1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11 #include <linux/usb.h>
12 #include <linux/pci.h>
13 #include <linux/slab.h>
14 #include <linux/dmapool.h>
15 #include <linux/dma-mapping.h>
16
17 #include "xhci.h"
18 #include "xhci-trace.h"
19 #include "xhci-debugfs.h"
20
21 /*
22 * Allocates a generic ring segment from the ring pool, sets the dma address,
23 * initializes the segment to zero, and sets the private next pointer to NULL.
24 *
25 * Section 4.11.1.1:
26 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
27 */
xhci_segment_alloc(struct xhci_hcd * xhci,unsigned int cycle_state,unsigned int max_packet,gfp_t flags)28 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
29 unsigned int cycle_state,
30 unsigned int max_packet,
31 gfp_t flags)
32 {
33 struct xhci_segment *seg;
34 dma_addr_t dma;
35 int i;
36 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
37
38 seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
39 if (!seg)
40 return NULL;
41
42 seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
43 if (!seg->trbs) {
44 kfree(seg);
45 return NULL;
46 }
47
48 if (max_packet) {
49 seg->bounce_buf = kzalloc_node(max_packet, flags,
50 dev_to_node(dev));
51 if (!seg->bounce_buf) {
52 dma_pool_free(xhci->segment_pool, seg->trbs, dma);
53 kfree(seg);
54 return NULL;
55 }
56 }
57 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
58 if (cycle_state == 0) {
59 for (i = 0; i < TRBS_PER_SEGMENT; i++)
60 seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
61 }
62 seg->dma = dma;
63 seg->next = NULL;
64
65 return seg;
66 }
67
xhci_segment_free(struct xhci_hcd * xhci,struct xhci_segment * seg)68 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
69 {
70 if (seg->trbs) {
71 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
72 seg->trbs = NULL;
73 }
74 kfree(seg->bounce_buf);
75 kfree(seg);
76 }
77
xhci_free_segments_for_ring(struct xhci_hcd * xhci,struct xhci_segment * first)78 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
79 struct xhci_segment *first)
80 {
81 struct xhci_segment *seg;
82
83 seg = first->next;
84 while (seg != first) {
85 struct xhci_segment *next = seg->next;
86 xhci_segment_free(xhci, seg);
87 seg = next;
88 }
89 xhci_segment_free(xhci, first);
90 }
91
92 /*
93 * Make the prev segment point to the next segment.
94 *
95 * Change the last TRB in the prev segment to be a Link TRB which points to the
96 * DMA address of the next segment. The caller needs to set any Link TRB
97 * related flags, such as End TRB, Toggle Cycle, and no snoop.
98 */
xhci_link_segments(struct xhci_segment * prev,struct xhci_segment * next,enum xhci_ring_type type,bool chain_links)99 static void xhci_link_segments(struct xhci_segment *prev,
100 struct xhci_segment *next,
101 enum xhci_ring_type type, bool chain_links)
102 {
103 u32 val;
104
105 if (!prev || !next)
106 return;
107 prev->next = next;
108 if (type != TYPE_EVENT) {
109 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
110 cpu_to_le64(next->dma);
111
112 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
113 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
114 val &= ~TRB_TYPE_BITMASK;
115 val |= TRB_TYPE(TRB_LINK);
116 if (chain_links)
117 val |= TRB_CHAIN;
118 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
119 }
120 }
121
122 /*
123 * Link the ring to the new segments.
124 * Set Toggle Cycle for the new ring if needed.
125 */
xhci_link_rings(struct xhci_hcd * xhci,struct xhci_ring * ring,struct xhci_segment * first,struct xhci_segment * last,unsigned int num_segs)126 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
127 struct xhci_segment *first, struct xhci_segment *last,
128 unsigned int num_segs)
129 {
130 struct xhci_segment *next;
131 bool chain_links;
132
133 if (!ring || !first || !last)
134 return;
135
136 /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
137 chain_links = !!(xhci_link_trb_quirk(xhci) ||
138 (ring->type == TYPE_ISOC &&
139 (xhci->quirks & XHCI_AMD_0x96_HOST)));
140
141 next = ring->enq_seg->next;
142 xhci_link_segments(ring->enq_seg, first, ring->type, chain_links);
143 xhci_link_segments(last, next, ring->type, chain_links);
144 ring->num_segs += num_segs;
145 ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
146
147 if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
148 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
149 &= ~cpu_to_le32(LINK_TOGGLE);
150 last->trbs[TRBS_PER_SEGMENT-1].link.control
151 |= cpu_to_le32(LINK_TOGGLE);
152 ring->last_seg = last;
153 }
154 }
155
156 /*
157 * We need a radix tree for mapping physical addresses of TRBs to which stream
158 * ID they belong to. We need to do this because the host controller won't tell
159 * us which stream ring the TRB came from. We could store the stream ID in an
160 * event data TRB, but that doesn't help us for the cancellation case, since the
161 * endpoint may stop before it reaches that event data TRB.
162 *
163 * The radix tree maps the upper portion of the TRB DMA address to a ring
164 * segment that has the same upper portion of DMA addresses. For example, say I
165 * have segments of size 1KB, that are always 1KB aligned. A segment may
166 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
167 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
168 * pass the radix tree a key to get the right stream ID:
169 *
170 * 0x10c90fff >> 10 = 0x43243
171 * 0x10c912c0 >> 10 = 0x43244
172 * 0x10c91400 >> 10 = 0x43245
173 *
174 * Obviously, only those TRBs with DMA addresses that are within the segment
175 * will make the radix tree return the stream ID for that ring.
176 *
177 * Caveats for the radix tree:
178 *
179 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
180 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
181 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
182 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
183 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
184 * extended systems (where the DMA address can be bigger than 32-bits),
185 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
186 */
xhci_insert_segment_mapping(struct radix_tree_root * trb_address_map,struct xhci_ring * ring,struct xhci_segment * seg,gfp_t mem_flags)187 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
188 struct xhci_ring *ring,
189 struct xhci_segment *seg,
190 gfp_t mem_flags)
191 {
192 unsigned long key;
193 int ret;
194
195 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
196 /* Skip any segments that were already added. */
197 if (radix_tree_lookup(trb_address_map, key))
198 return 0;
199
200 ret = radix_tree_maybe_preload(mem_flags);
201 if (ret)
202 return ret;
203 ret = radix_tree_insert(trb_address_map,
204 key, ring);
205 radix_tree_preload_end();
206 return ret;
207 }
208
xhci_remove_segment_mapping(struct radix_tree_root * trb_address_map,struct xhci_segment * seg)209 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
210 struct xhci_segment *seg)
211 {
212 unsigned long key;
213
214 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
215 if (radix_tree_lookup(trb_address_map, key))
216 radix_tree_delete(trb_address_map, key);
217 }
218
xhci_update_stream_segment_mapping(struct radix_tree_root * trb_address_map,struct xhci_ring * ring,struct xhci_segment * first_seg,struct xhci_segment * last_seg,gfp_t mem_flags)219 static int xhci_update_stream_segment_mapping(
220 struct radix_tree_root *trb_address_map,
221 struct xhci_ring *ring,
222 struct xhci_segment *first_seg,
223 struct xhci_segment *last_seg,
224 gfp_t mem_flags)
225 {
226 struct xhci_segment *seg;
227 struct xhci_segment *failed_seg;
228 int ret;
229
230 if (WARN_ON_ONCE(trb_address_map == NULL))
231 return 0;
232
233 seg = first_seg;
234 do {
235 ret = xhci_insert_segment_mapping(trb_address_map,
236 ring, seg, mem_flags);
237 if (ret)
238 goto remove_streams;
239 if (seg == last_seg)
240 return 0;
241 seg = seg->next;
242 } while (seg != first_seg);
243
244 return 0;
245
246 remove_streams:
247 failed_seg = seg;
248 seg = first_seg;
249 do {
250 xhci_remove_segment_mapping(trb_address_map, seg);
251 if (seg == failed_seg)
252 return ret;
253 seg = seg->next;
254 } while (seg != first_seg);
255
256 return ret;
257 }
258
xhci_remove_stream_mapping(struct xhci_ring * ring)259 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
260 {
261 struct xhci_segment *seg;
262
263 if (WARN_ON_ONCE(ring->trb_address_map == NULL))
264 return;
265
266 seg = ring->first_seg;
267 do {
268 xhci_remove_segment_mapping(ring->trb_address_map, seg);
269 seg = seg->next;
270 } while (seg != ring->first_seg);
271 }
272
xhci_update_stream_mapping(struct xhci_ring * ring,gfp_t mem_flags)273 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
274 {
275 return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
276 ring->first_seg, ring->last_seg, mem_flags);
277 }
278
279 /* XXX: Do we need the hcd structure in all these functions? */
xhci_ring_free(struct xhci_hcd * xhci,struct xhci_ring * ring)280 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
281 {
282 if (!ring)
283 return;
284
285 trace_xhci_ring_free(ring);
286
287 if (ring->first_seg) {
288 if (ring->type == TYPE_STREAM)
289 xhci_remove_stream_mapping(ring);
290 xhci_free_segments_for_ring(xhci, ring->first_seg);
291 }
292
293 kfree(ring);
294 }
295
xhci_initialize_ring_info(struct xhci_ring * ring,unsigned int cycle_state)296 void xhci_initialize_ring_info(struct xhci_ring *ring,
297 unsigned int cycle_state)
298 {
299 /* The ring is empty, so the enqueue pointer == dequeue pointer */
300 ring->enqueue = ring->first_seg->trbs;
301 ring->enq_seg = ring->first_seg;
302 ring->dequeue = ring->enqueue;
303 ring->deq_seg = ring->first_seg;
304 /* The ring is initialized to 0. The producer must write 1 to the cycle
305 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
306 * compare CCS to the cycle bit to check ownership, so CCS = 1.
307 *
308 * New rings are initialized with cycle state equal to 1; if we are
309 * handling ring expansion, set the cycle state equal to the old ring.
310 */
311 ring->cycle_state = cycle_state;
312
313 /*
314 * Each segment has a link TRB, and leave an extra TRB for SW
315 * accounting purpose
316 */
317 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
318 }
319
320 /* Allocate segments and link them for a ring */
xhci_alloc_segments_for_ring(struct xhci_hcd * xhci,struct xhci_segment ** first,struct xhci_segment ** last,unsigned int num_segs,unsigned int cycle_state,enum xhci_ring_type type,unsigned int max_packet,gfp_t flags)321 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
322 struct xhci_segment **first, struct xhci_segment **last,
323 unsigned int num_segs, unsigned int cycle_state,
324 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
325 {
326 struct xhci_segment *prev;
327 bool chain_links;
328
329 /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
330 chain_links = !!(xhci_link_trb_quirk(xhci) ||
331 (type == TYPE_ISOC &&
332 (xhci->quirks & XHCI_AMD_0x96_HOST)));
333
334 prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
335 if (!prev)
336 return -ENOMEM;
337 num_segs--;
338
339 *first = prev;
340 while (num_segs > 0) {
341 struct xhci_segment *next;
342
343 next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
344 if (!next) {
345 prev = *first;
346 while (prev) {
347 next = prev->next;
348 xhci_segment_free(xhci, prev);
349 prev = next;
350 }
351 return -ENOMEM;
352 }
353 xhci_link_segments(prev, next, type, chain_links);
354
355 prev = next;
356 num_segs--;
357 }
358 xhci_link_segments(prev, *first, type, chain_links);
359 *last = prev;
360
361 return 0;
362 }
363
364 /*
365 * Create a new ring with zero or more segments.
366 *
367 * Link each segment together into a ring.
368 * Set the end flag and the cycle toggle bit on the last segment.
369 * See section 4.9.1 and figures 15 and 16.
370 */
xhci_ring_alloc(struct xhci_hcd * xhci,unsigned int num_segs,unsigned int cycle_state,enum xhci_ring_type type,unsigned int max_packet,gfp_t flags)371 struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
372 unsigned int num_segs, unsigned int cycle_state,
373 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
374 {
375 struct xhci_ring *ring;
376 int ret;
377 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
378
379 ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
380 if (!ring)
381 return NULL;
382
383 ring->num_segs = num_segs;
384 ring->bounce_buf_len = max_packet;
385 INIT_LIST_HEAD(&ring->td_list);
386 ring->type = type;
387 if (num_segs == 0)
388 return ring;
389
390 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
391 &ring->last_seg, num_segs, cycle_state, type,
392 max_packet, flags);
393 if (ret)
394 goto fail;
395
396 /* Only event ring does not use link TRB */
397 if (type != TYPE_EVENT) {
398 /* See section 4.9.2.1 and 6.4.4.1 */
399 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
400 cpu_to_le32(LINK_TOGGLE);
401 }
402 xhci_initialize_ring_info(ring, cycle_state);
403 trace_xhci_ring_alloc(ring);
404 return ring;
405
406 fail:
407 kfree(ring);
408 return NULL;
409 }
410
xhci_free_endpoint_ring(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,unsigned int ep_index)411 void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
412 struct xhci_virt_device *virt_dev,
413 unsigned int ep_index)
414 {
415 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
416 virt_dev->eps[ep_index].ring = NULL;
417 }
418
419 /*
420 * Expand an existing ring.
421 * Allocate a new ring which has same segment numbers and link the two rings.
422 */
xhci_ring_expansion(struct xhci_hcd * xhci,struct xhci_ring * ring,unsigned int num_trbs,gfp_t flags)423 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
424 unsigned int num_trbs, gfp_t flags)
425 {
426 struct xhci_segment *first;
427 struct xhci_segment *last;
428 unsigned int num_segs;
429 unsigned int num_segs_needed;
430 int ret;
431
432 num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
433 (TRBS_PER_SEGMENT - 1);
434
435 /* Allocate number of segments we needed, or double the ring size */
436 num_segs = ring->num_segs > num_segs_needed ?
437 ring->num_segs : num_segs_needed;
438
439 ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
440 num_segs, ring->cycle_state, ring->type,
441 ring->bounce_buf_len, flags);
442 if (ret)
443 return -ENOMEM;
444
445 if (ring->type == TYPE_STREAM)
446 ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
447 ring, first, last, flags);
448 if (ret) {
449 struct xhci_segment *next;
450 do {
451 next = first->next;
452 xhci_segment_free(xhci, first);
453 if (first == last)
454 break;
455 first = next;
456 } while (true);
457 return ret;
458 }
459
460 xhci_link_rings(xhci, ring, first, last, num_segs);
461 trace_xhci_ring_expansion(ring);
462 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
463 "ring expansion succeed, now has %d segments",
464 ring->num_segs);
465
466 return 0;
467 }
468
xhci_alloc_container_ctx(struct xhci_hcd * xhci,int type,gfp_t flags)469 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
470 int type, gfp_t flags)
471 {
472 struct xhci_container_ctx *ctx;
473 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
474
475 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
476 return NULL;
477
478 ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
479 if (!ctx)
480 return NULL;
481
482 ctx->type = type;
483 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
484 if (type == XHCI_CTX_TYPE_INPUT)
485 ctx->size += CTX_SIZE(xhci->hcc_params);
486
487 ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
488 if (!ctx->bytes) {
489 kfree(ctx);
490 return NULL;
491 }
492 return ctx;
493 }
494
xhci_free_container_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx)495 void xhci_free_container_ctx(struct xhci_hcd *xhci,
496 struct xhci_container_ctx *ctx)
497 {
498 if (!ctx)
499 return;
500 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
501 kfree(ctx);
502 }
503
xhci_get_input_control_ctx(struct xhci_container_ctx * ctx)504 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
505 struct xhci_container_ctx *ctx)
506 {
507 if (ctx->type != XHCI_CTX_TYPE_INPUT)
508 return NULL;
509
510 return (struct xhci_input_control_ctx *)ctx->bytes;
511 }
512
xhci_get_slot_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx)513 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
514 struct xhci_container_ctx *ctx)
515 {
516 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
517 return (struct xhci_slot_ctx *)ctx->bytes;
518
519 return (struct xhci_slot_ctx *)
520 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
521 }
522
xhci_get_ep_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx,unsigned int ep_index)523 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
524 struct xhci_container_ctx *ctx,
525 unsigned int ep_index)
526 {
527 /* increment ep index by offset of start of ep ctx array */
528 ep_index++;
529 if (ctx->type == XHCI_CTX_TYPE_INPUT)
530 ep_index++;
531
532 return (struct xhci_ep_ctx *)
533 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
534 }
535
536
537 /***************** Streams structures manipulation *************************/
538
xhci_free_stream_ctx(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,struct xhci_stream_ctx * stream_ctx,dma_addr_t dma)539 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
540 unsigned int num_stream_ctxs,
541 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
542 {
543 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
544 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
545
546 if (size > MEDIUM_STREAM_ARRAY_SIZE)
547 dma_free_coherent(dev, size,
548 stream_ctx, dma);
549 else if (size <= SMALL_STREAM_ARRAY_SIZE)
550 return dma_pool_free(xhci->small_streams_pool,
551 stream_ctx, dma);
552 else
553 return dma_pool_free(xhci->medium_streams_pool,
554 stream_ctx, dma);
555 }
556
557 /*
558 * The stream context array for each endpoint with bulk streams enabled can
559 * vary in size, based on:
560 * - how many streams the endpoint supports,
561 * - the maximum primary stream array size the host controller supports,
562 * - and how many streams the device driver asks for.
563 *
564 * The stream context array must be a power of 2, and can be as small as
565 * 64 bytes or as large as 1MB.
566 */
xhci_alloc_stream_ctx(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,dma_addr_t * dma,gfp_t mem_flags)567 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
568 unsigned int num_stream_ctxs, dma_addr_t *dma,
569 gfp_t mem_flags)
570 {
571 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
572 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
573
574 if (size > MEDIUM_STREAM_ARRAY_SIZE)
575 return dma_alloc_coherent(dev, size,
576 dma, mem_flags);
577 else if (size <= SMALL_STREAM_ARRAY_SIZE)
578 return dma_pool_alloc(xhci->small_streams_pool,
579 mem_flags, dma);
580 else
581 return dma_pool_alloc(xhci->medium_streams_pool,
582 mem_flags, dma);
583 }
584
xhci_dma_to_transfer_ring(struct xhci_virt_ep * ep,u64 address)585 struct xhci_ring *xhci_dma_to_transfer_ring(
586 struct xhci_virt_ep *ep,
587 u64 address)
588 {
589 if (ep->ep_state & EP_HAS_STREAMS)
590 return radix_tree_lookup(&ep->stream_info->trb_address_map,
591 address >> TRB_SEGMENT_SHIFT);
592 return ep->ring;
593 }
594
xhci_stream_id_to_ring(struct xhci_virt_device * dev,unsigned int ep_index,unsigned int stream_id)595 struct xhci_ring *xhci_stream_id_to_ring(
596 struct xhci_virt_device *dev,
597 unsigned int ep_index,
598 unsigned int stream_id)
599 {
600 struct xhci_virt_ep *ep = &dev->eps[ep_index];
601
602 if (stream_id == 0)
603 return ep->ring;
604 if (!ep->stream_info)
605 return NULL;
606
607 if (stream_id >= ep->stream_info->num_streams)
608 return NULL;
609 return ep->stream_info->stream_rings[stream_id];
610 }
611
612 /*
613 * Change an endpoint's internal structure so it supports stream IDs. The
614 * number of requested streams includes stream 0, which cannot be used by device
615 * drivers.
616 *
617 * The number of stream contexts in the stream context array may be bigger than
618 * the number of streams the driver wants to use. This is because the number of
619 * stream context array entries must be a power of two.
620 */
xhci_alloc_stream_info(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,unsigned int num_streams,unsigned int max_packet,gfp_t mem_flags)621 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
622 unsigned int num_stream_ctxs,
623 unsigned int num_streams,
624 unsigned int max_packet, gfp_t mem_flags)
625 {
626 struct xhci_stream_info *stream_info;
627 u32 cur_stream;
628 struct xhci_ring *cur_ring;
629 u64 addr;
630 int ret;
631 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
632
633 xhci_dbg(xhci, "Allocating %u streams and %u "
634 "stream context array entries.\n",
635 num_streams, num_stream_ctxs);
636 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
637 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
638 return NULL;
639 }
640 xhci->cmd_ring_reserved_trbs++;
641
642 stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
643 dev_to_node(dev));
644 if (!stream_info)
645 goto cleanup_trbs;
646
647 stream_info->num_streams = num_streams;
648 stream_info->num_stream_ctxs = num_stream_ctxs;
649
650 /* Initialize the array of virtual pointers to stream rings. */
651 stream_info->stream_rings = kcalloc_node(
652 num_streams, sizeof(struct xhci_ring *), mem_flags,
653 dev_to_node(dev));
654 if (!stream_info->stream_rings)
655 goto cleanup_info;
656
657 /* Initialize the array of DMA addresses for stream rings for the HW. */
658 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
659 num_stream_ctxs, &stream_info->ctx_array_dma,
660 mem_flags);
661 if (!stream_info->stream_ctx_array)
662 goto cleanup_ctx;
663 memset(stream_info->stream_ctx_array, 0,
664 sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
665
666 /* Allocate everything needed to free the stream rings later */
667 stream_info->free_streams_command =
668 xhci_alloc_command_with_ctx(xhci, true, mem_flags);
669 if (!stream_info->free_streams_command)
670 goto cleanup_ctx;
671
672 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
673
674 /* Allocate rings for all the streams that the driver will use,
675 * and add their segment DMA addresses to the radix tree.
676 * Stream 0 is reserved.
677 */
678
679 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
680 stream_info->stream_rings[cur_stream] =
681 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
682 mem_flags);
683 cur_ring = stream_info->stream_rings[cur_stream];
684 if (!cur_ring)
685 goto cleanup_rings;
686 cur_ring->stream_id = cur_stream;
687 cur_ring->trb_address_map = &stream_info->trb_address_map;
688 /* Set deq ptr, cycle bit, and stream context type */
689 addr = cur_ring->first_seg->dma |
690 SCT_FOR_CTX(SCT_PRI_TR) |
691 cur_ring->cycle_state;
692 stream_info->stream_ctx_array[cur_stream].stream_ring =
693 cpu_to_le64(addr);
694 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
695 cur_stream, (unsigned long long) addr);
696
697 ret = xhci_update_stream_mapping(cur_ring, mem_flags);
698 if (ret) {
699 xhci_ring_free(xhci, cur_ring);
700 stream_info->stream_rings[cur_stream] = NULL;
701 goto cleanup_rings;
702 }
703 }
704 /* Leave the other unused stream ring pointers in the stream context
705 * array initialized to zero. This will cause the xHC to give us an
706 * error if the device asks for a stream ID we don't have setup (if it
707 * was any other way, the host controller would assume the ring is
708 * "empty" and wait forever for data to be queued to that stream ID).
709 */
710
711 return stream_info;
712
713 cleanup_rings:
714 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
715 cur_ring = stream_info->stream_rings[cur_stream];
716 if (cur_ring) {
717 xhci_ring_free(xhci, cur_ring);
718 stream_info->stream_rings[cur_stream] = NULL;
719 }
720 }
721 xhci_free_command(xhci, stream_info->free_streams_command);
722 cleanup_ctx:
723 kfree(stream_info->stream_rings);
724 cleanup_info:
725 kfree(stream_info);
726 cleanup_trbs:
727 xhci->cmd_ring_reserved_trbs--;
728 return NULL;
729 }
730 /*
731 * Sets the MaxPStreams field and the Linear Stream Array field.
732 * Sets the dequeue pointer to the stream context array.
733 */
xhci_setup_streams_ep_input_ctx(struct xhci_hcd * xhci,struct xhci_ep_ctx * ep_ctx,struct xhci_stream_info * stream_info)734 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
735 struct xhci_ep_ctx *ep_ctx,
736 struct xhci_stream_info *stream_info)
737 {
738 u32 max_primary_streams;
739 /* MaxPStreams is the number of stream context array entries, not the
740 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
741 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
742 */
743 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
744 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
745 "Setting number of stream ctx array entries to %u",
746 1 << (max_primary_streams + 1));
747 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
748 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
749 | EP_HAS_LSA);
750 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
751 }
752
753 /*
754 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
755 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
756 * not at the beginning of the ring).
757 */
xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx * ep_ctx,struct xhci_virt_ep * ep)758 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
759 struct xhci_virt_ep *ep)
760 {
761 dma_addr_t addr;
762 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
763 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
764 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
765 }
766
767 /* Frees all stream contexts associated with the endpoint,
768 *
769 * Caller should fix the endpoint context streams fields.
770 */
xhci_free_stream_info(struct xhci_hcd * xhci,struct xhci_stream_info * stream_info)771 void xhci_free_stream_info(struct xhci_hcd *xhci,
772 struct xhci_stream_info *stream_info)
773 {
774 int cur_stream;
775 struct xhci_ring *cur_ring;
776
777 if (!stream_info)
778 return;
779
780 for (cur_stream = 1; cur_stream < stream_info->num_streams;
781 cur_stream++) {
782 cur_ring = stream_info->stream_rings[cur_stream];
783 if (cur_ring) {
784 xhci_ring_free(xhci, cur_ring);
785 stream_info->stream_rings[cur_stream] = NULL;
786 }
787 }
788 xhci_free_command(xhci, stream_info->free_streams_command);
789 xhci->cmd_ring_reserved_trbs--;
790 if (stream_info->stream_ctx_array)
791 xhci_free_stream_ctx(xhci,
792 stream_info->num_stream_ctxs,
793 stream_info->stream_ctx_array,
794 stream_info->ctx_array_dma);
795
796 kfree(stream_info->stream_rings);
797 kfree(stream_info);
798 }
799
800
801 /***************** Device context manipulation *************************/
802
xhci_init_endpoint_timer(struct xhci_hcd * xhci,struct xhci_virt_ep * ep)803 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
804 struct xhci_virt_ep *ep)
805 {
806 timer_setup(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
807 0);
808 ep->xhci = xhci;
809 }
810
xhci_free_tt_info(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int slot_id)811 static void xhci_free_tt_info(struct xhci_hcd *xhci,
812 struct xhci_virt_device *virt_dev,
813 int slot_id)
814 {
815 struct list_head *tt_list_head;
816 struct xhci_tt_bw_info *tt_info, *next;
817 bool slot_found = false;
818
819 /* If the device never made it past the Set Address stage,
820 * it may not have the real_port set correctly.
821 */
822 if (virt_dev->real_port == 0 ||
823 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
824 xhci_dbg(xhci, "Bad real port.\n");
825 return;
826 }
827
828 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
829 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
830 /* Multi-TT hubs will have more than one entry */
831 if (tt_info->slot_id == slot_id) {
832 slot_found = true;
833 list_del(&tt_info->tt_list);
834 kfree(tt_info);
835 } else if (slot_found) {
836 break;
837 }
838 }
839 }
840
xhci_alloc_tt_info(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)841 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
842 struct xhci_virt_device *virt_dev,
843 struct usb_device *hdev,
844 struct usb_tt *tt, gfp_t mem_flags)
845 {
846 struct xhci_tt_bw_info *tt_info;
847 unsigned int num_ports;
848 int i, j;
849 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
850
851 if (!tt->multi)
852 num_ports = 1;
853 else
854 num_ports = hdev->maxchild;
855
856 for (i = 0; i < num_ports; i++, tt_info++) {
857 struct xhci_interval_bw_table *bw_table;
858
859 tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
860 dev_to_node(dev));
861 if (!tt_info)
862 goto free_tts;
863 INIT_LIST_HEAD(&tt_info->tt_list);
864 list_add(&tt_info->tt_list,
865 &xhci->rh_bw[virt_dev->real_port - 1].tts);
866 tt_info->slot_id = virt_dev->udev->slot_id;
867 if (tt->multi)
868 tt_info->ttport = i+1;
869 bw_table = &tt_info->bw_table;
870 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
871 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
872 }
873 return 0;
874
875 free_tts:
876 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
877 return -ENOMEM;
878 }
879
880
881 /* All the xhci_tds in the ring's TD list should be freed at this point.
882 * Should be called with xhci->lock held if there is any chance the TT lists
883 * will be manipulated by the configure endpoint, allocate device, or update
884 * hub functions while this function is removing the TT entries from the list.
885 */
xhci_free_virt_device(struct xhci_hcd * xhci,int slot_id)886 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
887 {
888 struct xhci_virt_device *dev;
889 int i;
890 int old_active_eps = 0;
891
892 /* Slot ID 0 is reserved */
893 if (slot_id == 0 || !xhci->devs[slot_id])
894 return;
895
896 dev = xhci->devs[slot_id];
897
898 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
899 if (!dev)
900 return;
901
902 trace_xhci_free_virt_device(dev);
903
904 if (dev->tt_info)
905 old_active_eps = dev->tt_info->active_eps;
906
907 for (i = 0; i < 31; i++) {
908 if (dev->eps[i].ring)
909 xhci_ring_free(xhci, dev->eps[i].ring);
910 if (dev->eps[i].stream_info)
911 xhci_free_stream_info(xhci,
912 dev->eps[i].stream_info);
913 /* Endpoints on the TT/root port lists should have been removed
914 * when usb_disable_device() was called for the device.
915 * We can't drop them anyway, because the udev might have gone
916 * away by this point, and we can't tell what speed it was.
917 */
918 if (!list_empty(&dev->eps[i].bw_endpoint_list))
919 xhci_warn(xhci, "Slot %u endpoint %u "
920 "not removed from BW list!\n",
921 slot_id, i);
922 }
923 /* If this is a hub, free the TT(s) from the TT list */
924 xhci_free_tt_info(xhci, dev, slot_id);
925 /* If necessary, update the number of active TTs on this root port */
926 xhci_update_tt_active_eps(xhci, dev, old_active_eps);
927
928 if (dev->in_ctx)
929 xhci_free_container_ctx(xhci, dev->in_ctx);
930 if (dev->out_ctx)
931 xhci_free_container_ctx(xhci, dev->out_ctx);
932
933 if (dev->udev && dev->udev->slot_id)
934 dev->udev->slot_id = 0;
935 kfree(xhci->devs[slot_id]);
936 xhci->devs[slot_id] = NULL;
937 }
938
939 /*
940 * Free a virt_device structure.
941 * If the virt_device added a tt_info (a hub) and has children pointing to
942 * that tt_info, then free the child first. Recursive.
943 * We can't rely on udev at this point to find child-parent relationships.
944 */
xhci_free_virt_devices_depth_first(struct xhci_hcd * xhci,int slot_id)945 static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
946 {
947 struct xhci_virt_device *vdev;
948 struct list_head *tt_list_head;
949 struct xhci_tt_bw_info *tt_info, *next;
950 int i;
951
952 vdev = xhci->devs[slot_id];
953 if (!vdev)
954 return;
955
956 if (vdev->real_port == 0 ||
957 vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
958 xhci_dbg(xhci, "Bad vdev->real_port.\n");
959 goto out;
960 }
961
962 tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
963 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
964 /* is this a hub device that added a tt_info to the tts list */
965 if (tt_info->slot_id == slot_id) {
966 /* are any devices using this tt_info? */
967 for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
968 vdev = xhci->devs[i];
969 if (vdev && (vdev->tt_info == tt_info))
970 xhci_free_virt_devices_depth_first(
971 xhci, i);
972 }
973 }
974 }
975 out:
976 /* we are now at a leaf device */
977 xhci_debugfs_remove_slot(xhci, slot_id);
978 xhci_free_virt_device(xhci, slot_id);
979 }
980
xhci_alloc_virt_device(struct xhci_hcd * xhci,int slot_id,struct usb_device * udev,gfp_t flags)981 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
982 struct usb_device *udev, gfp_t flags)
983 {
984 struct xhci_virt_device *dev;
985 int i;
986
987 /* Slot ID 0 is reserved */
988 if (slot_id == 0 || xhci->devs[slot_id]) {
989 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
990 return 0;
991 }
992
993 dev = kzalloc(sizeof(*dev), flags);
994 if (!dev)
995 return 0;
996
997 /* Allocate the (output) device context that will be used in the HC. */
998 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
999 if (!dev->out_ctx)
1000 goto fail;
1001
1002 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
1003 (unsigned long long)dev->out_ctx->dma);
1004
1005 /* Allocate the (input) device context for address device command */
1006 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
1007 if (!dev->in_ctx)
1008 goto fail;
1009
1010 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
1011 (unsigned long long)dev->in_ctx->dma);
1012
1013 /* Initialize the cancellation list and watchdog timers for each ep */
1014 for (i = 0; i < 31; i++) {
1015 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1016 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1017 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1018 }
1019
1020 /* Allocate endpoint 0 ring */
1021 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1022 if (!dev->eps[0].ring)
1023 goto fail;
1024
1025 dev->udev = udev;
1026
1027 /* Point to output device context in dcbaa. */
1028 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1029 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1030 slot_id,
1031 &xhci->dcbaa->dev_context_ptrs[slot_id],
1032 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1033
1034 trace_xhci_alloc_virt_device(dev);
1035
1036 xhci->devs[slot_id] = dev;
1037
1038 return 1;
1039 fail:
1040
1041 if (dev->in_ctx)
1042 xhci_free_container_ctx(xhci, dev->in_ctx);
1043 if (dev->out_ctx)
1044 xhci_free_container_ctx(xhci, dev->out_ctx);
1045 kfree(dev);
1046
1047 return 0;
1048 }
1049
xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd * xhci,struct usb_device * udev)1050 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1051 struct usb_device *udev)
1052 {
1053 struct xhci_virt_device *virt_dev;
1054 struct xhci_ep_ctx *ep0_ctx;
1055 struct xhci_ring *ep_ring;
1056
1057 virt_dev = xhci->devs[udev->slot_id];
1058 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1059 ep_ring = virt_dev->eps[0].ring;
1060 /*
1061 * FIXME we don't keep track of the dequeue pointer very well after a
1062 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1063 * host to our enqueue pointer. This should only be called after a
1064 * configured device has reset, so all control transfers should have
1065 * been completed or cancelled before the reset.
1066 */
1067 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1068 ep_ring->enqueue)
1069 | ep_ring->cycle_state);
1070 }
1071
1072 /*
1073 * The xHCI roothub may have ports of differing speeds in any order in the port
1074 * status registers.
1075 *
1076 * The xHCI hardware wants to know the roothub port number that the USB device
1077 * is attached to (or the roothub port its ancestor hub is attached to). All we
1078 * know is the index of that port under either the USB 2.0 or the USB 3.0
1079 * roothub, but that doesn't give us the real index into the HW port status
1080 * registers. Call xhci_find_raw_port_number() to get real index.
1081 */
xhci_find_real_port_number(struct xhci_hcd * xhci,struct usb_device * udev)1082 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1083 struct usb_device *udev)
1084 {
1085 struct usb_device *top_dev;
1086 struct usb_hcd *hcd;
1087
1088 if (udev->speed >= USB_SPEED_SUPER)
1089 hcd = xhci->shared_hcd;
1090 else
1091 hcd = xhci->main_hcd;
1092
1093 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1094 top_dev = top_dev->parent)
1095 /* Found device below root hub */;
1096
1097 return xhci_find_raw_port_number(hcd, top_dev->portnum);
1098 }
1099
1100 /* Setup an xHCI virtual device for a Set Address command */
xhci_setup_addressable_virt_dev(struct xhci_hcd * xhci,struct usb_device * udev)1101 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1102 {
1103 struct xhci_virt_device *dev;
1104 struct xhci_ep_ctx *ep0_ctx;
1105 struct xhci_slot_ctx *slot_ctx;
1106 u32 port_num;
1107 u32 max_packets;
1108 struct usb_device *top_dev;
1109
1110 dev = xhci->devs[udev->slot_id];
1111 /* Slot ID 0 is reserved */
1112 if (udev->slot_id == 0 || !dev) {
1113 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1114 udev->slot_id);
1115 return -EINVAL;
1116 }
1117 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1118 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1119
1120 /* 3) Only the control endpoint is valid - one endpoint context */
1121 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1122 switch (udev->speed) {
1123 case USB_SPEED_SUPER_PLUS:
1124 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1125 max_packets = MAX_PACKET(512);
1126 break;
1127 case USB_SPEED_SUPER:
1128 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1129 max_packets = MAX_PACKET(512);
1130 break;
1131 case USB_SPEED_HIGH:
1132 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1133 max_packets = MAX_PACKET(64);
1134 break;
1135 /* USB core guesses at a 64-byte max packet first for FS devices */
1136 case USB_SPEED_FULL:
1137 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1138 max_packets = MAX_PACKET(64);
1139 break;
1140 case USB_SPEED_LOW:
1141 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1142 max_packets = MAX_PACKET(8);
1143 break;
1144 case USB_SPEED_WIRELESS:
1145 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1146 return -EINVAL;
1147 break;
1148 default:
1149 /* Speed was set earlier, this shouldn't happen. */
1150 return -EINVAL;
1151 }
1152 /* Find the root hub port this device is under */
1153 port_num = xhci_find_real_port_number(xhci, udev);
1154 if (!port_num)
1155 return -EINVAL;
1156 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1157 /* Set the port number in the virtual_device to the faked port number */
1158 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1159 top_dev = top_dev->parent)
1160 /* Found device below root hub */;
1161 dev->fake_port = top_dev->portnum;
1162 dev->real_port = port_num;
1163 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1164 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1165
1166 /* Find the right bandwidth table that this device will be a part of.
1167 * If this is a full speed device attached directly to a root port (or a
1168 * decendent of one), it counts as a primary bandwidth domain, not a
1169 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1170 * will never be created for the HS root hub.
1171 */
1172 if (!udev->tt || !udev->tt->hub->parent) {
1173 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1174 } else {
1175 struct xhci_root_port_bw_info *rh_bw;
1176 struct xhci_tt_bw_info *tt_bw;
1177
1178 rh_bw = &xhci->rh_bw[port_num - 1];
1179 /* Find the right TT. */
1180 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1181 if (tt_bw->slot_id != udev->tt->hub->slot_id)
1182 continue;
1183
1184 if (!dev->udev->tt->multi ||
1185 (udev->tt->multi &&
1186 tt_bw->ttport == dev->udev->ttport)) {
1187 dev->bw_table = &tt_bw->bw_table;
1188 dev->tt_info = tt_bw;
1189 break;
1190 }
1191 }
1192 if (!dev->tt_info)
1193 xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1194 }
1195
1196 /* Is this a LS/FS device under an external HS hub? */
1197 if (udev->tt && udev->tt->hub->parent) {
1198 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1199 (udev->ttport << 8));
1200 if (udev->tt->multi)
1201 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1202 }
1203 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1204 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1205
1206 /* Step 4 - ring already allocated */
1207 /* Step 5 */
1208 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1209
1210 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1211 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1212 max_packets);
1213
1214 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1215 dev->eps[0].ring->cycle_state);
1216
1217 trace_xhci_setup_addressable_virt_device(dev);
1218
1219 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1220
1221 return 0;
1222 }
1223
1224 /*
1225 * Convert interval expressed as 2^(bInterval - 1) == interval into
1226 * straight exponent value 2^n == interval.
1227 *
1228 */
xhci_parse_exponent_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1229 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1230 struct usb_host_endpoint *ep)
1231 {
1232 unsigned int interval;
1233
1234 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1235 if (interval != ep->desc.bInterval - 1)
1236 dev_warn(&udev->dev,
1237 "ep %#x - rounding interval to %d %sframes\n",
1238 ep->desc.bEndpointAddress,
1239 1 << interval,
1240 udev->speed == USB_SPEED_FULL ? "" : "micro");
1241
1242 if (udev->speed == USB_SPEED_FULL) {
1243 /*
1244 * Full speed isoc endpoints specify interval in frames,
1245 * not microframes. We are using microframes everywhere,
1246 * so adjust accordingly.
1247 */
1248 interval += 3; /* 1 frame = 2^3 uframes */
1249 }
1250
1251 return interval;
1252 }
1253
1254 /*
1255 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1256 * microframes, rounded down to nearest power of 2.
1257 */
xhci_microframes_to_exponent(struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int desc_interval,unsigned int min_exponent,unsigned int max_exponent)1258 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1259 struct usb_host_endpoint *ep, unsigned int desc_interval,
1260 unsigned int min_exponent, unsigned int max_exponent)
1261 {
1262 unsigned int interval;
1263
1264 interval = fls(desc_interval) - 1;
1265 interval = clamp_val(interval, min_exponent, max_exponent);
1266 if ((1 << interval) != desc_interval)
1267 dev_dbg(&udev->dev,
1268 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1269 ep->desc.bEndpointAddress,
1270 1 << interval,
1271 desc_interval);
1272
1273 return interval;
1274 }
1275
xhci_parse_microframe_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1276 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1277 struct usb_host_endpoint *ep)
1278 {
1279 if (ep->desc.bInterval == 0)
1280 return 0;
1281 return xhci_microframes_to_exponent(udev, ep,
1282 ep->desc.bInterval, 0, 15);
1283 }
1284
1285
xhci_parse_frame_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1286 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1287 struct usb_host_endpoint *ep)
1288 {
1289 return xhci_microframes_to_exponent(udev, ep,
1290 ep->desc.bInterval * 8, 3, 10);
1291 }
1292
1293 /* Return the polling or NAK interval.
1294 *
1295 * The polling interval is expressed in "microframes". If xHCI's Interval field
1296 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1297 *
1298 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1299 * is set to 0.
1300 */
xhci_get_endpoint_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1301 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1302 struct usb_host_endpoint *ep)
1303 {
1304 unsigned int interval = 0;
1305
1306 switch (udev->speed) {
1307 case USB_SPEED_HIGH:
1308 /* Max NAK rate */
1309 if (usb_endpoint_xfer_control(&ep->desc) ||
1310 usb_endpoint_xfer_bulk(&ep->desc)) {
1311 interval = xhci_parse_microframe_interval(udev, ep);
1312 break;
1313 }
1314 fallthrough; /* SS and HS isoc/int have same decoding */
1315
1316 case USB_SPEED_SUPER_PLUS:
1317 case USB_SPEED_SUPER:
1318 if (usb_endpoint_xfer_int(&ep->desc) ||
1319 usb_endpoint_xfer_isoc(&ep->desc)) {
1320 interval = xhci_parse_exponent_interval(udev, ep);
1321 }
1322 break;
1323
1324 case USB_SPEED_FULL:
1325 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1326 interval = xhci_parse_exponent_interval(udev, ep);
1327 break;
1328 }
1329 /*
1330 * Fall through for interrupt endpoint interval decoding
1331 * since it uses the same rules as low speed interrupt
1332 * endpoints.
1333 */
1334 fallthrough;
1335
1336 case USB_SPEED_LOW:
1337 if (usb_endpoint_xfer_int(&ep->desc) ||
1338 usb_endpoint_xfer_isoc(&ep->desc)) {
1339
1340 interval = xhci_parse_frame_interval(udev, ep);
1341 }
1342 break;
1343
1344 default:
1345 BUG();
1346 }
1347 return interval;
1348 }
1349
1350 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1351 * High speed endpoint descriptors can define "the number of additional
1352 * transaction opportunities per microframe", but that goes in the Max Burst
1353 * endpoint context field.
1354 */
xhci_get_endpoint_mult(struct usb_device * udev,struct usb_host_endpoint * ep)1355 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1356 struct usb_host_endpoint *ep)
1357 {
1358 if (udev->speed < USB_SPEED_SUPER ||
1359 !usb_endpoint_xfer_isoc(&ep->desc))
1360 return 0;
1361 return ep->ss_ep_comp.bmAttributes;
1362 }
1363
xhci_get_endpoint_max_burst(struct usb_device * udev,struct usb_host_endpoint * ep)1364 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1365 struct usb_host_endpoint *ep)
1366 {
1367 /* Super speed and Plus have max burst in ep companion desc */
1368 if (udev->speed >= USB_SPEED_SUPER)
1369 return ep->ss_ep_comp.bMaxBurst;
1370
1371 if (udev->speed == USB_SPEED_HIGH &&
1372 (usb_endpoint_xfer_isoc(&ep->desc) ||
1373 usb_endpoint_xfer_int(&ep->desc)))
1374 return usb_endpoint_maxp_mult(&ep->desc) - 1;
1375
1376 return 0;
1377 }
1378
xhci_get_endpoint_type(struct usb_host_endpoint * ep)1379 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1380 {
1381 int in;
1382
1383 in = usb_endpoint_dir_in(&ep->desc);
1384
1385 switch (usb_endpoint_type(&ep->desc)) {
1386 case USB_ENDPOINT_XFER_CONTROL:
1387 return CTRL_EP;
1388 case USB_ENDPOINT_XFER_BULK:
1389 return in ? BULK_IN_EP : BULK_OUT_EP;
1390 case USB_ENDPOINT_XFER_ISOC:
1391 return in ? ISOC_IN_EP : ISOC_OUT_EP;
1392 case USB_ENDPOINT_XFER_INT:
1393 return in ? INT_IN_EP : INT_OUT_EP;
1394 }
1395 return 0;
1396 }
1397
1398 /* Return the maximum endpoint service interval time (ESIT) payload.
1399 * Basically, this is the maxpacket size, multiplied by the burst size
1400 * and mult size.
1401 */
xhci_get_max_esit_payload(struct usb_device * udev,struct usb_host_endpoint * ep)1402 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1403 struct usb_host_endpoint *ep)
1404 {
1405 int max_burst;
1406 int max_packet;
1407
1408 /* Only applies for interrupt or isochronous endpoints */
1409 if (usb_endpoint_xfer_control(&ep->desc) ||
1410 usb_endpoint_xfer_bulk(&ep->desc))
1411 return 0;
1412
1413 /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1414 if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1415 USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1416 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1417 /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1418 else if (udev->speed >= USB_SPEED_SUPER)
1419 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1420
1421 max_packet = usb_endpoint_maxp(&ep->desc);
1422 max_burst = usb_endpoint_maxp_mult(&ep->desc);
1423 /* A 0 in max burst means 1 transfer per ESIT */
1424 return max_packet * max_burst;
1425 }
1426
1427 /* Set up an endpoint with one ring segment. Do not allocate stream rings.
1428 * Drivers will have to call usb_alloc_streams() to do that.
1429 */
xhci_endpoint_init(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_device * udev,struct usb_host_endpoint * ep,gfp_t mem_flags)1430 int xhci_endpoint_init(struct xhci_hcd *xhci,
1431 struct xhci_virt_device *virt_dev,
1432 struct usb_device *udev,
1433 struct usb_host_endpoint *ep,
1434 gfp_t mem_flags)
1435 {
1436 unsigned int ep_index;
1437 struct xhci_ep_ctx *ep_ctx;
1438 struct xhci_ring *ep_ring;
1439 unsigned int max_packet;
1440 enum xhci_ring_type ring_type;
1441 u32 max_esit_payload;
1442 u32 endpoint_type;
1443 unsigned int max_burst;
1444 unsigned int interval;
1445 unsigned int mult;
1446 unsigned int avg_trb_len;
1447 unsigned int err_count = 0;
1448
1449 ep_index = xhci_get_endpoint_index(&ep->desc);
1450 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1451
1452 endpoint_type = xhci_get_endpoint_type(ep);
1453 if (!endpoint_type)
1454 return -EINVAL;
1455
1456 ring_type = usb_endpoint_type(&ep->desc);
1457
1458 /*
1459 * Get values to fill the endpoint context, mostly from ep descriptor.
1460 * The average TRB buffer lengt for bulk endpoints is unclear as we
1461 * have no clue on scatter gather list entry size. For Isoc and Int,
1462 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1463 */
1464 max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1465 interval = xhci_get_endpoint_interval(udev, ep);
1466
1467 /* Periodic endpoint bInterval limit quirk */
1468 if (usb_endpoint_xfer_int(&ep->desc) ||
1469 usb_endpoint_xfer_isoc(&ep->desc)) {
1470 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1471 udev->speed >= USB_SPEED_HIGH &&
1472 interval >= 7) {
1473 interval = 6;
1474 }
1475 }
1476
1477 mult = xhci_get_endpoint_mult(udev, ep);
1478 max_packet = usb_endpoint_maxp(&ep->desc);
1479 max_burst = xhci_get_endpoint_max_burst(udev, ep);
1480 avg_trb_len = max_esit_payload;
1481
1482 /* FIXME dig Mult and streams info out of ep companion desc */
1483
1484 /* Allow 3 retries for everything but isoc, set CErr = 3 */
1485 if (!usb_endpoint_xfer_isoc(&ep->desc))
1486 err_count = 3;
1487 /* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1488 if (usb_endpoint_xfer_bulk(&ep->desc)) {
1489 if (udev->speed == USB_SPEED_HIGH)
1490 max_packet = 512;
1491 if (udev->speed == USB_SPEED_FULL) {
1492 max_packet = rounddown_pow_of_two(max_packet);
1493 max_packet = clamp_val(max_packet, 8, 64);
1494 }
1495 }
1496 /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1497 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1498 avg_trb_len = 8;
1499 /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1500 if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1501 mult = 0;
1502
1503 /* Set up the endpoint ring */
1504 virt_dev->eps[ep_index].new_ring =
1505 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1506 if (!virt_dev->eps[ep_index].new_ring)
1507 return -ENOMEM;
1508
1509 virt_dev->eps[ep_index].skip = false;
1510 ep_ring = virt_dev->eps[ep_index].new_ring;
1511
1512 /* Fill the endpoint context */
1513 ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1514 EP_INTERVAL(interval) |
1515 EP_MULT(mult));
1516 ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1517 MAX_PACKET(max_packet) |
1518 MAX_BURST(max_burst) |
1519 ERROR_COUNT(err_count));
1520 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1521 ep_ring->cycle_state);
1522
1523 ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1524 EP_AVG_TRB_LENGTH(avg_trb_len));
1525
1526 return 0;
1527 }
1528
xhci_endpoint_zero(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_host_endpoint * ep)1529 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1530 struct xhci_virt_device *virt_dev,
1531 struct usb_host_endpoint *ep)
1532 {
1533 unsigned int ep_index;
1534 struct xhci_ep_ctx *ep_ctx;
1535
1536 ep_index = xhci_get_endpoint_index(&ep->desc);
1537 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1538
1539 ep_ctx->ep_info = 0;
1540 ep_ctx->ep_info2 = 0;
1541 ep_ctx->deq = 0;
1542 ep_ctx->tx_info = 0;
1543 /* Don't free the endpoint ring until the set interface or configuration
1544 * request succeeds.
1545 */
1546 }
1547
xhci_clear_endpoint_bw_info(struct xhci_bw_info * bw_info)1548 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1549 {
1550 bw_info->ep_interval = 0;
1551 bw_info->mult = 0;
1552 bw_info->num_packets = 0;
1553 bw_info->max_packet_size = 0;
1554 bw_info->type = 0;
1555 bw_info->max_esit_payload = 0;
1556 }
1557
xhci_update_bw_info(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_input_control_ctx * ctrl_ctx,struct xhci_virt_device * virt_dev)1558 void xhci_update_bw_info(struct xhci_hcd *xhci,
1559 struct xhci_container_ctx *in_ctx,
1560 struct xhci_input_control_ctx *ctrl_ctx,
1561 struct xhci_virt_device *virt_dev)
1562 {
1563 struct xhci_bw_info *bw_info;
1564 struct xhci_ep_ctx *ep_ctx;
1565 unsigned int ep_type;
1566 int i;
1567
1568 for (i = 1; i < 31; i++) {
1569 bw_info = &virt_dev->eps[i].bw_info;
1570
1571 /* We can't tell what endpoint type is being dropped, but
1572 * unconditionally clearing the bandwidth info for non-periodic
1573 * endpoints should be harmless because the info will never be
1574 * set in the first place.
1575 */
1576 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1577 /* Dropped endpoint */
1578 xhci_clear_endpoint_bw_info(bw_info);
1579 continue;
1580 }
1581
1582 if (EP_IS_ADDED(ctrl_ctx, i)) {
1583 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1584 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1585
1586 /* Ignore non-periodic endpoints */
1587 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1588 ep_type != ISOC_IN_EP &&
1589 ep_type != INT_IN_EP)
1590 continue;
1591
1592 /* Added or changed endpoint */
1593 bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1594 le32_to_cpu(ep_ctx->ep_info));
1595 /* Number of packets and mult are zero-based in the
1596 * input context, but we want one-based for the
1597 * interval table.
1598 */
1599 bw_info->mult = CTX_TO_EP_MULT(
1600 le32_to_cpu(ep_ctx->ep_info)) + 1;
1601 bw_info->num_packets = CTX_TO_MAX_BURST(
1602 le32_to_cpu(ep_ctx->ep_info2)) + 1;
1603 bw_info->max_packet_size = MAX_PACKET_DECODED(
1604 le32_to_cpu(ep_ctx->ep_info2));
1605 bw_info->type = ep_type;
1606 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1607 le32_to_cpu(ep_ctx->tx_info));
1608 }
1609 }
1610 }
1611
1612 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1613 * Useful when you want to change one particular aspect of the endpoint and then
1614 * issue a configure endpoint command.
1615 */
xhci_endpoint_copy(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,unsigned int ep_index)1616 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1617 struct xhci_container_ctx *in_ctx,
1618 struct xhci_container_ctx *out_ctx,
1619 unsigned int ep_index)
1620 {
1621 struct xhci_ep_ctx *out_ep_ctx;
1622 struct xhci_ep_ctx *in_ep_ctx;
1623
1624 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1625 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1626
1627 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1628 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1629 in_ep_ctx->deq = out_ep_ctx->deq;
1630 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1631 if (xhci->quirks & XHCI_MTK_HOST) {
1632 in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1633 in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1634 }
1635 }
1636
1637 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1638 * Useful when you want to change one particular aspect of the endpoint and then
1639 * issue a configure endpoint command. Only the context entries field matters,
1640 * but we'll copy the whole thing anyway.
1641 */
xhci_slot_copy(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx)1642 void xhci_slot_copy(struct xhci_hcd *xhci,
1643 struct xhci_container_ctx *in_ctx,
1644 struct xhci_container_ctx *out_ctx)
1645 {
1646 struct xhci_slot_ctx *in_slot_ctx;
1647 struct xhci_slot_ctx *out_slot_ctx;
1648
1649 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1650 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1651
1652 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1653 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1654 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1655 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1656 }
1657
1658 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
scratchpad_alloc(struct xhci_hcd * xhci,gfp_t flags)1659 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1660 {
1661 int i;
1662 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1663 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1664
1665 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1666 "Allocating %d scratchpad buffers", num_sp);
1667
1668 if (!num_sp)
1669 return 0;
1670
1671 xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1672 dev_to_node(dev));
1673 if (!xhci->scratchpad)
1674 goto fail_sp;
1675
1676 xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1677 num_sp * sizeof(u64),
1678 &xhci->scratchpad->sp_dma, flags);
1679 if (!xhci->scratchpad->sp_array)
1680 goto fail_sp2;
1681
1682 xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1683 flags, dev_to_node(dev));
1684 if (!xhci->scratchpad->sp_buffers)
1685 goto fail_sp3;
1686
1687 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1688 for (i = 0; i < num_sp; i++) {
1689 dma_addr_t dma;
1690 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1691 flags);
1692 if (!buf)
1693 goto fail_sp4;
1694
1695 xhci->scratchpad->sp_array[i] = dma;
1696 xhci->scratchpad->sp_buffers[i] = buf;
1697 }
1698
1699 return 0;
1700
1701 fail_sp4:
1702 for (i = i - 1; i >= 0; i--) {
1703 dma_free_coherent(dev, xhci->page_size,
1704 xhci->scratchpad->sp_buffers[i],
1705 xhci->scratchpad->sp_array[i]);
1706 }
1707
1708 kfree(xhci->scratchpad->sp_buffers);
1709
1710 fail_sp3:
1711 dma_free_coherent(dev, num_sp * sizeof(u64),
1712 xhci->scratchpad->sp_array,
1713 xhci->scratchpad->sp_dma);
1714
1715 fail_sp2:
1716 kfree(xhci->scratchpad);
1717 xhci->scratchpad = NULL;
1718
1719 fail_sp:
1720 return -ENOMEM;
1721 }
1722
scratchpad_free(struct xhci_hcd * xhci)1723 static void scratchpad_free(struct xhci_hcd *xhci)
1724 {
1725 int num_sp;
1726 int i;
1727 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1728
1729 if (!xhci->scratchpad)
1730 return;
1731
1732 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1733
1734 for (i = 0; i < num_sp; i++) {
1735 dma_free_coherent(dev, xhci->page_size,
1736 xhci->scratchpad->sp_buffers[i],
1737 xhci->scratchpad->sp_array[i]);
1738 }
1739 kfree(xhci->scratchpad->sp_buffers);
1740 dma_free_coherent(dev, num_sp * sizeof(u64),
1741 xhci->scratchpad->sp_array,
1742 xhci->scratchpad->sp_dma);
1743 kfree(xhci->scratchpad);
1744 xhci->scratchpad = NULL;
1745 }
1746
xhci_alloc_command(struct xhci_hcd * xhci,bool allocate_completion,gfp_t mem_flags)1747 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1748 bool allocate_completion, gfp_t mem_flags)
1749 {
1750 struct xhci_command *command;
1751 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1752
1753 command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1754 if (!command)
1755 return NULL;
1756
1757 if (allocate_completion) {
1758 command->completion =
1759 kzalloc_node(sizeof(struct completion), mem_flags,
1760 dev_to_node(dev));
1761 if (!command->completion) {
1762 kfree(command);
1763 return NULL;
1764 }
1765 init_completion(command->completion);
1766 }
1767
1768 command->status = 0;
1769 INIT_LIST_HEAD(&command->cmd_list);
1770 return command;
1771 }
1772
xhci_alloc_command_with_ctx(struct xhci_hcd * xhci,bool allocate_completion,gfp_t mem_flags)1773 struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1774 bool allocate_completion, gfp_t mem_flags)
1775 {
1776 struct xhci_command *command;
1777
1778 command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1779 if (!command)
1780 return NULL;
1781
1782 command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1783 mem_flags);
1784 if (!command->in_ctx) {
1785 kfree(command->completion);
1786 kfree(command);
1787 return NULL;
1788 }
1789 return command;
1790 }
1791
xhci_urb_free_priv(struct urb_priv * urb_priv)1792 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1793 {
1794 kfree(urb_priv);
1795 }
1796
xhci_free_command(struct xhci_hcd * xhci,struct xhci_command * command)1797 void xhci_free_command(struct xhci_hcd *xhci,
1798 struct xhci_command *command)
1799 {
1800 xhci_free_container_ctx(xhci,
1801 command->in_ctx);
1802 kfree(command->completion);
1803 kfree(command);
1804 }
1805
xhci_alloc_erst(struct xhci_hcd * xhci,struct xhci_ring * evt_ring,struct xhci_erst * erst,gfp_t flags)1806 int xhci_alloc_erst(struct xhci_hcd *xhci,
1807 struct xhci_ring *evt_ring,
1808 struct xhci_erst *erst,
1809 gfp_t flags)
1810 {
1811 size_t size;
1812 unsigned int val;
1813 struct xhci_segment *seg;
1814 struct xhci_erst_entry *entry;
1815
1816 size = sizeof(struct xhci_erst_entry) * evt_ring->num_segs;
1817 erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1818 size, &erst->erst_dma_addr, flags);
1819 if (!erst->entries)
1820 return -ENOMEM;
1821
1822 erst->num_entries = evt_ring->num_segs;
1823
1824 seg = evt_ring->first_seg;
1825 for (val = 0; val < evt_ring->num_segs; val++) {
1826 entry = &erst->entries[val];
1827 entry->seg_addr = cpu_to_le64(seg->dma);
1828 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1829 entry->rsvd = 0;
1830 seg = seg->next;
1831 }
1832
1833 return 0;
1834 }
1835
xhci_free_erst(struct xhci_hcd * xhci,struct xhci_erst * erst)1836 void xhci_free_erst(struct xhci_hcd *xhci, struct xhci_erst *erst)
1837 {
1838 size_t size;
1839 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1840
1841 size = sizeof(struct xhci_erst_entry) * (erst->num_entries);
1842 if (erst->entries)
1843 dma_free_coherent(dev, size,
1844 erst->entries,
1845 erst->erst_dma_addr);
1846 erst->entries = NULL;
1847 }
1848
xhci_mem_cleanup(struct xhci_hcd * xhci)1849 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1850 {
1851 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1852 int i, j, num_ports;
1853
1854 cancel_delayed_work_sync(&xhci->cmd_timer);
1855
1856 xhci_free_erst(xhci, &xhci->erst);
1857
1858 if (xhci->event_ring)
1859 xhci_ring_free(xhci, xhci->event_ring);
1860 xhci->event_ring = NULL;
1861 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1862
1863 if (xhci->lpm_command)
1864 xhci_free_command(xhci, xhci->lpm_command);
1865 xhci->lpm_command = NULL;
1866 if (xhci->cmd_ring)
1867 xhci_ring_free(xhci, xhci->cmd_ring);
1868 xhci->cmd_ring = NULL;
1869 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1870 xhci_cleanup_command_queue(xhci);
1871
1872 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1873 for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1874 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1875 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1876 struct list_head *ep = &bwt->interval_bw[j].endpoints;
1877 while (!list_empty(ep))
1878 list_del_init(ep->next);
1879 }
1880 }
1881
1882 for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1883 xhci_free_virt_devices_depth_first(xhci, i);
1884
1885 dma_pool_destroy(xhci->segment_pool);
1886 xhci->segment_pool = NULL;
1887 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1888
1889 dma_pool_destroy(xhci->device_pool);
1890 xhci->device_pool = NULL;
1891 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1892
1893 dma_pool_destroy(xhci->small_streams_pool);
1894 xhci->small_streams_pool = NULL;
1895 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1896 "Freed small stream array pool");
1897
1898 dma_pool_destroy(xhci->medium_streams_pool);
1899 xhci->medium_streams_pool = NULL;
1900 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1901 "Freed medium stream array pool");
1902
1903 if (xhci->dcbaa)
1904 dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1905 xhci->dcbaa, xhci->dcbaa->dma);
1906 xhci->dcbaa = NULL;
1907
1908 scratchpad_free(xhci);
1909
1910 if (!xhci->rh_bw)
1911 goto no_bw;
1912
1913 for (i = 0; i < num_ports; i++) {
1914 struct xhci_tt_bw_info *tt, *n;
1915 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1916 list_del(&tt->tt_list);
1917 kfree(tt);
1918 }
1919 }
1920
1921 no_bw:
1922 xhci->cmd_ring_reserved_trbs = 0;
1923 xhci->usb2_rhub.num_ports = 0;
1924 xhci->usb3_rhub.num_ports = 0;
1925 xhci->num_active_eps = 0;
1926 kfree(xhci->usb2_rhub.ports);
1927 kfree(xhci->usb3_rhub.ports);
1928 kfree(xhci->hw_ports);
1929 kfree(xhci->rh_bw);
1930 kfree(xhci->ext_caps);
1931 for (i = 0; i < xhci->num_port_caps; i++)
1932 kfree(xhci->port_caps[i].psi);
1933 kfree(xhci->port_caps);
1934 xhci->num_port_caps = 0;
1935
1936 xhci->usb2_rhub.ports = NULL;
1937 xhci->usb3_rhub.ports = NULL;
1938 xhci->hw_ports = NULL;
1939 xhci->rh_bw = NULL;
1940 xhci->ext_caps = NULL;
1941 xhci->port_caps = NULL;
1942
1943 xhci->page_size = 0;
1944 xhci->page_shift = 0;
1945 xhci->usb2_rhub.bus_state.bus_suspended = 0;
1946 xhci->usb3_rhub.bus_state.bus_suspended = 0;
1947 }
1948
xhci_test_trb_in_td(struct xhci_hcd * xhci,struct xhci_segment * input_seg,union xhci_trb * start_trb,union xhci_trb * end_trb,dma_addr_t input_dma,struct xhci_segment * result_seg,char * test_name,int test_number)1949 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1950 struct xhci_segment *input_seg,
1951 union xhci_trb *start_trb,
1952 union xhci_trb *end_trb,
1953 dma_addr_t input_dma,
1954 struct xhci_segment *result_seg,
1955 char *test_name, int test_number)
1956 {
1957 unsigned long long start_dma;
1958 unsigned long long end_dma;
1959 struct xhci_segment *seg;
1960
1961 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1962 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1963
1964 seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1965 if (seg != result_seg) {
1966 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1967 test_name, test_number);
1968 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1969 "input DMA 0x%llx\n",
1970 input_seg,
1971 (unsigned long long) input_dma);
1972 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1973 "ending TRB %p (0x%llx DMA)\n",
1974 start_trb, start_dma,
1975 end_trb, end_dma);
1976 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1977 result_seg, seg);
1978 trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1979 true);
1980 return -1;
1981 }
1982 return 0;
1983 }
1984
1985 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
xhci_check_trb_in_td_math(struct xhci_hcd * xhci)1986 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1987 {
1988 struct {
1989 dma_addr_t input_dma;
1990 struct xhci_segment *result_seg;
1991 } simple_test_vector [] = {
1992 /* A zeroed DMA field should fail */
1993 { 0, NULL },
1994 /* One TRB before the ring start should fail */
1995 { xhci->event_ring->first_seg->dma - 16, NULL },
1996 /* One byte before the ring start should fail */
1997 { xhci->event_ring->first_seg->dma - 1, NULL },
1998 /* Starting TRB should succeed */
1999 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
2000 /* Ending TRB should succeed */
2001 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
2002 xhci->event_ring->first_seg },
2003 /* One byte after the ring end should fail */
2004 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
2005 /* One TRB after the ring end should fail */
2006 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
2007 /* An address of all ones should fail */
2008 { (dma_addr_t) (~0), NULL },
2009 };
2010 struct {
2011 struct xhci_segment *input_seg;
2012 union xhci_trb *start_trb;
2013 union xhci_trb *end_trb;
2014 dma_addr_t input_dma;
2015 struct xhci_segment *result_seg;
2016 } complex_test_vector [] = {
2017 /* Test feeding a valid DMA address from a different ring */
2018 { .input_seg = xhci->event_ring->first_seg,
2019 .start_trb = xhci->event_ring->first_seg->trbs,
2020 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2021 .input_dma = xhci->cmd_ring->first_seg->dma,
2022 .result_seg = NULL,
2023 },
2024 /* Test feeding a valid end TRB from a different ring */
2025 { .input_seg = xhci->event_ring->first_seg,
2026 .start_trb = xhci->event_ring->first_seg->trbs,
2027 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2028 .input_dma = xhci->cmd_ring->first_seg->dma,
2029 .result_seg = NULL,
2030 },
2031 /* Test feeding a valid start and end TRB from a different ring */
2032 { .input_seg = xhci->event_ring->first_seg,
2033 .start_trb = xhci->cmd_ring->first_seg->trbs,
2034 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2035 .input_dma = xhci->cmd_ring->first_seg->dma,
2036 .result_seg = NULL,
2037 },
2038 /* TRB in this ring, but after this TD */
2039 { .input_seg = xhci->event_ring->first_seg,
2040 .start_trb = &xhci->event_ring->first_seg->trbs[0],
2041 .end_trb = &xhci->event_ring->first_seg->trbs[3],
2042 .input_dma = xhci->event_ring->first_seg->dma + 4*16,
2043 .result_seg = NULL,
2044 },
2045 /* TRB in this ring, but before this TD */
2046 { .input_seg = xhci->event_ring->first_seg,
2047 .start_trb = &xhci->event_ring->first_seg->trbs[3],
2048 .end_trb = &xhci->event_ring->first_seg->trbs[6],
2049 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2050 .result_seg = NULL,
2051 },
2052 /* TRB in this ring, but after this wrapped TD */
2053 { .input_seg = xhci->event_ring->first_seg,
2054 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2055 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2056 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2057 .result_seg = NULL,
2058 },
2059 /* TRB in this ring, but before this wrapped TD */
2060 { .input_seg = xhci->event_ring->first_seg,
2061 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2062 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2063 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2064 .result_seg = NULL,
2065 },
2066 /* TRB not in this ring, and we have a wrapped TD */
2067 { .input_seg = xhci->event_ring->first_seg,
2068 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2069 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2070 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2071 .result_seg = NULL,
2072 },
2073 };
2074
2075 unsigned int num_tests;
2076 int i, ret;
2077
2078 num_tests = ARRAY_SIZE(simple_test_vector);
2079 for (i = 0; i < num_tests; i++) {
2080 ret = xhci_test_trb_in_td(xhci,
2081 xhci->event_ring->first_seg,
2082 xhci->event_ring->first_seg->trbs,
2083 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2084 simple_test_vector[i].input_dma,
2085 simple_test_vector[i].result_seg,
2086 "Simple", i);
2087 if (ret < 0)
2088 return ret;
2089 }
2090
2091 num_tests = ARRAY_SIZE(complex_test_vector);
2092 for (i = 0; i < num_tests; i++) {
2093 ret = xhci_test_trb_in_td(xhci,
2094 complex_test_vector[i].input_seg,
2095 complex_test_vector[i].start_trb,
2096 complex_test_vector[i].end_trb,
2097 complex_test_vector[i].input_dma,
2098 complex_test_vector[i].result_seg,
2099 "Complex", i);
2100 if (ret < 0)
2101 return ret;
2102 }
2103 xhci_dbg(xhci, "TRB math tests passed.\n");
2104 return 0;
2105 }
2106
xhci_set_hc_event_deq(struct xhci_hcd * xhci)2107 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2108 {
2109 u64 temp;
2110 dma_addr_t deq;
2111
2112 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2113 xhci->event_ring->dequeue);
2114 if (deq == 0 && !in_interrupt())
2115 xhci_warn(xhci, "WARN something wrong with SW event ring "
2116 "dequeue ptr.\n");
2117 /* Update HC event ring dequeue pointer */
2118 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2119 temp &= ERST_PTR_MASK;
2120 /* Don't clear the EHB bit (which is RW1C) because
2121 * there might be more events to service.
2122 */
2123 temp &= ~ERST_EHB;
2124 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2125 "// Write event ring dequeue pointer, "
2126 "preserving EHB bit");
2127 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2128 &xhci->ir_set->erst_dequeue);
2129 }
2130
xhci_add_in_port(struct xhci_hcd * xhci,unsigned int num_ports,__le32 __iomem * addr,int max_caps)2131 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2132 __le32 __iomem *addr, int max_caps)
2133 {
2134 u32 temp, port_offset, port_count;
2135 int i;
2136 u8 major_revision, minor_revision;
2137 struct xhci_hub *rhub;
2138 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2139 struct xhci_port_cap *port_cap;
2140
2141 temp = readl(addr);
2142 major_revision = XHCI_EXT_PORT_MAJOR(temp);
2143 minor_revision = XHCI_EXT_PORT_MINOR(temp);
2144
2145 if (major_revision == 0x03) {
2146 rhub = &xhci->usb3_rhub;
2147 /*
2148 * Some hosts incorrectly use sub-minor version for minor
2149 * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01
2150 * for bcdUSB 0x310). Since there is no USB release with sub
2151 * minor version 0x301 to 0x309, we can assume that they are
2152 * incorrect and fix it here.
2153 */
2154 if (minor_revision > 0x00 && minor_revision < 0x10)
2155 minor_revision <<= 4;
2156 } else if (major_revision <= 0x02) {
2157 rhub = &xhci->usb2_rhub;
2158 } else {
2159 xhci_warn(xhci, "Ignoring unknown port speed, "
2160 "Ext Cap %p, revision = 0x%x\n",
2161 addr, major_revision);
2162 /* Ignoring port protocol we can't understand. FIXME */
2163 return;
2164 }
2165 rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2166
2167 if (rhub->min_rev < minor_revision)
2168 rhub->min_rev = minor_revision;
2169
2170 /* Port offset and count in the third dword, see section 7.2 */
2171 temp = readl(addr + 2);
2172 port_offset = XHCI_EXT_PORT_OFF(temp);
2173 port_count = XHCI_EXT_PORT_COUNT(temp);
2174 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2175 "Ext Cap %p, port offset = %u, "
2176 "count = %u, revision = 0x%x",
2177 addr, port_offset, port_count, major_revision);
2178 /* Port count includes the current port offset */
2179 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2180 /* WTF? "Valid values are ‘1’ to MaxPorts" */
2181 return;
2182
2183 port_cap = &xhci->port_caps[xhci->num_port_caps++];
2184 if (xhci->num_port_caps > max_caps)
2185 return;
2186
2187 port_cap->maj_rev = major_revision;
2188 port_cap->min_rev = minor_revision;
2189 port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2190
2191 if (port_cap->psi_count) {
2192 port_cap->psi = kcalloc_node(port_cap->psi_count,
2193 sizeof(*port_cap->psi),
2194 GFP_KERNEL, dev_to_node(dev));
2195 if (!port_cap->psi)
2196 port_cap->psi_count = 0;
2197
2198 port_cap->psi_uid_count++;
2199 for (i = 0; i < port_cap->psi_count; i++) {
2200 port_cap->psi[i] = readl(addr + 4 + i);
2201
2202 /* count unique ID values, two consecutive entries can
2203 * have the same ID if link is assymetric
2204 */
2205 if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2206 XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2207 port_cap->psi_uid_count++;
2208
2209 xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2210 XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2211 XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2212 XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2213 XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2214 XHCI_EXT_PORT_LP(port_cap->psi[i]),
2215 XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2216 }
2217 }
2218 /* cache usb2 port capabilities */
2219 if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2220 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2221
2222 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2223 (temp & XHCI_HLC)) {
2224 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2225 "xHCI 1.0: support USB2 hardware lpm");
2226 xhci->hw_lpm_support = 1;
2227 }
2228
2229 port_offset--;
2230 for (i = port_offset; i < (port_offset + port_count); i++) {
2231 struct xhci_port *hw_port = &xhci->hw_ports[i];
2232 /* Duplicate entry. Ignore the port if the revisions differ. */
2233 if (hw_port->rhub) {
2234 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2235 " port %u\n", addr, i);
2236 xhci_warn(xhci, "Port was marked as USB %u, "
2237 "duplicated as USB %u\n",
2238 hw_port->rhub->maj_rev, major_revision);
2239 /* Only adjust the roothub port counts if we haven't
2240 * found a similar duplicate.
2241 */
2242 if (hw_port->rhub != rhub &&
2243 hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2244 hw_port->rhub->num_ports--;
2245 hw_port->hcd_portnum = DUPLICATE_ENTRY;
2246 }
2247 continue;
2248 }
2249 hw_port->rhub = rhub;
2250 hw_port->port_cap = port_cap;
2251 rhub->num_ports++;
2252 }
2253 /* FIXME: Should we disable ports not in the Extended Capabilities? */
2254 }
2255
xhci_create_rhub_port_array(struct xhci_hcd * xhci,struct xhci_hub * rhub,gfp_t flags)2256 static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2257 struct xhci_hub *rhub, gfp_t flags)
2258 {
2259 int port_index = 0;
2260 int i;
2261 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2262
2263 if (!rhub->num_ports)
2264 return;
2265 rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports),
2266 flags, dev_to_node(dev));
2267 if (!rhub->ports)
2268 return;
2269
2270 for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2271 if (xhci->hw_ports[i].rhub != rhub ||
2272 xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2273 continue;
2274 xhci->hw_ports[i].hcd_portnum = port_index;
2275 rhub->ports[port_index] = &xhci->hw_ports[i];
2276 port_index++;
2277 if (port_index == rhub->num_ports)
2278 break;
2279 }
2280 }
2281
2282 /*
2283 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2284 * specify what speeds each port is supposed to be. We can't count on the port
2285 * speed bits in the PORTSC register being correct until a device is connected,
2286 * but we need to set up the two fake roothubs with the correct number of USB
2287 * 3.0 and USB 2.0 ports at host controller initialization time.
2288 */
xhci_setup_port_arrays(struct xhci_hcd * xhci,gfp_t flags)2289 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2290 {
2291 void __iomem *base;
2292 u32 offset;
2293 unsigned int num_ports;
2294 int i, j;
2295 int cap_count = 0;
2296 u32 cap_start;
2297 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2298
2299 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2300 xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2301 flags, dev_to_node(dev));
2302 if (!xhci->hw_ports)
2303 return -ENOMEM;
2304
2305 for (i = 0; i < num_ports; i++) {
2306 xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2307 NUM_PORT_REGS * i;
2308 xhci->hw_ports[i].hw_portnum = i;
2309 }
2310
2311 xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2312 dev_to_node(dev));
2313 if (!xhci->rh_bw)
2314 return -ENOMEM;
2315 for (i = 0; i < num_ports; i++) {
2316 struct xhci_interval_bw_table *bw_table;
2317
2318 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2319 bw_table = &xhci->rh_bw[i].bw_table;
2320 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2321 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2322 }
2323 base = &xhci->cap_regs->hc_capbase;
2324
2325 cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2326 if (!cap_start) {
2327 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2328 return -ENODEV;
2329 }
2330
2331 offset = cap_start;
2332 /* count extended protocol capability entries for later caching */
2333 while (offset) {
2334 cap_count++;
2335 offset = xhci_find_next_ext_cap(base, offset,
2336 XHCI_EXT_CAPS_PROTOCOL);
2337 }
2338
2339 xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps),
2340 flags, dev_to_node(dev));
2341 if (!xhci->ext_caps)
2342 return -ENOMEM;
2343
2344 xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2345 flags, dev_to_node(dev));
2346 if (!xhci->port_caps)
2347 return -ENOMEM;
2348
2349 offset = cap_start;
2350
2351 while (offset) {
2352 xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2353 if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2354 num_ports)
2355 break;
2356 offset = xhci_find_next_ext_cap(base, offset,
2357 XHCI_EXT_CAPS_PROTOCOL);
2358 }
2359 if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2360 xhci_warn(xhci, "No ports on the roothubs?\n");
2361 return -ENODEV;
2362 }
2363 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2364 "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2365 xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2366
2367 /* Place limits on the number of roothub ports so that the hub
2368 * descriptors aren't longer than the USB core will allocate.
2369 */
2370 if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2371 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2372 "Limiting USB 3.0 roothub ports to %u.",
2373 USB_SS_MAXPORTS);
2374 xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2375 }
2376 if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2377 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2378 "Limiting USB 2.0 roothub ports to %u.",
2379 USB_MAXCHILDREN);
2380 xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2381 }
2382
2383 /*
2384 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2385 * Not sure how the USB core will handle a hub with no ports...
2386 */
2387
2388 xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2389 xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2390
2391 return 0;
2392 }
2393
xhci_mem_init(struct xhci_hcd * xhci,gfp_t flags)2394 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2395 {
2396 dma_addr_t dma;
2397 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2398 unsigned int val, val2;
2399 u64 val_64;
2400 u32 page_size, temp;
2401 int i, ret;
2402
2403 INIT_LIST_HEAD(&xhci->cmd_list);
2404
2405 /* init command timeout work */
2406 INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2407 init_completion(&xhci->cmd_ring_stop_completion);
2408
2409 page_size = readl(&xhci->op_regs->page_size);
2410 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2411 "Supported page size register = 0x%x", page_size);
2412 for (i = 0; i < 16; i++) {
2413 if ((0x1 & page_size) != 0)
2414 break;
2415 page_size = page_size >> 1;
2416 }
2417 if (i < 16)
2418 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2419 "Supported page size of %iK", (1 << (i+12)) / 1024);
2420 else
2421 xhci_warn(xhci, "WARN: no supported page size\n");
2422 /* Use 4K pages, since that's common and the minimum the HC supports */
2423 xhci->page_shift = 12;
2424 xhci->page_size = 1 << xhci->page_shift;
2425 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2426 "HCD page size set to %iK", xhci->page_size / 1024);
2427
2428 /*
2429 * Program the Number of Device Slots Enabled field in the CONFIG
2430 * register with the max value of slots the HC can handle.
2431 */
2432 val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2433 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2434 "// xHC can handle at most %d device slots.", val);
2435 val2 = readl(&xhci->op_regs->config_reg);
2436 val |= (val2 & ~HCS_SLOTS_MASK);
2437 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2438 "// Setting Max device slots reg = 0x%x.", val);
2439 writel(val, &xhci->op_regs->config_reg);
2440
2441 /*
2442 * xHCI section 5.4.6 - doorbell array must be
2443 * "physically contiguous and 64-byte (cache line) aligned".
2444 */
2445 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2446 flags);
2447 if (!xhci->dcbaa)
2448 goto fail;
2449 xhci->dcbaa->dma = dma;
2450 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2451 "// Device context base array address = 0x%llx (DMA), %p (virt)",
2452 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2453 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2454
2455 /*
2456 * Initialize the ring segment pool. The ring must be a contiguous
2457 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2458 * however, the command ring segment needs 64-byte aligned segments
2459 * and our use of dma addresses in the trb_address_map radix tree needs
2460 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2461 */
2462 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2463 TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2464
2465 /* See Table 46 and Note on Figure 55 */
2466 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2467 2112, 64, xhci->page_size);
2468 if (!xhci->segment_pool || !xhci->device_pool)
2469 goto fail;
2470
2471 /* Linear stream context arrays don't have any boundary restrictions,
2472 * and only need to be 16-byte aligned.
2473 */
2474 xhci->small_streams_pool =
2475 dma_pool_create("xHCI 256 byte stream ctx arrays",
2476 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2477 xhci->medium_streams_pool =
2478 dma_pool_create("xHCI 1KB stream ctx arrays",
2479 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2480 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2481 * will be allocated with dma_alloc_coherent()
2482 */
2483
2484 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2485 goto fail;
2486
2487 /* Set up the command ring to have one segments for now. */
2488 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2489 if (!xhci->cmd_ring)
2490 goto fail;
2491 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2492 "Allocated command ring at %p", xhci->cmd_ring);
2493 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2494 (unsigned long long)xhci->cmd_ring->first_seg->dma);
2495
2496 /* Set the address in the Command Ring Control register */
2497 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2498 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2499 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2500 xhci->cmd_ring->cycle_state;
2501 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2502 "// Setting command ring address to 0x%016llx", val_64);
2503 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2504
2505 xhci->lpm_command = xhci_alloc_command_with_ctx(xhci, true, flags);
2506 if (!xhci->lpm_command)
2507 goto fail;
2508
2509 /* Reserve one command ring TRB for disabling LPM.
2510 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2511 * disabling LPM, we only need to reserve one TRB for all devices.
2512 */
2513 xhci->cmd_ring_reserved_trbs++;
2514
2515 val = readl(&xhci->cap_regs->db_off);
2516 val &= DBOFF_MASK;
2517 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2518 "// Doorbell array is located at offset 0x%x"
2519 " from cap regs base addr", val);
2520 xhci->dba = (void __iomem *) xhci->cap_regs + val;
2521 /* Set ir_set to interrupt register set 0 */
2522 xhci->ir_set = &xhci->run_regs->ir_set[0];
2523
2524 /*
2525 * Event ring setup: Allocate a normal ring, but also setup
2526 * the event ring segment table (ERST). Section 4.9.3.
2527 */
2528 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2529 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2530 0, flags);
2531 if (!xhci->event_ring)
2532 goto fail;
2533 if (xhci_check_trb_in_td_math(xhci) < 0)
2534 goto fail;
2535
2536 ret = xhci_alloc_erst(xhci, xhci->event_ring, &xhci->erst, flags);
2537 if (ret)
2538 goto fail;
2539
2540 /* set ERST count with the number of entries in the segment table */
2541 val = readl(&xhci->ir_set->erst_size);
2542 val &= ERST_SIZE_MASK;
2543 val |= ERST_NUM_SEGS;
2544 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2545 "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2546 val);
2547 writel(val, &xhci->ir_set->erst_size);
2548
2549 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2550 "// Set ERST entries to point to event ring.");
2551 /* set the segment table base address */
2552 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2553 "// Set ERST base address for ir_set 0 = 0x%llx",
2554 (unsigned long long)xhci->erst.erst_dma_addr);
2555 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2556 val_64 &= ERST_PTR_MASK;
2557 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2558 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2559
2560 /* Set the event ring dequeue address */
2561 xhci_set_hc_event_deq(xhci);
2562 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2563 "Wrote ERST address to ir_set 0.");
2564
2565 /*
2566 * XXX: Might need to set the Interrupter Moderation Register to
2567 * something other than the default (~1ms minimum between interrupts).
2568 * See section 5.5.1.2.
2569 */
2570 for (i = 0; i < MAX_HC_SLOTS; i++)
2571 xhci->devs[i] = NULL;
2572 for (i = 0; i < USB_MAXCHILDREN; i++) {
2573 xhci->usb2_rhub.bus_state.resume_done[i] = 0;
2574 xhci->usb3_rhub.bus_state.resume_done[i] = 0;
2575 /* Only the USB 2.0 completions will ever be used. */
2576 init_completion(&xhci->usb2_rhub.bus_state.rexit_done[i]);
2577 init_completion(&xhci->usb3_rhub.bus_state.u3exit_done[i]);
2578 }
2579
2580 if (scratchpad_alloc(xhci, flags))
2581 goto fail;
2582 if (xhci_setup_port_arrays(xhci, flags))
2583 goto fail;
2584
2585 /* Enable USB 3.0 device notifications for function remote wake, which
2586 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2587 * U3 (device suspend).
2588 */
2589 temp = readl(&xhci->op_regs->dev_notification);
2590 temp &= ~DEV_NOTE_MASK;
2591 temp |= DEV_NOTE_FWAKE;
2592 writel(temp, &xhci->op_regs->dev_notification);
2593
2594 return 0;
2595
2596 fail:
2597 xhci_halt(xhci);
2598 xhci_reset(xhci);
2599 xhci_mem_cleanup(xhci);
2600 return -ENOMEM;
2601 }
2602