                "Fields of oneofs must themselves have label LABEL_OPTIONAL.");
5624     }
5625   }
5626 
5627   if (proto.has_type_name()) {
5628     // Assume we are expecting a message type unless the proto contains some
5629     // evidence that it expects an enum type.  This only makes a difference if
5630     // we end up creating a placeholder.
5631     bool expecting_enum = (proto.type() == FieldDescriptorProto::TYPE_ENUM) ||
5632                           proto.has_default_value();
5633 
5634     // In case of weak fields we force building the dependency. We need to know
5635     // if the type exist or not. If it doesn't exist we substitute Empty which
5636     // should only be done if the type can't be found in the generated pool.
5637     // TODO(gerbens) Ideally we should query the database directly to check
5638     // if weak fields exist or not so that we don't need to force building
5639     // weak dependencies. However the name lookup rules for symbols are
5640     // somewhat complicated, so I defer it too another CL.
5641     bool is_weak = !pool_->enforce_weak_ && proto.options().weak();
5642     bool is_lazy = pool_->lazily_build_dependencies_ && !is_weak;
5643 
5644     Symbol type =
5645         LookupSymbol(proto.type_name(), field->full_name(),
5646                      expecting_enum ? DescriptorPool::PLACEHOLDER_ENUM
5647                                     : DescriptorPool::PLACEHOLDER_MESSAGE,
5648                      LOOKUP_TYPES, !is_lazy);
5649 
5650     if (type.IsNull()) {
5651       if (is_lazy) {
5652         // Save the symbol names for later for lookup, and allocate the once
5653         // object needed for the accessors.
5654         std::string name = proto.type_name();
5655         field->type_once_ = tables_->AllocateOnceDynamic();
5656         field->type_name_ = tables_->AllocateString(name);
5657         if (proto.has_default_value()) {
5658           field->default_value_enum_name_ =
5659               tables_->AllocateString(proto.default_value());
5660         }
5661         // AddFieldByNumber and AddExtension are done later in this function,
5662         // and can/must be done if the field type was not found. The related
5663         // error checking is not necessary when in lazily_build_dependencies_
5664         // mode, and can't be done without building the type's descriptor,
5665         // which we don't want to do.
5666         file_tables_->AddFieldByNumber(field);
5667         if (field->is_extension()) {
5668           tables_->AddExtension(field);
5669         }
5670         return;
5671       } else {
5672         // If the type is a weak type, we change the type to a google.protobuf.Empty
5673         // field.
5674         if (is_weak) {
5675           type = FindSymbol(kNonLinkedWeakMessageReplacementName);
5676         }
5677         if (type.IsNull()) {
5678           AddNotDefinedError(field->full_name(), proto,
5679                              DescriptorPool::ErrorCollector::TYPE,
5680                              proto.type_name());
5681           return;
5682         }
5683       }
5684     }
5685 
5686     if (!proto.has_type()) {
5687       // Choose field type based on symbol.
5688       if (type.type == Symbol::MESSAGE) {
5689         field->type_ = FieldDescriptor::TYPE_MESSAGE;
5690       } else if (type.type == Symbol::ENUM) {
5691         field->type_ = FieldDescriptor::TYPE_ENUM;
5692       } else {
5693         AddError(field->full_name(), proto,
5694                  DescriptorPool::ErrorCollector::TYPE,
5695                  "\"" + proto.type_name() + "\" is not a type.");
5696         return;
5697       }
5698     }
5699 
5700     if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
5701       if (type.type != Symbol::MESSAGE) {
5702         AddError(field->full_name(), proto,
5703                  DescriptorPool::ErrorCollector::TYPE,
5704                  "\"" + proto.type_name() + "\" is not a message type.");
5705         return;
5706       }
5707       field->message_type_ = type.descriptor;
5708 
5709       if (field->has_default_value()) {
5710         AddError(field->full_name(), proto,
5711                  DescriptorPool::ErrorCollector::DEFAULT_VALUE,
5712                  "Messages can't have default values.");
5713       }
5714     } else if (field->cpp_type() == FieldDescriptor::CPPTYPE_ENUM) {
5715       if (type.type != Symbol::ENUM) {
5716         AddError(field->full_name(), proto,
5717                  DescriptorPool::ErrorCollector::TYPE,
5718                  "\"" + proto.type_name() + "\" is not an enum type.");
5719         return;
5720       }
5721       field->enum_type_ = type.enum_descriptor;
5722 
5723       if (field->enum_type()->is_placeholder_) {
5724         // We can't look up default values for placeholder types.  We'll have
5725         // to just drop them.
5726         field->has_default_value_ = false;
5727       }
5728 
5729       if (field->has_default_value()) {
5730         // Ensure that the default value is an identifier. Parser cannot always
5731         // verify this because it does not have complete type information.
5732         // N.B. that this check yields better error messages but is not
5733         // necessary for correctness (an enum symbol must be a valid identifier
5734         // anyway), only for better errors.
5735         if (!io::Tokenizer::IsIdentifier(proto.default_value())) {
5736           AddError(field->full_name(), proto,
5737                    DescriptorPool::ErrorCollector::DEFAULT_VALUE,
5738                    "Default value for an enum field must be an identifier.");
5739         } else {
5740           // We can't just use field->enum_type()->FindValueByName() here
5741           // because that locks the pool's mutex, which we have already locked
5742           // at this point.
5743           Symbol default_value = LookupSymbolNoPlaceholder(
5744               proto.default_value(), field->enum_type()->full_name());
5745 
5746           if (default_value.type == Symbol::ENUM_VALUE &&
5747               default_value.enum_value_descriptor->type() ==
5748                   field->enum_type()) {
5749             field->default_value_enum_ = default_value.enum_value_descriptor;
5750           } else {
5751             AddError(field->full_name(), proto,
5752                      DescriptorPool::ErrorCollector::DEFAULT_VALUE,
5753                      "Enum type \"" + field->enum_type()->full_name() +
5754                          "\" has no value named \"" + proto.default_value() +
5755                          "\".");
5756           }
5757         }
5758       } else if (field->enum_type()->value_count() > 0) {
5759         // All enums must have at least one value, or we would have reported
5760         // an error elsewhere.  We use the first defined value as the default
5761         // if a default is not explicitly defined.
5762         field->default_value_enum_ = field->enum_type()->value(0);
5763       }
5764     } else {
5765       AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
5766                "Field with primitive type has type_name.");
5767     }
5768   } else {
5769     if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE ||
5770         field->cpp_type() == FieldDescriptor::CPPTYPE_ENUM) {
5771       AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
5772                "Field with message or enum type missing type_name.");
5773     }
5774   }
5775 
5776   // Add the field to the fields-by-number table.
5777   // Note:  We have to do this *after* cross-linking because extensions do not
5778   // know their containing type until now. If we're in
5779   // lazily_build_dependencies_ mode, we're guaranteed there's no errors, so no
5780   // risk to calling containing_type() or other accessors that will build
5781   // dependencies.
5782   if (!file_tables_->AddFieldByNumber(field)) {
5783     const FieldDescriptor* conflicting_field = file_tables_->FindFieldByNumber(
5784         field->containing_type(), field->number());
5785     std::string containing_type_name =
5786         field->containing_type() == nullptr
5787             ? "unknown"
5788             : field->containing_type()->full_name();
5789     if (field->is_extension()) {
5790       AddError(field->full_name(), proto,
5791                DescriptorPool::ErrorCollector::NUMBER,
5792                strings::Substitute("Extension number $0 has already been used "
5793                                 "in \"$1\" by extension \"$2\".",
5794                                 field->number(), containing_type_name,
5795                                 conflicting_field->full_name()));
5796     } else {
5797       AddError(field->full_name(), proto,
5798                DescriptorPool::ErrorCollector::NUMBER,
5799                strings::Substitute("Field number $0 has already been used in "
5800                                 "\"$1\" by field \"$2\".",
5801                                 field->number(), containing_type_name,
5802                                 conflicting_field->name()));
5803     }
5804   } else {
5805     if (field->is_extension()) {
5806       if (!tables_->AddExtension(field)) {
5807         const FieldDescriptor* conflicting_field =
5808             tables_->FindExtension(field->containing_type(), field->number());
5809         std::string containing_type_name =
5810             field->containing_type() == nullptr
5811                 ? "unknown"
5812                 : field->containing_type()->full_name();
5813         std::string error_msg = strings::Substitute(
5814             "Extension number $0 has already been used in \"$1\" by extension "
5815             "\"$2\" defined in $3.",
5816             field->number(), containing_type_name,
5817             conflicting_field->full_name(), conflicting_field->file()->name());
5818         // Conflicting extension numbers should be an error. However, before
5819         // turning this into an error we need to fix all existing broken
5820         // protos first.
5821         // TODO(xiaofeng): Change this to an error.
5822         AddWarning(field->full_name(), proto,
5823                    DescriptorPool::ErrorCollector::NUMBER, error_msg);
5824       }
5825     }
5826   }
5827 }
5828 
CrossLinkEnum(EnumDescriptor * enum_type,const EnumDescriptorProto & proto)5829 void DescriptorBuilder::CrossLinkEnum(EnumDescriptor* enum_type,
5830                                       const EnumDescriptorProto& proto) {
5831   if (enum_type->options_ == nullptr) {
5832     enum_type->options_ = &EnumOptions::default_instance();
5833   }
5834 
5835   for (int i = 0; i < enum_type->value_count(); i++) {
5836     CrossLinkEnumValue(&enum_type->values_[i], proto.value(i));
5837   }
5838 }
5839 
CrossLinkEnumValue(EnumValueDescriptor * enum_value,const EnumValueDescriptorProto &)5840 void DescriptorBuilder::CrossLinkEnumValue(
5841     EnumValueDescriptor* enum_value,
5842     const EnumValueDescriptorProto& /* proto */) {
5843   if (enum_value->options_ == nullptr) {
5844     enum_value->options_ = &EnumValueOptions::default_instance();
5845   }
5846 }
5847 
CrossLinkService(ServiceDescriptor * service,const ServiceDescriptorProto & proto)5848 void DescriptorBuilder::CrossLinkService(ServiceDescriptor* service,
5849                                          const ServiceDescriptorProto& proto) {
5850   if (service->options_ == nullptr) {
5851     service->options_ = &ServiceOptions::default_instance();
5852   }
5853 
5854   for (int i = 0; i < service->method_count(); i++) {
5855     CrossLinkMethod(&service->methods_[i], proto.method(i));
5856   }
5857 }
5858 
CrossLinkMethod(MethodDescriptor * method,const MethodDescriptorProto & proto)5859 void DescriptorBuilder::CrossLinkMethod(MethodDescriptor* method,
5860                                         const MethodDescriptorProto& proto) {
5861   if (method->options_ == nullptr) {
5862     method->options_ = &MethodOptions::default_instance();
5863   }
5864 
5865   Symbol input_type =
5866       LookupSymbol(proto.input_type(), method->full_name(),
5867                    DescriptorPool::PLACEHOLDER_MESSAGE, LOOKUP_ALL,
5868                    !pool_->lazily_build_dependencies_);
5869   if (input_type.IsNull()) {
5870     if (!pool_->lazily_build_dependencies_) {
5871       AddNotDefinedError(method->full_name(), proto,
5872                          DescriptorPool::ErrorCollector::INPUT_TYPE,
5873                          proto.input_type());
5874     } else {
5875       method->input_type_.SetLazy(proto.input_type(), file_);
5876     }
5877   } else if (input_type.type != Symbol::MESSAGE) {
5878     AddError(method->full_name(), proto,
5879              DescriptorPool::ErrorCollector::INPUT_TYPE,
5880              "\"" + proto.input_type() + "\" is not a message type.");
5881   } else {
5882     method->input_type_.Set(input_type.descriptor);
5883   }
5884 
5885   Symbol output_type =
5886       LookupSymbol(proto.output_type(), method->full_name(),
5887                    DescriptorPool::PLACEHOLDER_MESSAGE, LOOKUP_ALL,
5888                    !pool_->lazily_build_dependencies_);
5889   if (output_type.IsNull()) {
5890     if (!pool_->lazily_build_dependencies_) {
5891       AddNotDefinedError(method->full_name(), proto,
5892                          DescriptorPool::ErrorCollector::OUTPUT_TYPE,
5893                          proto.output_type());
5894     } else {
5895       method->output_type_.SetLazy(proto.output_type(), file_);
5896     }
5897   } else if (output_type.type != Symbol::MESSAGE) {
5898     AddError(method->full_name(), proto,
5899              DescriptorPool::ErrorCollector::OUTPUT_TYPE,
5900              "\"" + proto.output_type() + "\" is not a message type.");
5901   } else {
5902     method->output_type_.Set(output_type.descriptor);
5903   }
5904 }
5905 
5906 // -------------------------------------------------------------------
5907 
5908 #define VALIDATE_OPTIONS_FROM_ARRAY(descriptor, array_name, type) \
5909   for (int i = 0; i < descriptor->array_name##_count(); ++i) {    \
5910     Validate##type##Options(descriptor->array_name##s_ + i,       \
5911                             proto.array_name(i));                 \
5912   }
5913 
5914 // Determine if the file uses optimize_for = LITE_RUNTIME, being careful to
5915 // avoid problems that exist at init time.
IsLite(const FileDescriptor * file)5916 static bool IsLite(const FileDescriptor* file) {
5917   // TODO(kenton):  I don't even remember how many of these conditions are
5918   //   actually possible.  I'm just being super-safe.
5919   return file != nullptr &&
5920          &file->options() != &FileOptions::default_instance() &&
5921          file->options().optimize_for() == FileOptions::LITE_RUNTIME;
5922 }
5923 
ValidateFileOptions(FileDescriptor * file,const FileDescriptorProto & proto)5924 void DescriptorBuilder::ValidateFileOptions(FileDescriptor* file,
5925                                             const FileDescriptorProto& proto) {
5926   VALIDATE_OPTIONS_FROM_ARRAY(file, message_type, Message);
5927   VALIDATE_OPTIONS_FROM_ARRAY(file, enum_type, Enum);
5928   VALIDATE_OPTIONS_FROM_ARRAY(file, service, Service);
5929   VALIDATE_OPTIONS_FROM_ARRAY(file, extension, Field);
5930 
5931   // Lite files can only be imported by other Lite files.
5932   if (!IsLite(file)) {
5933     for (int i = 0; i < file->dependency_count(); i++) {
5934       if (IsLite(file->dependency(i))) {
5935         AddError(
5936             file->dependency(i)->name(), proto,
5937             DescriptorPool::ErrorCollector::IMPORT,
5938             "Files that do not use optimize_for = LITE_RUNTIME cannot import "
5939             "files which do use this option.  This file is not lite, but it "
5940             "imports \"" +
5941                 file->dependency(i)->name() + "\" which is.");
5942         break;
5943       }
5944     }
5945   }
5946   if (file->syntax() == FileDescriptor::SYNTAX_PROTO3) {
5947     ValidateProto3(file, proto);
5948   }
5949 }
5950 
ValidateProto3(FileDescriptor * file,const FileDescriptorProto & proto)5951 void DescriptorBuilder::ValidateProto3(FileDescriptor* file,
5952                                        const FileDescriptorProto& proto) {
5953   for (int i = 0; i < file->extension_count(); ++i) {
5954     ValidateProto3Field(file->extensions_ + i, proto.extension(i));
5955   }
5956   for (int i = 0; i < file->message_type_count(); ++i) {
5957     ValidateProto3Message(file->message_types_ + i, proto.message_type(i));
5958   }
5959   for (int i = 0; i < file->enum_type_count(); ++i) {
5960     ValidateProto3Enum(file->enum_types_ + i, proto.enum_type(i));
5961   }
5962 }
5963 
ToLowercaseWithoutUnderscores(const std::string & name)5964 static std::string ToLowercaseWithoutUnderscores(const std::string& name) {
5965   std::string result;
5966   for (int i = 0; i < name.size(); ++i) {
5967     if (name[i] != '_') {
5968       if (name[i] >= 'A' && name[i] <= 'Z') {
5969         result.push_back(name[i] - 'A' + 'a');
5970       } else {
5971         result.push_back(name[i]);
5972       }
5973     }
5974   }
5975   return result;
5976 }
5977 
ValidateProto3Message(Descriptor * message,const DescriptorProto & proto)5978 void DescriptorBuilder::ValidateProto3Message(Descriptor* message,
5979                                               const DescriptorProto& proto) {
5980   for (int i = 0; i < message->nested_type_count(); ++i) {
5981     ValidateProto3Message(message->nested_types_ + i, proto.nested_type(i));
5982   }
5983   for (int i = 0; i < message->enum_type_count(); ++i) {
5984     ValidateProto3Enum(message->enum_types_ + i, proto.enum_type(i));
5985   }
5986   for (int i = 0; i < message->field_count(); ++i) {
5987     ValidateProto3Field(message->fields_ + i, proto.field(i));
5988   }
5989   for (int i = 0; i < message->extension_count(); ++i) {
5990     ValidateProto3Field(message->extensions_ + i, proto.extension(i));
5991   }
5992   if (message->extension_range_count() > 0) {
5993     AddError(message->full_name(), proto.extension_range(0),
5994              DescriptorPool::ErrorCollector::NUMBER,
5995              "Extension ranges are not allowed in proto3.");
5996   }
5997   if (message->options().message_set_wire_format()) {
5998     // Using MessageSet doesn't make sense since we disallow extensions.
5999     AddError(message->full_name(), proto, DescriptorPool::ErrorCollector::NAME,
6000              "MessageSet is not supported in proto3.");
6001   }
6002 
6003   // In proto3, we reject field names if they conflict in camelCase.
6004   // Note that we currently enforce a stricter rule: Field names must be
6005   // unique after being converted to lowercase with underscores removed.
6006   std::map<std::string, const FieldDescriptor*> name_to_field;
6007   for (int i = 0; i < message->field_count(); ++i) {
6008     std::string lowercase_name =
6009         ToLowercaseWithoutUnderscores(message->field(i)->name());
6010     if (name_to_field.find(lowercase_name) != name_to_field.end()) {
6011       AddError(message->full_name(), proto.field(i),
6012                DescriptorPool::ErrorCollector::NAME,
6013                "The JSON camel-case name of field \"" +
6014                    message->field(i)->name() + "\" conflicts with field \"" +
6015                    name_to_field[lowercase_name]->name() + "\". This is not " +
6016                    "allowed in proto3.");
6017     } else {
6018       name_to_field[lowercase_name] = message->field(i);
6019     }
6020   }
6021 }
6022 
ValidateProto3Field(FieldDescriptor * field,const FieldDescriptorProto & proto)6023 void DescriptorBuilder::ValidateProto3Field(FieldDescriptor* field,
6024                                             const FieldDescriptorProto& proto) {
6025   if (field->is_extension() &&
6026       !AllowedExtendeeInProto3(field->containing_type()->full_name())) {
6027     AddError(field->full_name(), proto,
6028              DescriptorPool::ErrorCollector::EXTENDEE,
6029              "Extensions in proto3 are only allowed for defining options.");
6030   }
6031   if (field->is_required()) {
6032     AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
6033              "Required fields are not allowed in proto3.");
6034   }
6035   if (field->has_default_value()) {
6036     AddError(field->full_name(), proto,
6037              DescriptorPool::ErrorCollector::DEFAULT_VALUE,
6038              "Explicit default values are not allowed in proto3.");
6039   }
6040   if (field->cpp_type() == FieldDescriptor::CPPTYPE_ENUM &&
6041       field->enum_type() &&
6042       field->enum_type()->file()->syntax() != FileDescriptor::SYNTAX_PROTO3 &&
6043       field->enum_type()->file()->syntax() != FileDescriptor::SYNTAX_UNKNOWN) {
6044     // Proto3 messages can only use Proto3 enum types; otherwise we can't
6045     // guarantee that the default value is zero.
6046     AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
6047              "Enum type \"" + field->enum_type()->full_name() +
6048                  "\" is not a proto3 enum, but is used in \"" +
6049                  field->containing_type()->full_name() +
6050                  "\" which is a proto3 message type.");
6051   }
6052   if (field->type() == FieldDescriptor::TYPE_GROUP) {
6053     AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
6054              "Groups are not supported in proto3 syntax.");
6055   }
6056 }
6057 
ValidateProto3Enum(EnumDescriptor * enm,const EnumDescriptorProto & proto)6058 void DescriptorBuilder::ValidateProto3Enum(EnumDescriptor* enm,
6059                                            const EnumDescriptorProto& proto) {
6060   if (enm->value_count() > 0 && enm->value(0)->number() != 0) {
6061     AddError(enm->full_name(), proto.value(0),
6062              DescriptorPool::ErrorCollector::NUMBER,
6063              "The first enum value must be zero in proto3.");
6064   }
6065 }
6066 
ValidateMessageOptions(Descriptor * message,const DescriptorProto & proto)6067 void DescriptorBuilder::ValidateMessageOptions(Descriptor* message,
6068                                                const DescriptorProto& proto) {
6069   VALIDATE_OPTIONS_FROM_ARRAY(message, field, Field);
6070   VALIDATE_OPTIONS_FROM_ARRAY(message, nested_type, Message);
6071   VALIDATE_OPTIONS_FROM_ARRAY(message, enum_type, Enum);
6072   VALIDATE_OPTIONS_FROM_ARRAY(message, extension, Field);
6073 
6074   const int64 max_extension_range =
6075       static_cast<int64>(message->options().message_set_wire_format()
6076                              ? kint32max
6077                              : FieldDescriptor::kMaxNumber);
6078   for (int i = 0; i < message->extension_range_count(); ++i) {
6079     if (message->extension_range(i)->end > max_extension_range + 1) {
6080       AddError(message->full_name(), proto.extension_range(i),
6081                DescriptorPool::ErrorCollector::NUMBER,
6082                strings::Substitute("Extension numbers cannot be greater than $0.",
6083                                 max_extension_range));
6084     }
6085 
6086     ValidateExtensionRangeOptions(message->full_name(),
6087                                   message->extension_ranges_ + i,
6088                                   proto.extension_range(i));
6089   }
6090 }
6091 
6092 
ValidateFieldOptions(FieldDescriptor * field,const FieldDescriptorProto & proto)6093 void DescriptorBuilder::ValidateFieldOptions(
6094     FieldDescriptor* field, const FieldDescriptorProto& proto) {
6095   if (pool_->lazily_build_dependencies_ && (!field || !field->message_type())) {
6096     return;
6097   }
6098   // Only message type fields may be lazy.
6099   if (field->options().lazy()) {
6100     if (field->type() != FieldDescriptor::TYPE_MESSAGE) {
6101       AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
6102                "[lazy = true] can only be specified for submessage fields.");
6103     }
6104   }
6105 
6106   // Only repeated primitive fields may be packed.
6107   if (field->options().packed() && !field->is_packable()) {
6108     AddError(
6109         field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
6110         "[packed = true] can only be specified for repeated primitive fields.");
6111   }
6112 
6113   // Note:  Default instance may not yet be initialized here, so we have to
6114   //   avoid reading from it.
6115   if (field->containing_type_ != nullptr &&
6116       &field->containing_type()->options() !=
6117           &MessageOptions::default_instance() &&
6118       field->containing_type()->options().message_set_wire_format()) {
6119     if (field->is_extension()) {
6120       if (!field->is_optional() ||
6121           field->type() != FieldDescriptor::TYPE_MESSAGE) {
6122         AddError(field->full_name(), proto,
6123                  DescriptorPool::ErrorCollector::TYPE,
6124                  "Extensions of MessageSets must be optional messages.");
6125       }
6126     } else {
6127       AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::NAME,
6128                "MessageSets cannot have fields, only extensions.");
6129     }
6130   }
6131 
6132   // Lite extensions can only be of Lite types.
6133   if (IsLite(field->file()) && field->containing_type_ != nullptr &&
6134       !IsLite(field->containing_type()->file())) {
6135     AddError(field->full_name(), proto,
6136              DescriptorPool::ErrorCollector::EXTENDEE,
6137              "Extensions to non-lite types can only be declared in non-lite "
6138              "files.  Note that you cannot extend a non-lite type to contain "
6139              "a lite type, but the reverse is allowed.");
6140   }
6141 
6142   // Validate map types.
6143   if (field->is_map()) {
6144     if (!ValidateMapEntry(field, proto)) {
6145       AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
6146                "map_entry should not be set explicitly. Use map<KeyType, "
6147                "ValueType> instead.");
6148     }
6149   }
6150 
6151   ValidateJSType(field, proto);
6152 
6153   // json_name option is not allowed on extension fields. Note that the
6154   // json_name field in FieldDescriptorProto is always populated by protoc
6155   // when it sends descriptor data to plugins (caculated from field name if
6156   // the option is not explicitly set) so we can't rely on its presence to
6157   // determine whether the json_name option is set on the field. Here we
6158   // compare it against the default calculated json_name value and consider
6159   // the option set if they are different. This won't catch the case when
6160   // an user explicitly sets json_name to the default value, but should be
6161   // good enough to catch common misuses.
6162   if (field->is_extension() &&
6163       (field->has_json_name() &&
6164        field->json_name() != ToJsonName(field->name()))) {
6165     AddError(field->full_name(), proto,
6166              DescriptorPool::ErrorCollector::OPTION_NAME,
6167              "option json_name is not allowed on extension fields.");
6168   }
6169 
6170 }
6171 
ValidateEnumOptions(EnumDescriptor * enm,const EnumDescriptorProto & proto)6172 void DescriptorBuilder::ValidateEnumOptions(EnumDescriptor* enm,
6173                                             const EnumDescriptorProto& proto) {
6174   VALIDATE_OPTIONS_FROM_ARRAY(enm, value, EnumValue);
6175   if (!enm->options().has_allow_alias() || !enm->options().allow_alias()) {
6176     std::map<int, std::string> used_values;
6177     for (int i = 0; i < enm->value_count(); ++i) {
6178       const EnumValueDescriptor* enum_value = enm->value(i);
6179       if (used_values.find(enum_value->number()) != used_values.end()) {
6180         std::string error =
6181             "\"" + enum_value->full_name() +
6182             "\" uses the same enum value as \"" +
6183             used_values[enum_value->number()] +
6184             "\". If this is intended, set "
6185             "'option allow_alias = true;' to the enum definition.";
6186         if (!enm->options().allow_alias()) {
6187           // Generate error if duplicated enum values are explicitly disallowed.
6188           AddError(enm->full_name(), proto.value(i),
6189                    DescriptorPool::ErrorCollector::NUMBER, error);
6190         }
6191       } else {
6192         used_values[enum_value->number()] = enum_value->full_name();
6193       }
6194     }
6195   }
6196 }
6197 
ValidateEnumValueOptions(EnumValueDescriptor *,const EnumValueDescriptorProto &)6198 void DescriptorBuilder::ValidateEnumValueOptions(
6199     EnumValueDescriptor* /* enum_value */,
6200     const EnumValueDescriptorProto& /* proto */) {
6201   // Nothing to do so far.
6202 }
6203 
ValidateExtensionRangeOptions(const std::string & full_name,Descriptor::ExtensionRange * extension_range,const DescriptorProto_ExtensionRange & proto)6204 void DescriptorBuilder::ValidateExtensionRangeOptions(
6205     const std::string& full_name, Descriptor::ExtensionRange* extension_range,
6206     const DescriptorProto_ExtensionRange& proto) {
6207 }
6208 
ValidateServiceOptions(ServiceDescriptor * service,const ServiceDescriptorProto & proto)6209 void DescriptorBuilder::ValidateServiceOptions(
6210     ServiceDescriptor* service, const ServiceDescriptorProto& proto) {
6211   if (IsLite(service->file()) &&
6212       (service->file()->options().cc_generic_services() ||
6213        service->file()->options().java_generic_services())) {
6214     AddError(service->full_name(), proto, DescriptorPool::ErrorCollector::NAME,
6215              "Files with optimize_for = LITE_RUNTIME cannot define services "
6216              "unless you set both options cc_generic_services and "
6217              "java_generic_services to false.");
6218   }
6219 
6220   VALIDATE_OPTIONS_FROM_ARRAY(service, method, Method);
6221 }
6222 
ValidateMethodOptions(MethodDescriptor *,const MethodDescriptorProto &)6223 void DescriptorBuilder::ValidateMethodOptions(
6224     MethodDescriptor* /* method */, const MethodDescriptorProto& /* proto */) {
6225   // Nothing to do so far.
6226 }
6227 
ValidateMapEntry(FieldDescriptor * field,const FieldDescriptorProto & proto)6228 bool DescriptorBuilder::ValidateMapEntry(FieldDescriptor* field,
6229                                          const FieldDescriptorProto& proto) {
6230   const Descriptor* message = field->message_type();
6231   if (  // Must not contain extensions, extension range or nested message or
6232         // enums
6233       message->extension_count() != 0 ||
6234       field->label() != FieldDescriptor::LABEL_REPEATED ||
6235       message->extension_range_count() != 0 ||
6236       message->nested_type_count() != 0 || message->enum_type_count() != 0 ||
6237       // Must contain exactly two fields
6238       message->field_count() != 2 ||
6239       // Field name and message name must match
6240       message->name() != ToCamelCase(field->name(), false) + "Entry" ||
6241       // Entry message must be in the same containing type of the field.
6242       field->containing_type() != message->containing_type()) {
6243     return false;
6244   }
6245 
6246   const FieldDescriptor* key = message->map_key();
6247   const FieldDescriptor* value = message->map_value();
6248   if (key->label() != FieldDescriptor::LABEL_OPTIONAL || key->number() != 1 ||
6249       key->name() != "key") {
6250     return false;
6251   }
6252   if (value->label() != FieldDescriptor::LABEL_OPTIONAL ||
6253       value->number() != 2 || value->name() != "value") {
6254     return false;
6255   }
6256 
6257   // Check key types are legal.
6258   switch (key->type()) {
6259     case FieldDescriptor::TYPE_ENUM:
6260       AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
6261                "Key in map fields cannot be enum types.");
6262       break;
6263     case FieldDescriptor::TYPE_FLOAT:
6264     case FieldDescriptor::TYPE_DOUBLE:
6265     case FieldDescriptor::TYPE_MESSAGE:
6266     case FieldDescriptor::TYPE_GROUP:
6267     case FieldDescriptor::TYPE_BYTES:
6268       AddError(
6269           field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
6270           "Key in map fields cannot be float/double, bytes or message types.");
6271       break;
6272     case FieldDescriptor::TYPE_BOOL:
6273     case FieldDescriptor::TYPE_INT32:
6274     case FieldDescriptor::TYPE_INT64:
6275     case FieldDescriptor::TYPE_SINT32:
6276     case FieldDescriptor::TYPE_SINT64:
6277     case FieldDescriptor::TYPE_STRING:
6278     case FieldDescriptor::TYPE_UINT32:
6279     case FieldDescriptor::TYPE_UINT64:
6280     case FieldDescriptor::TYPE_FIXED32:
6281     case FieldDescriptor::TYPE_FIXED64:
6282     case FieldDescriptor::TYPE_SFIXED32:
6283     case FieldDescriptor::TYPE_SFIXED64:
6284       // Legal cases
6285       break;
6286       // Do not add a default, so that the compiler will complain when new types
6287       // are added.
6288   }
6289 
6290   if (value->type() == FieldDescriptor::TYPE_ENUM) {
6291     if (value->enum_type()->value(0)->number() != 0) {
6292       AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
6293                "Enum value in map must define 0 as the first value.");
6294     }
6295   }
6296 
6297   return true;
6298 }
6299 
DetectMapConflicts(const Descriptor * message,const DescriptorProto & proto)6300 void DescriptorBuilder::DetectMapConflicts(const Descriptor* message,
6301                                            const DescriptorProto& proto) {
6302   std::map<std::string, const Descriptor*> seen_types;
6303   for (int i = 0; i < message->nested_type_count(); ++i) {
6304     const Descriptor* nested = message->nested_type(i);
6305     std::pair<std::map<std::string, const Descriptor*>::iterator, bool> result =
6306         seen_types.insert(std::make_pair(nested->name(), nested));
6307     if (!result.second) {
6308       if (result.first->second->options().map_entry() ||
6309           nested->options().map_entry()) {
6310         AddError(message->full_name(), proto,
6311                  DescriptorPool::ErrorCollector::NAME,
6312                  "Expanded map entry type " + nested->name() +
6313                      " conflicts with an existing nested message type.");
6314       }
6315     }
6316     // Recursively test on the nested types.
6317     DetectMapConflicts(message->nested_type(i), proto.nested_type(i));
6318   }
6319   // Check for conflicted field names.
6320   for (int i = 0; i < message->field_count(); ++i) {
6321     const FieldDescriptor* field = message->field(i);
6322     std::map<std::string, const Descriptor*>::iterator iter =
6323         seen_types.find(field->name());
6324     if (iter != seen_types.end() && iter->second->options().map_entry()) {
6325       AddError(message->full_name(), proto,
6326                DescriptorPool::ErrorCollector::NAME,
6327                "Expanded map entry type " + iter->second->name() +
6328                    " conflicts with an existing field.");
6329     }
6330   }
6331   // Check for conflicted enum names.
6332   for (int i = 0; i < message->enum_type_count(); ++i) {
6333     const EnumDescriptor* enum_desc = message->enum_type(i);
6334     std::map<std::string, const Descriptor*>::iterator iter =
6335         seen_types.find(enum_desc->name());
6336     if (iter != seen_types.end() && iter->second->options().map_entry()) {
6337       AddError(message->full_name(), proto,
6338                DescriptorPool::ErrorCollector::NAME,
6339                "Expanded map entry type " + iter->second->name() +
6340                    " conflicts with an existing enum type.");
6341     }
6342   }
6343   // Check for conflicted oneof names.
6344   for (int i = 0; i < message->oneof_decl_count(); ++i) {
6345     const OneofDescriptor* oneof_desc = message->oneof_decl(i);
6346     std::map<std::string, const Descriptor*>::iterator iter =
6347         seen_types.find(oneof_desc->name());
6348     if (iter != seen_types.end() && iter->second->options().map_entry()) {
6349       AddError(message->full_name(), proto,
6350                DescriptorPool::ErrorCollector::NAME,
6351                "Expanded map entry type " + iter->second->name() +
6352                    " conflicts with an existing oneof type.");
6353     }
6354   }
6355 }
6356 
ValidateJSType(FieldDescriptor * field,const FieldDescriptorProto & proto)6357 void DescriptorBuilder::ValidateJSType(FieldDescriptor* field,
6358                                        const FieldDescriptorProto& proto) {
6359   FieldOptions::JSType jstype = field->options().jstype();
6360   // The default is always acceptable.
6361   if (jstype == FieldOptions::JS_NORMAL) {
6362     return;
6363   }
6364 
6365   switch (field->type()) {
6366     // Integral 64-bit types may be represented as JavaScript numbers or
6367     // strings.
6368     case FieldDescriptor::TYPE_UINT64:
6369     case FieldDescriptor::TYPE_INT64:
6370     case FieldDescriptor::TYPE_SINT64:
6371     case FieldDescriptor::TYPE_FIXED64:
6372     case FieldDescriptor::TYPE_SFIXED64:
6373       if (jstype == FieldOptions::JS_STRING ||
6374           jstype == FieldOptions::JS_NUMBER) {
6375         return;
6376       }
6377       AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
6378                "Illegal jstype for int64, uint64, sint64, fixed64 "
6379                "or sfixed64 field: " +
6380                    FieldOptions_JSType_descriptor()->value(jstype)->name());
6381       break;
6382 
6383     // No other types permit a jstype option.
6384     default:
6385       AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
6386                "jstype is only allowed on int64, uint64, sint64, fixed64 "
6387                "or sfixed64 fields.");
6388       break;
6389   }
6390 }
6391 
6392 #undef VALIDATE_OPTIONS_FROM_ARRAY
6393 
6394 // -------------------------------------------------------------------
6395 
OptionInterpreter(DescriptorBuilder * builder)6396 DescriptorBuilder::OptionInterpreter::OptionInterpreter(
6397     DescriptorBuilder* builder)
6398     : builder_(builder) {
6399   GOOGLE_CHECK(builder_);
6400 }
6401 
~OptionInterpreter()6402 DescriptorBuilder::OptionInterpreter::~OptionInterpreter() {}
6403 
6404 
InterpretOptions(OptionsToInterpret * options_to_interpret)6405 bool DescriptorBuilder::OptionInterpreter::InterpretOptions(
6406     OptionsToInterpret* options_to_interpret) {
6407   // Note that these may be in different pools, so we can't use the same
6408   // descriptor and reflection objects on both.
6409   Message* options = options_to_interpret->options;
6410   const Message* original_options = options_to_interpret->original_options;
6411 
6412   bool failed = false;
6413   options_to_interpret_ = options_to_interpret;
6414 
6415   // Find the uninterpreted_option field in the mutable copy of the options
6416   // and clear them, since we're about to interpret them.
6417   const FieldDescriptor* uninterpreted_options_field =
6418       options->GetDescriptor()->FindFieldByName("uninterpreted_option");
6419   GOOGLE_CHECK(uninterpreted_options_field != nullptr)
6420       << "No field named \"uninterpreted_option\" in the Options proto.";
6421   options->GetReflection()->ClearField(options, uninterpreted_options_field);
6422 
6423   std::vector<int> src_path = options_to_interpret->element_path;
6424   src_path.push_back(uninterpreted_options_field->number());
6425 
6426   // Find the uninterpreted_option field in the original options.
6427   const FieldDescriptor* original_uninterpreted_options_field =
6428       original_options->GetDescriptor()->FindFieldByName(
6429           "uninterpreted_option");
6430   GOOGLE_CHECK(original_uninterpreted_options_field != nullptr)
6431       << "No field named \"uninterpreted_option\" in the Options proto.";
6432 
6433   const int num_uninterpreted_options =
6434       original_options->GetReflection()->FieldSize(
6435           *original_options, original_uninterpreted_options_field);
6436   for (int i = 0; i < num_uninterpreted_options; ++i) {
6437     src_path.push_back(i);
6438     uninterpreted_option_ = down_cast<const UninterpretedOption*>(
6439         &original_options->GetReflection()->GetRepeatedMessage(
6440             *original_options, original_uninterpreted_options_field, i));
6441     if (!InterpretSingleOption(options, src_path,
6442                                options_to_interpret->element_path)) {
6443       // Error already added by InterpretSingleOption().
6444       failed = true;
6445       break;
6446     }
6447     src_path.pop_back();
6448   }
6449   // Reset these, so we don't have any dangling pointers.
6450   uninterpreted_option_ = nullptr;
6451   options_to_interpret_ = nullptr;
6452 
6453   if (!failed) {
6454     // InterpretSingleOption() added the interpreted options in the
6455     // UnknownFieldSet, in case the option isn't yet known to us.  Now we
6456     // serialize the options message and deserialize it back.  That way, any
6457     // option fields that we do happen to know about will get moved from the
6458     // UnknownFieldSet into the real fields, and thus be available right away.
6459     // If they are not known, that's OK too. They will get reparsed into the
6460     // UnknownFieldSet and wait there until the message is parsed by something
6461     // that does know about the options.
6462 
6463     // Keep the unparsed options around in case the reparsing fails.
6464     std::unique_ptr<Message> unparsed_options(options->New());
6465     options->GetReflection()->Swap(unparsed_options.get(), options);
6466 
6467     std::string buf;
6468     if (!unparsed_options->AppendToString(&buf) ||
6469         !options->ParseFromString(buf)) {
6470       builder_->AddError(
6471           options_to_interpret->element_name, *original_options,
6472           DescriptorPool::ErrorCollector::OTHER,
6473           "Some options could not be correctly parsed using the proto "
6474           "descriptors compiled into this binary.\n"
6475           "Unparsed options: " +
6476               unparsed_options->ShortDebugString() +
6477               "\n"
6478               "Parsing attempt:  " +
6479               options->ShortDebugString());
6480       // Restore the unparsed options.
6481       options->GetReflection()->Swap(unparsed_options.get(), options);
6482     }
6483   }
6484 
6485 
6486   return !failed;
6487 }
6488 
InterpretSingleOption(Message * options,const std::vector<int> & src_path,const std::vector<int> & options_path)6489 bool DescriptorBuilder::OptionInterpreter::InterpretSingleOption(
6490     Message* options, const std::vector<int>& src_path,
6491     const std::vector<int>& options_path) {
6492   // First do some basic validation.
6493   if (uninterpreted_option_->name_size() == 0) {
6494     // This should never happen unless the parser has gone seriously awry or
6495     // someone has manually created the uninterpreted option badly.
6496     return AddNameError("Option must have a name.");
6497   }
6498   if (uninterpreted_option_->name(0).name_part() == "uninterpreted_option") {
6499     return AddNameError(
6500         "Option must not use reserved name "
6501         "\"uninterpreted_option\".");
6502   }
6503 
6504   const Descriptor* options_descriptor = nullptr;
6505   // Get the options message's descriptor from the builder's pool, so that we
6506   // get the version that knows about any extension options declared in the file
6507   // we're currently building. The descriptor should be there as long as the
6508   // file we're building imported descriptor.proto.
6509 
6510   // Note that we use DescriptorBuilder::FindSymbolNotEnforcingDeps(), not
6511   // DescriptorPool::FindMessageTypeByName() because we're already holding the
6512   // pool's mutex, and the latter method locks it again.  We don't use
6513   // FindSymbol() because files that use custom options only need to depend on
6514   // the file that defines the option, not descriptor.proto itself.
6515   Symbol symbol = builder_->FindSymbolNotEnforcingDeps(
6516       options->GetDescriptor()->full_name());
6517   if (!symbol.IsNull() && symbol.type == Symbol::MESSAGE) {
6518     options_descriptor = symbol.descriptor;
6519   } else {
6520     // The options message's descriptor was not in the builder's pool, so use
6521     // the standard version from the generated pool. We're not holding the
6522     // generated pool's mutex, so we can search it the straightforward way.
6523     options_descriptor = options->GetDescriptor();
6524   }
6525   GOOGLE_CHECK(options_descriptor);
6526 
6527   // We iterate over the name parts to drill into the submessages until we find
6528   // the leaf field for the option. As we drill down we remember the current
6529   // submessage's descriptor in |descriptor| and the next field in that
6530   // submessage in |field|. We also track the fields we're drilling down
6531   // through in |intermediate_fields|. As we go, we reconstruct the full option
6532   // name in |debug_msg_name|, for use in error messages.
6533   const Descriptor* descriptor = options_descriptor;
6534   const FieldDescriptor* field = nullptr;
6535   std::vector<const FieldDescriptor*> intermediate_fields;
6536   std::string debug_msg_name = "";
6537 
6538   std::vector<int> dest_path = options_path;
6539 
6540   for (int i = 0; i < uninterpreted_option_->name_size(); ++i) {
6541     builder_->undefine_resolved_name_.clear();
6542     const std::string& name_part = uninterpreted_option_->name(i).name_part();
6543     if (debug_msg_name.size() > 0) {
6544       debug_msg_name += ".";
6545     }
6546     if (uninterpreted_option_->name(i).is_extension()) {
6547       debug_msg_name += "(" + name_part + ")";
6548       // Search for the extension's descriptor as an extension in the builder's
6549       // pool. Note that we use DescriptorBuilder::LookupSymbol(), not
6550       // DescriptorPool::FindExtensionByName(), for two reasons: 1) It allows
6551       // relative lookups, and 2) because we're already holding the pool's
6552       // mutex, and the latter method locks it again.
6553       symbol =
6554           builder_->LookupSymbol(name_part, options_to_interpret_->name_scope);
6555       if (!symbol.IsNull() && symbol.type == Symbol::FIELD) {
6556         field = symbol.field_descriptor;
6557       }
6558       // If we don't find the field then the field's descriptor was not in the
6559       // builder's pool, but there's no point in looking in the generated
6560       // pool. We require that you import the file that defines any extensions
6561       // you use, so they must be present in the builder's pool.
6562     } else {
6563       debug_msg_name += name_part;
6564       // Search for the field's descriptor as a regular field.
6565       field = descriptor->FindFieldByName(name_part);
6566     }
6567 
6568     if (field == nullptr) {
6569       if (get_allow_unknown(builder_->pool_)) {
6570         // We can't find the option, but AllowUnknownDependencies() is enabled,
6571         // so we will just leave it as uninterpreted.
6572         AddWithoutInterpreting(*uninterpreted_option_, options);
6573         return true;
6574       } else if (!(builder_->undefine_resolved_name_).empty()) {
6575         // Option is resolved to a name which is not defined.
6576         return AddNameError(
6577             "Option \"" + debug_msg_name + "\" is resolved to \"(" +
6578             builder_->undefine_resolved_name_ +
6579             ")\", which is not defined. The innermost scope is searched first "
6580             "in name resolution. Consider using a leading '.'(i.e., \"(." +
6581             debug_msg_name.substr(1) +
6582             "\") to start from the outermost scope.");
6583       } else {
6584         return AddNameError(
6585             "Option \"" + debug_msg_name +
6586             "\" unknown. Ensure that your proto" +
6587             " definition file imports the proto which defines the option.");
6588       }
6589     } else if (field->containing_type() != descriptor) {
6590       if (get_is_placeholder(field->containing_type())) {
6591         // The field is an extension of a placeholder type, so we can't
6592         // reliably verify whether it is a valid extension to use here (e.g.
6593         // we don't know if it is an extension of the correct *Options message,
6594         // or if it has a valid field number, etc.).  Just leave it as
6595         // uninterpreted instead.
6596         AddWithoutInterpreting(*uninterpreted_option_, options);
6597         return true;
6598       } else {
6599         // This can only happen if, due to some insane misconfiguration of the
6600         // pools, we find the options message in one pool but the field in
6601         // another. This would probably imply a hefty bug somewhere.
6602         return AddNameError("Option field \"" + debug_msg_name +
6603                             "\" is not a field or extension of message \"" +
6604                             descriptor->name() + "\".");
6605       }
6606     } else {
6607       // accumulate field numbers to form path to interpreted option
6608       dest_path.push_back(field->number());
6609 
6610       if (i < uninterpreted_option_->name_size() - 1) {
6611         if (field->cpp_type() != FieldDescriptor::CPPTYPE_MESSAGE) {
6612           return AddNameError("Option \"" + debug_msg_name +
6613                               "\" is an atomic type, not a message.");
6614         } else if (field->is_repeated()) {
6615           return AddNameError("Option field \"" + debug_msg_name +
6616                               "\" is a repeated message. Repeated message "
6617                               "options must be initialized using an "
6618                               "aggregate value.");
6619         } else {
6620           // Drill down into the submessage.
6621           intermediate_fields.push_back(field);
6622           descriptor = field->message_type();
6623         }
6624       }
6625     }
6626   }
6627 
6628   // We've found the leaf field. Now we use UnknownFieldSets to set its value
6629   // on the options message. We do so because the message may not yet know
6630   // about its extension fields, so we may not be able to set the fields
6631   // directly. But the UnknownFieldSets will serialize to the same wire-format
6632   // message, so reading that message back in once the extension fields are
6633   // known will populate them correctly.
6634 
6635   // First see if the option is already set.
6636   if (!field->is_repeated() &&
6637       !ExamineIfOptionIsSet(
6638           intermediate_fields.begin(), intermediate_fields.end(), field,
6639           debug_msg_name,
6640           options->GetReflection()->GetUnknownFields(*options))) {
6641     return false;  // ExamineIfOptionIsSet() already added the error.
6642   }
6643 
6644   // First set the value on the UnknownFieldSet corresponding to the
6645   // innermost message.
6646   std::unique_ptr<UnknownFieldSet> unknown_fields(new UnknownFieldSet());
6647   if (!SetOptionValue(field, unknown_fields.get())) {
6648     return false;  // SetOptionValue() already added the error.
6649   }
6650 
6651   // Now wrap the UnknownFieldSet with UnknownFieldSets corresponding to all
6652   // the intermediate messages.
6653   for (std::vector<const FieldDescriptor*>::reverse_iterator iter =
6654            intermediate_fields.rbegin();
6655        iter != intermediate_fields.rend(); ++iter) {
6656     std::unique_ptr<UnknownFieldSet> parent_unknown_fields(
6657         new UnknownFieldSet());
6658     switch ((*iter)->type()) {
6659       case FieldDescriptor::TYPE_MESSAGE: {
6660         io::StringOutputStream outstr(
6661             parent_unknown_fields->AddLengthDelimited((*iter)->number()));
6662         io::CodedOutputStream out(&outstr);
6663         internal::WireFormat::SerializeUnknownFields(*unknown_fields, &out);
6664         GOOGLE_CHECK(!out.HadError())
6665             << "Unexpected failure while serializing option submessage "
6666             << debug_msg_name << "\".";
6667         break;
6668       }
6669 
6670       case FieldDescriptor::TYPE_GROUP: {
6671         parent_unknown_fields->AddGroup((*iter)->number())
6672             ->MergeFrom(*unknown_fields);
6673         break;
6674       }
6675 
6676       default:
6677         GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_MESSAGE: "
6678                    << (*iter)->type();
6679         return false;
6680     }
6681     unknown_fields.reset(parent_unknown_fields.release());
6682   }
6683 
6684   // Now merge the UnknownFieldSet corresponding to the top-level message into
6685   // the options message.
6686   options->GetReflection()->MutableUnknownFields(options)->MergeFrom(
6687       *unknown_fields);
6688 
6689   // record the element path of the interpreted option
6690   if (field->is_repeated()) {
6691     int index = repeated_option_counts_[dest_path]++;
6692     dest_path.push_back(index);
6693   }
6694   interpreted_paths_[src_path] = dest_path;
6695 
6696   return true;
6697 }
6698 
UpdateSourceCodeInfo(SourceCodeInfo * info)6699 void DescriptorBuilder::OptionInterpreter::UpdateSourceCodeInfo(
6700     SourceCodeInfo* info) {
6701   if (interpreted_paths_.empty()) {
6702     // nothing to do!
6703     return;
6704   }
6705 
6706   // We find locations that match keys in interpreted_paths_ and
6707   // 1) replace the path with the corresponding value in interpreted_paths_
6708   // 2) remove any subsequent sub-locations (sub-location is one whose path
6709   //    has the parent path as a prefix)
6710   //
6711   // To avoid quadratic behavior of removing interior rows as we go,
6712   // we keep a copy. But we don't actually copy anything until we've
6713   // found the first match (so if the source code info has no locations
6714   // that need to be changed, there is zero copy overhead).
6715 
6716   RepeatedPtrField<SourceCodeInfo_Location>* locs = info->mutable_location();
6717   RepeatedPtrField<SourceCodeInfo_Location> new_locs;
6718   bool copying = false;
6719 
6720   std::vector<int> pathv;
6721   bool matched = false;
6722 
6723   for (RepeatedPtrField<SourceCodeInfo_Location>::iterator loc = locs->begin();
6724        loc != locs->end(); loc++) {
6725     if (matched) {
6726       // see if this location is in the range to remove
6727       bool loc_matches = true;
6728       if (loc->path_size() < pathv.size()) {
6729         loc_matches = false;
6730       } else {
6731         for (int j = 0; j < pathv.size(); j++) {
6732           if (loc->path(j) != pathv[j]) {
6733             loc_matches = false;
6734             break;
6735           }
6736         }
6737       }
6738 
6739       if (loc_matches) {
6740         // don't copy this row since it is a sub-location that we're removing
6741         continue;
6742       }
6743 
6744       matched = false;
6745     }
6746 
6747     pathv.clear();
6748     for (int j = 0; j < loc->path_size(); j++) {
6749       pathv.push_back(loc->path(j));
6750     }
6751 
6752     std::map<std::vector<int>, std::vector<int>>::iterator entry =
6753         interpreted_paths_.find(pathv);
6754 
6755     if (entry == interpreted_paths_.end()) {
6756       // not a match
6757       if (copying) {
6758         *new_locs.Add() = *loc;
6759       }
6760       continue;
6761     }
6762 
6763     matched = true;
6764 
6765     if (!copying) {
6766       // initialize the copy we are building
6767       copying = true;
6768       new_locs.Reserve(locs->size());
6769       for (RepeatedPtrField<SourceCodeInfo_Location>::iterator it =
6770                locs->begin();
6771            it != loc; it++) {
6772         *new_locs.Add() = *it;
6773       }
6774     }
6775 
6776     // add replacement and update its path
6777     SourceCodeInfo_Location* replacement = new_locs.Add();
6778     *replacement = *loc;
6779     replacement->clear_path();
6780     for (std::vector<int>::iterator rit = entry->second.begin();
6781          rit != entry->second.end(); rit++) {
6782       replacement->add_path(*rit);
6783     }
6784   }
6785 
6786   // if we made a changed copy, put it in place
6787   if (copying) {
6788     *locs = new_locs;
6789   }
6790 }
6791 
AddWithoutInterpreting(const UninterpretedOption & uninterpreted_option,Message * options)6792 void DescriptorBuilder::OptionInterpreter::AddWithoutInterpreting(
6793     const UninterpretedOption& uninterpreted_option, Message* options) {
6794   const FieldDescriptor* field =
6795       options->GetDescriptor()->FindFieldByName("uninterpreted_option");
6796   GOOGLE_CHECK(field != nullptr);
6797 
6798   options->GetReflection()
6799       ->AddMessage(options, field)
6800       ->CopyFrom(uninterpreted_option);
6801 }
6802 
ExamineIfOptionIsSet(std::vector<const FieldDescriptor * >::const_iterator intermediate_fields_iter,std::vector<const FieldDescriptor * >::const_iterator intermediate_fields_end,const FieldDescriptor * innermost_field,const std::string & debug_msg_name,const UnknownFieldSet & unknown_fields)6803 bool DescriptorBuilder::OptionInterpreter::ExamineIfOptionIsSet(
6804     std::vector<const FieldDescriptor*>::const_iterator
6805         intermediate_fields_iter,
6806     std::vector<const FieldDescriptor*>::const_iterator intermediate_fields_end,
6807     const FieldDescriptor* innermost_field, const std::string& debug_msg_name,
6808     const UnknownFieldSet& unknown_fields) {
6809   // We do linear searches of the UnknownFieldSet and its sub-groups.  This
6810   // should be fine since it's unlikely that any one options structure will
6811   // contain more than a handful of options.
6812 
6813   if (intermediate_fields_iter == intermediate_fields_end) {
6814     // We're at the innermost submessage.
6815     for (int i = 0; i < unknown_fields.field_count(); i++) {
6816       if (unknown_fields.field(i).number() == innermost_field->number()) {
6817         return AddNameError("Option \"" + debug_msg_name +
6818                             "\" was already set.");
6819       }
6820     }
6821     return true;
6822   }
6823 
6824   for (int i = 0; i < unknown_fields.field_count(); i++) {
6825     if (unknown_fields.field(i).number() ==
6826         (*intermediate_fields_iter)->number()) {
6827       const UnknownField* unknown_field = &unknown_fields.field(i);
6828       FieldDescriptor::Type type = (*intermediate_fields_iter)->type();
6829       // Recurse into the next submessage.
6830       switch (type) {
6831         case FieldDescriptor::TYPE_MESSAGE:
6832           if (unknown_field->type() == UnknownField::TYPE_LENGTH_DELIMITED) {
6833             UnknownFieldSet intermediate_unknown_fields;
6834             if (intermediate_unknown_fields.ParseFromString(
6835                     unknown_field->length_delimited()) &&
6836                 !ExamineIfOptionIsSet(intermediate_fields_iter + 1,
6837                                       intermediate_fields_end, innermost_field,
6838                                       debug_msg_name,
6839                                       intermediate_unknown_fields)) {
6840               return false;  // Error already added.
6841             }
6842           }
6843           break;
6844 
6845         case FieldDescriptor::TYPE_GROUP:
6846           if (unknown_field->type() == UnknownField::TYPE_GROUP) {
6847             if (!ExamineIfOptionIsSet(intermediate_fields_iter + 1,
6848                                       intermediate_fields_end, innermost_field,
6849                                       debug_msg_name, unknown_field->group())) {
6850               return false;  // Error already added.
6851             }
6852           }
6853           break;
6854 
6855         default:
6856           GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_MESSAGE: " << type;
6857           return false;
6858       }
6859     }
6860   }
6861   return true;
6862 }
6863 
SetOptionValue(const FieldDescriptor * option_field,UnknownFieldSet * unknown_fields)6864 bool DescriptorBuilder::OptionInterpreter::SetOptionValue(
6865     const FieldDescriptor* option_field, UnknownFieldSet* unknown_fields) {
6866   // We switch on the CppType to validate.
6867   switch (option_field->cpp_type()) {
6868     case FieldDescriptor::CPPTYPE_INT32:
6869       if (uninterpreted_option_->has_positive_int_value()) {
6870         if (uninterpreted_option_->positive_int_value() >
6871             static_cast<uint64>(kint32max)) {
6872           return AddValueError("Value out of range for int32 option \"" +
6873                                option_field->full_name() + "\".");
6874         } else {
6875           SetInt32(option_field->number(),
6876                    uninterpreted_option_->positive_int_value(),
6877                    option_field->type(), unknown_fields);
6878         }
6879       } else if (uninterpreted_option_->has_negative_int_value()) {
6880         if (uninterpreted_option_->negative_int_value() <
6881             static_cast<int64>(kint32min)) {
6882           return AddValueError("Value out of range for int32 option \"" +
6883                                option_field->full_name() + "\".");
6884         } else {
6885           SetInt32(option_field->number(),
6886                    uninterpreted_option_->negative_int_value(),
6887                    option_field->type(), unknown_fields);
6888         }
6889       } else {
6890         return AddValueError("Value must be integer for int32 option \"" +
6891                              option_field->full_name() + "\".");
6892       }
6893       break;
6894 
6895     case FieldDescriptor::CPPTYPE_INT64:
6896       if (uninterpreted_option_->has_positive_int_value()) {
6897         if (uninterpreted_option_->positive_int_value() >
6898             static_cast<uint64>(kint64max)) {
6899           return AddValueError("Value out of range for int64 option \"" +
6900                                option_field->full_name() + "\".");
6901         } else {
6902           SetInt64(option_field->number(),
6903                    uninterpreted_option_->positive_int_value(),
6904                    option_field->type(), unknown_fields);
6905         }
6906       } else if (uninterpreted_option_->has_negative_int_value()) {
6907         SetInt64(option_field->number(),
6908                  uninterpreted_option_->negative_int_value(),
6909                  option_field->type(), unknown_fields);
6910       } else {
6911         return AddValueError("Value must be integer for int64 option \"" +
6912                              option_field->full_name() + "\".");
6913       }
6914       break;
6915 
6916     case FieldDescriptor::CPPTYPE_UINT32:
6917       if (uninterpreted_option_->has_positive_int_value()) {
6918         if (uninterpreted_option_->positive_int_value() > kuint32max) {
6919           return AddValueError("Value out of range for uint32 option \"" +
6920                                option_field->name() + "\".");
6921         } else {
6922           SetUInt32(option_field->number(),
6923                     uninterpreted_option_->positive_int_value(),
6924                     option_field->type(), unknown_fields);
6925         }
6926       } else {
6927         return AddValueError(
6928             "Value must be non-negative integer for uint32 "
6929             "option \"" +
6930             option_field->full_name() + "\".");
6931       }
6932       break;
6933 
6934     case FieldDescriptor::CPPTYPE_UINT64:
6935       if (uninterpreted_option_->has_positive_int_value()) {
6936         SetUInt64(option_field->number(),
6937                   uninterpreted_option_->positive_int_value(),
6938                   option_field->type(), unknown_fields);
6939       } else {
6940         return AddValueError(
6941             "Value must be non-negative integer for uint64 "
6942             "option \"" +
6943             option_field->full_name() + "\".");
6944       }
6945       break;
6946 
6947     case FieldDescriptor::CPPTYPE_FLOAT: {
6948       float value;
6949       if (uninterpreted_option_->has_double_value()) {
6950         value = uninterpreted_option_->double_value();
6951       } else if (uninterpreted_option_->has_positive_int_value()) {
6952         value = uninterpreted_option_->positive_int_value();
6953       } else if (uninterpreted_option_->has_negative_int_value()) {
6954         value = uninterpreted_option_->negative_int_value();
6955       } else {
6956         return AddValueError("Value must be number for float option \"" +
6957                              option_field->full_name() + "\".");
6958       }
6959       unknown_fields->AddFixed32(option_field->number(),
6960                                  internal::WireFormatLite::EncodeFloat(value));
6961       break;
6962     }
6963 
6964     case FieldDescriptor::CPPTYPE_DOUBLE: {
6965       double value;
6966       if (uninterpreted_option_->has_double_value()) {
6967         value = uninterpreted_option_->double_value();
6968       } else if (uninterpreted_option_->has_positive_int_value()) {
6969         value = uninterpreted_option_->positive_int_value();
6970       } else if (uninterpreted_option_->has_negative_int_value()) {
6971         value = uninterpreted_option_->negative_int_value();
6972       } else {
6973         return AddValueError("Value must be number for double option \"" +
6974                              option_field->full_name() + "\".");
6975       }
6976       unknown_fields->AddFixed64(option_field->number(),
6977                                  internal::WireFormatLite::EncodeDouble(value));
6978       break;
6979     }
6980 
6981     case FieldDescriptor::CPPTYPE_BOOL:
6982       uint64 value;
6983       if (!uninterpreted_option_->has_identifier_value()) {
6984         return AddValueError(
6985             "Value must be identifier for boolean option "
6986             "\"" +
6987             option_field->full_name() + "\".");
6988       }
6989       if (uninterpreted_option_->identifier_value() == "true") {
6990         value = 1;
6991       } else if (uninterpreted_option_->identifier_value() == "false") {
6992         value = 0;
6993       } else {
6994         return AddValueError(
6995             "Value must be \"true\" or \"false\" for boolean "
6996             "option \"" +
6997             option_field->full_name() + "\".");
6998       }
6999       unknown_fields->AddVarint(option_field->number(), value);
7000       break;
7001 
7002     case FieldDescriptor::CPPTYPE_ENUM: {
7003       if (!uninterpreted_option_->has_identifier_value()) {
7004         return AddValueError(
7005             "Value must be identifier for enum-valued option "
7006             "\"" +
7007             option_field->full_name() + "\".");
7008       }
7009       const EnumDescriptor* enum_type = option_field->enum_type();
7010       const std::string& value_name = uninterpreted_option_->identifier_value();
7011       const EnumValueDescriptor* enum_value = nullptr;
7012 
7013       if (enum_type->file()->pool() != DescriptorPool::generated_pool()) {
7014         // Note that the enum value's fully-qualified name is a sibling of the
7015         // enum's name, not a child of it.
7016         std::string fully_qualified_name = enum_type->full_name();
7017         fully_qualified_name.resize(fully_qualified_name.size() -
7018                                     enum_type->name().size());
7019         fully_qualified_name += value_name;
7020 
7021         // Search for the enum value's descriptor in the builder's pool. Note
7022         // that we use DescriptorBuilder::FindSymbolNotEnforcingDeps(), not
7023         // DescriptorPool::FindEnumValueByName() because we're already holding
7024         // the pool's mutex, and the latter method locks it again.
7025         Symbol symbol =
7026             builder_->FindSymbolNotEnforcingDeps(fully_qualified_name);
7027         if (!symbol.IsNull() && symbol.type == Symbol::ENUM_VALUE) {
7028           if (symbol.enum_value_descriptor->type() != enum_type) {
7029             return AddValueError(
7030                 "Enum type \"" + enum_type->full_name() +
7031                 "\" has no value named \"" + value_name + "\" for option \"" +
7032                 option_field->full_name() +
7033                 "\". This appears to be a value from a sibling type.");
7034           } else {
7035             enum_value = symbol.enum_value_descriptor;
7036           }
7037         }
7038       } else {
7039         // The enum type is in the generated pool, so we can search for the
7040         // value there.
7041         enum_value = enum_type->FindValueByName(value_name);
7042       }
7043 
7044       if (enum_value == nullptr) {
7045         return AddValueError("Enum type \"" +
7046                              option_field->enum_type()->full_name() +
7047                              "\" has no value named \"" + value_name +
7048                              "\" for "
7049                              "option \"" +
7050                              option_field->full_name() + "\".");
7051       } else {
7052         // Sign-extension is not a problem, since we cast directly from int32 to
7053         // uint64, without first going through uint32.
7054         unknown_fields->AddVarint(
7055             option_field->number(),
7056             static_cast<uint64>(static_cast<int64>(enum_value->number())));
7057       }
7058       break;
7059     }
7060 
7061     case FieldDescriptor::CPPTYPE_STRING:
7062       if (!uninterpreted_option_->has_string_value()) {
7063         return AddValueError(
7064             "Value must be quoted string for string option "
7065             "\"" +
7066             option_field->full_name() + "\".");
7067       }
7068       // The string has already been unquoted and unescaped by the parser.
7069       unknown_fields->AddLengthDelimited(option_field->number(),
7070                                          uninterpreted_option_->string_value());
7071       break;
7072 
7073     case FieldDescriptor::CPPTYPE_MESSAGE:
7074       if (!SetAggregateOption(option_field, unknown_fields)) {
7075         return false;
7076       }
7077       break;
7078   }
7079 
7080   return true;
7081 }
7082 
7083 class DescriptorBuilder::OptionInterpreter::AggregateOptionFinder
7084     : public TextFormat::Finder {
7085  public:
7086   DescriptorBuilder* builder_;
7087 
FindExtension(Message * message,const std::string & name) const7088   const FieldDescriptor* FindExtension(Message* message,
7089                                        const std::string& name) const override {
7090     assert_mutex_held(builder_->pool_);
7091     const Descriptor* descriptor = message->GetDescriptor();
7092     Symbol result =
7093         builder_->LookupSymbolNoPlaceholder(name, descriptor->full_name());
7094     if (result.type == Symbol::FIELD &&
7095         result.field_descriptor->is_extension()) {
7096       return result.field_descriptor;
7097     } else if (result.type == Symbol::MESSAGE &&
7098                descriptor->options().message_set_wire_format()) {
7099       const Descriptor* foreign_type = result.descriptor;
7100       // The text format allows MessageSet items to be specified using
7101       // the type name, rather than the extension identifier. If the symbol
7102       // lookup returned a Message, and the enclosing Message has
7103       // message_set_wire_format = true, then return the message set
7104       // extension, if one exists.
7105       for (int i = 0; i < foreign_type->extension_count(); i++) {
7106         const FieldDescriptor* extension = foreign_type->extension(i);
7107         if (extension->containing_type() == descriptor &&
7108             extension->type() == FieldDescriptor::TYPE_MESSAGE &&
7109             extension->is_optional() &&
7110             extension->message_type() == foreign_type) {
7111           // Found it.
7112           return extension;
7113         }
7114       }
7115     }
7116     return nullptr;
7117   }
7118 };
7119 
7120 // A custom error collector to record any text-format parsing errors
7121 namespace {
7122 class AggregateErrorCollector : public io::ErrorCollector {
7123  public:
7124   std::string error_;
7125 
AddError(int,int,const std::string & message)7126   void AddError(int /* line */, int /* column */,
7127                 const std::string& message) override {
7128     if (!error_.empty()) {
7129       error_ += "; ";
7130     }
7131     error_ += message;
7132   }
7133 
AddWarning(int,int,const std::string &)7134   void AddWarning(int /* line */, int /* column */,
7135                   const std::string& /* message */) override {
7136     // Ignore warnings
7137   }
7138 };
7139 }  // namespace
7140 
7141 // We construct a dynamic message of the type corresponding to
7142 // option_field, parse the supplied text-format string into this
7143 // message, and serialize the resulting message to produce the value.
SetAggregateOption(const FieldDescriptor * option_field,UnknownFieldSet * unknown_fields)7144 bool DescriptorBuilder::OptionInterpreter::SetAggregateOption(
7145     const FieldDescriptor* option_field, UnknownFieldSet* unknown_fields) {
7146   if (!uninterpreted_option_->has_aggregate_value()) {
7147     return AddValueError("Option \"" + option_field->full_name() +
7148                          "\" is a message. To set the entire message, use "
7149                          "syntax like \"" +
7150                          option_field->name() +
7151                          " = { <proto text format> }\". "
7152                          "To set fields within it, use "
7153                          "syntax like \"" +
7154                          option_field->name() + ".foo = value\".");
7155   }
7156 
7157   const Descriptor* type = option_field->message_type();
7158   std::unique_ptr<Message> dynamic(dynamic_factory_.GetPrototype(type)->New());
7159   GOOGLE_CHECK(dynamic.get() != nullptr)
7160       << "Could not create an instance of " << option_field->DebugString();
7161 
7162   AggregateErrorCollector collector;
7163   AggregateOptionFinder finder;
7164   finder.builder_ = builder_;
7165   TextFormat::Parser parser;
7166   parser.RecordErrorsTo(&collector);
7167   parser.SetFinder(&finder);
7168   if (!parser.ParseFromString(uninterpreted_option_->aggregate_value(),
7169                               dynamic.get())) {
7170     AddValueError("Error while parsing option value for \"" +
7171                   option_field->name() + "\": " + collector.error_);
7172     return false;
7173   } else {
7174     std::string serial;
7175     dynamic->SerializeToString(&serial);  // Never fails
7176     if (option_field->type() == FieldDescriptor::TYPE_MESSAGE) {
7177       unknown_fields->AddLengthDelimited(option_field->number(), serial);
7178     } else {
7179       GOOGLE_CHECK_EQ(option_field->type(), FieldDescriptor::TYPE_GROUP);
7180       UnknownFieldSet* group = unknown_fields->AddGroup(option_field->number());
7181       group->ParseFromString(serial);
7182     }
7183     return true;
7184   }
7185 }
7186 
SetInt32(int number,int32 value,FieldDescriptor::Type type,UnknownFieldSet * unknown_fields)7187 void DescriptorBuilder::OptionInterpreter::SetInt32(
7188     int number, int32 value, FieldDescriptor::Type type,
7189     UnknownFieldSet* unknown_fields) {
7190   switch (type) {
7191     case FieldDescriptor::TYPE_INT32:
7192       unknown_fields->AddVarint(number,
7193                                 static_cast<uint64>(static_cast<int64>(value)));
7194       break;
7195 
7196     case FieldDescriptor::TYPE_SFIXED32:
7197       unknown_fields->AddFixed32(number, static_cast<uint32>(value));
7198       break;
7199 
7200     case FieldDescriptor::TYPE_SINT32:
7201       unknown_fields->AddVarint(
7202           number, internal::WireFormatLite::ZigZagEncode32(value));
7203       break;
7204 
7205     default:
7206       GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_INT32: " << type;
7207       break;
7208   }
7209 }
7210 
SetInt64(int number,int64 value,FieldDescriptor::Type type,UnknownFieldSet * unknown_fields)7211 void DescriptorBuilder::OptionInterpreter::SetInt64(
7212     int number, int64 value, FieldDescriptor::Type type,
7213     UnknownFieldSet* unknown_fields) {
7214   switch (type) {
7215     case FieldDescriptor::TYPE_INT64:
7216       unknown_fields->AddVarint(number, static_cast<uint64>(value));
7217       break;
7218 
7219     case FieldDescriptor::TYPE_SFIXED64:
7220       unknown_fields->AddFixed64(number, static_cast<uint64>(value));
7221       break;
7222 
7223     case FieldDescriptor::TYPE_SINT64:
7224       unknown_fields->AddVarint(
7225           number, internal::WireFormatLite::ZigZagEncode64(value));
7226       break;
7227 
7228     default:
7229       GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_INT64: " << type;
7230       break;
7231   }
7232 }
7233 
SetUInt32(int number,uint32 value,FieldDescriptor::Type type,UnknownFieldSet * unknown_fields)7234 void DescriptorBuilder::OptionInterpreter::SetUInt32(
7235     int number, uint32 value, FieldDescriptor::Type type,
7236     UnknownFieldSet* unknown_fields) {
7237   switch (type) {
7238     case FieldDescriptor::TYPE_UINT32:
7239       unknown_fields->AddVarint(number, static_cast<uint64>(value));
7240       break;
7241 
7242     case FieldDescriptor::TYPE_FIXED32:
7243       unknown_fields->AddFixed32(number, static_cast<uint32>(value));
7244       break;
7245 
7246     default:
7247       GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_UINT32: " << type;
7248       break;
7249   }
7250 }
7251 
SetUInt64(int number,uint64 value,FieldDescriptor::Type type,UnknownFieldSet * unknown_fields)7252 void DescriptorBuilder::OptionInterpreter::SetUInt64(
7253     int number, uint64 value, FieldDescriptor::Type type,
7254     UnknownFieldSet* unknown_fields) {
7255   switch (type) {
7256     case FieldDescriptor::TYPE_UINT64:
7257       unknown_fields->AddVarint(number, value);
7258       break;
7259 
7260     case FieldDescriptor::TYPE_FIXED64:
7261       unknown_fields->AddFixed64(number, value);
7262       break;
7263 
7264     default:
7265       GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_UINT64: " << type;
7266       break;
7267   }
7268 }
7269 
LogUnusedDependency(const FileDescriptorProto & proto,const FileDescriptor * result)7270 void DescriptorBuilder::LogUnusedDependency(const FileDescriptorProto& proto,
7271                                             const FileDescriptor* result) {
7272 
7273   if (!unused_dependency_.empty()) {
7274     auto itr = pool_->unused_import_track_files_.find(proto.name());
7275     bool is_error =
7276         itr != pool_->unused_import_track_files_.end() && itr->second;
7277     for (std::set<const FileDescriptor*>::const_iterator it =
7278              unused_dependency_.begin();
7279          it != unused_dependency_.end(); ++it) {
7280       std::string error_message = "Import " + (*it)->name() + " is unused.";
7281       if (is_error) {
7282         AddError((*it)->name(), proto, DescriptorPool::ErrorCollector::IMPORT,
7283                  error_message);
7284       } else {
7285         AddWarning((*it)->name(), proto, DescriptorPool::ErrorCollector::IMPORT,
7286                    error_message);
7287       }
7288     }
7289   }
7290 }
7291 
CrossLinkOnDemandHelper(StringPiece name,bool expecting_enum) const7292 Symbol DescriptorPool::CrossLinkOnDemandHelper(StringPiece name,
7293                                                bool expecting_enum) const {
7294   auto lookup_name = std::string(name);
7295   if (!lookup_name.empty() && lookup_name[0] == '.') {
7296     lookup_name = lookup_name.substr(1);
7297   }
7298   Symbol result = tables_->FindByNameHelper(this, lookup_name);
7299   return result;
7300 }
7301 
7302 // Handle the lazy import building for a message field whose type wasn't built
7303 // at cross link time. If that was the case, we saved the name of the type to
7304 // be looked up when the accessor for the type was called. Set type_,
7305 // enum_type_, message_type_, and default_value_enum_ appropriately.
InternalTypeOnceInit() const7306 void FieldDescriptor::InternalTypeOnceInit() const {
7307   GOOGLE_CHECK(file()->finished_building_ == true);
7308   if (type_name_) {
7309     Symbol result = file()->pool()->CrossLinkOnDemandHelper(
7310         *type_name_, type_ == FieldDescriptor::TYPE_ENUM);
7311     if (result.type == Symbol::MESSAGE) {
7312       type_ = FieldDescriptor::TYPE_MESSAGE;
7313       message_type_ = result.descriptor;
7314     } else if (result.type == Symbol::ENUM) {
7315       type_ = FieldDescriptor::TYPE_ENUM;
7316       enum_type_ = result.enum_descriptor;
7317     }
7318   }
7319   if (enum_type_ && !default_value_enum_) {
7320     if (default_value_enum_name_) {
7321       // Have to build the full name now instead of at CrossLink time,
7322       // because enum_type_ may not be known at the time.
7323       std::string name = enum_type_->full_name();
7324       // Enum values reside in the same scope as the enum type.
7325       std::string::size_type last_dot = name.find_last_of('.');
7326       if (last_dot != std::string::npos) {
7327         name = name.substr(0, last_dot) + "." + *default_value_enum_name_;
7328       } else {
7329         name = *default_value_enum_name_;
7330       }
7331       Symbol result = file()->pool()->CrossLinkOnDemandHelper(name, true);
7332       if (result.type == Symbol::ENUM_VALUE) {
7333         default_value_enum_ = result.enum_value_descriptor;
7334       }
7335     }
7336     if (!default_value_enum_) {
7337       // We use the first defined value as the default
7338       // if a default is not explicitly defined.
7339       GOOGLE_CHECK(enum_type_->value_count());
7340       default_value_enum_ = enum_type_->value(0);
7341     }
7342   }
7343 }
7344 
TypeOnceInit(const FieldDescriptor * to_init)7345 void FieldDescriptor::TypeOnceInit(const FieldDescriptor* to_init) {
7346   to_init->InternalTypeOnceInit();
7347 }
7348 
7349 // message_type(), enum_type(), default_value_enum(), and type()
7350 // all share the same internal::call_once init path to do lazy
7351 // import building and cross linking of a field of a message.
message_type() const7352 const Descriptor* FieldDescriptor::message_type() const {
7353   if (type_once_) {
7354     internal::call_once(*type_once_, FieldDescriptor::TypeOnceInit, this);
7355   }
7356   return message_type_;
7357 }
7358 
enum_type() const7359 const EnumDescriptor* FieldDescriptor::enum_type() const {
7360   if (type_once_) {
7361     internal::call_once(*type_once_, FieldDescriptor::TypeOnceInit, this);
7362   }
7363   return enum_type_;
7364 }
7365 
default_value_enum() const7366 const EnumValueDescriptor* FieldDescriptor::default_value_enum() const {
7367   if (type_once_) {
7368     internal::call_once(*type_once_, FieldDescriptor::TypeOnceInit, this);
7369   }
7370   return default_value_enum_;
7371 }
7372 
PrintableNameForExtension() const7373 const std::string& FieldDescriptor::PrintableNameForExtension() const {
7374   const bool is_message_set_extension =
7375       is_extension() &&
7376       containing_type()->options().message_set_wire_format() &&
7377       type() == FieldDescriptor::TYPE_MESSAGE && is_optional() &&
7378       extension_scope() == message_type();
7379   return is_message_set_extension ? message_type()->full_name() : full_name();
7380 }
7381 
InternalDependenciesOnceInit() const7382 void FileDescriptor::InternalDependenciesOnceInit() const {
7383   GOOGLE_CHECK(finished_building_ == true);
7384   for (int i = 0; i < dependency_count(); i++) {
7385     if (dependencies_names_[i]) {
7386       dependencies_[i] = pool_->FindFileByName(*dependencies_names_[i]);
7387     }
7388   }
7389 }
7390 
DependenciesOnceInit(const FileDescriptor * to_init)7391 void FileDescriptor::DependenciesOnceInit(const FileDescriptor* to_init) {
7392   to_init->InternalDependenciesOnceInit();
7393 }
7394 
dependency(int index) const7395 const FileDescriptor* FileDescriptor::dependency(int index) const {
7396   if (dependencies_once_) {
7397     // Do once init for all indices, as it's unlikely only a single index would
7398     // be called, and saves on internal::call_once allocations.
7399     internal::call_once(*dependencies_once_,
7400                         FileDescriptor::DependenciesOnceInit, this);
7401   }
7402   return dependencies_[index];
7403 }
7404 
input_type() const7405 const Descriptor* MethodDescriptor::input_type() const {
7406   return input_type_.Get();
7407 }
7408 
output_type() const7409 const Descriptor* MethodDescriptor::output_type() const {
7410   return output_type_.Get();
7411 }
7412 
7413 
7414 namespace internal {
Set(const Descriptor * descriptor)7415 void LazyDescriptor::Set(const Descriptor* descriptor) {
7416   GOOGLE_CHECK(!name_);
7417   GOOGLE_CHECK(!once_);
7418   GOOGLE_CHECK(!file_);
7419   descriptor_ = descriptor;
7420 }
7421 
SetLazy(StringPiece name,const FileDescriptor * file)7422 void LazyDescriptor::SetLazy(StringPiece name,
7423                              const FileDescriptor* file) {
7424   // verify Init() has been called and Set hasn't been called yet.
7425   GOOGLE_CHECK(!descriptor_);
7426   GOOGLE_CHECK(!file_);
7427   GOOGLE_CHECK(!name_);
7428   GOOGLE_CHECK(!once_);
7429   GOOGLE_CHECK(file && file->pool_);
7430   GOOGLE_CHECK(file->pool_->lazily_build_dependencies_);
7431   GOOGLE_CHECK(!file->finished_building_);
7432   file_ = file;
7433   name_ = file->pool_->tables_->AllocateString(name);
7434   once_ = file->pool_->tables_->AllocateOnceDynamic();
7435 }
7436 
Once()7437 void LazyDescriptor::Once() {
7438   if (once_) {
7439     internal::call_once(*once_, LazyDescriptor::OnceStatic, this);
7440   }
7441 }
7442 
OnceStatic(LazyDescriptor * lazy)7443 void LazyDescriptor::OnceStatic(LazyDescriptor* lazy) { lazy->OnceInternal(); }
7444 
OnceInternal()7445 void LazyDescriptor::OnceInternal() {
7446   GOOGLE_CHECK(file_->finished_building_);
7447   if (!descriptor_ && name_) {
7448     Symbol result = file_->pool_->CrossLinkOnDemandHelper(*name_, false);
7449     if (!result.IsNull() && result.type == Symbol::MESSAGE) {
7450       descriptor_ = result.descriptor;
7451     }
7452   }
7453 }
7454 }  // namespace internal
7455 
7456 }  // namespace protobuf
7457 }  // namespace google
7458