1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
20
21 #include "xhci.h"
22 #include "xhci-trace.h"
23 #include "xhci-mtk.h"
24 #include "xhci-debugfs.h"
25 #include "xhci-dbgcap.h"
26
27 #define DRIVER_AUTHOR "Sarah Sharp"
28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
29
30 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
31
32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
33 static int link_quirk;
34 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
36
37 static unsigned long long quirks;
38 module_param(quirks, ullong, S_IRUGO);
39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
40
td_on_ring(struct xhci_td * td,struct xhci_ring * ring)41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
42 {
43 struct xhci_segment *seg = ring->first_seg;
44
45 if (!td || !td->start_seg)
46 return false;
47 do {
48 if (seg == td->start_seg)
49 return true;
50 seg = seg->next;
51 } while (seg && seg != ring->first_seg);
52
53 return false;
54 }
55
56 /*
57 * xhci_handshake - spin reading hc until handshake completes or fails
58 * @ptr: address of hc register to be read
59 * @mask: bits to look at in result of read
60 * @done: value of those bits when handshake succeeds
61 * @usec: timeout in microseconds
62 *
63 * Returns negative errno, or zero on success
64 *
65 * Success happens when the "mask" bits have the specified value (hardware
66 * handshake done). There are two failure modes: "usec" have passed (major
67 * hardware flakeout), or the register reads as all-ones (hardware removed).
68 */
xhci_handshake(void __iomem * ptr,u32 mask,u32 done,int usec)69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
70 {
71 u32 result;
72 int ret;
73
74 ret = readl_poll_timeout_atomic(ptr, result,
75 (result & mask) == done ||
76 result == U32_MAX,
77 1, usec);
78 if (result == U32_MAX) /* card removed */
79 return -ENODEV;
80
81 return ret;
82 }
83
84 /*
85 * Disable interrupts and begin the xHCI halting process.
86 */
xhci_quiesce(struct xhci_hcd * xhci)87 void xhci_quiesce(struct xhci_hcd *xhci)
88 {
89 u32 halted;
90 u32 cmd;
91 u32 mask;
92
93 mask = ~(XHCI_IRQS);
94 halted = readl(&xhci->op_regs->status) & STS_HALT;
95 if (!halted)
96 mask &= ~CMD_RUN;
97
98 cmd = readl(&xhci->op_regs->command);
99 cmd &= mask;
100 writel(cmd, &xhci->op_regs->command);
101 }
102
103 /*
104 * Force HC into halt state.
105 *
106 * Disable any IRQs and clear the run/stop bit.
107 * HC will complete any current and actively pipelined transactions, and
108 * should halt within 16 ms of the run/stop bit being cleared.
109 * Read HC Halted bit in the status register to see when the HC is finished.
110 */
xhci_halt(struct xhci_hcd * xhci)111 int xhci_halt(struct xhci_hcd *xhci)
112 {
113 int ret;
114 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
115 xhci_quiesce(xhci);
116
117 ret = xhci_handshake(&xhci->op_regs->status,
118 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
119 if (ret) {
120 xhci_warn(xhci, "Host halt failed, %d\n", ret);
121 return ret;
122 }
123 xhci->xhc_state |= XHCI_STATE_HALTED;
124 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
125 return ret;
126 }
127
128 /*
129 * Set the run bit and wait for the host to be running.
130 */
xhci_start(struct xhci_hcd * xhci)131 int xhci_start(struct xhci_hcd *xhci)
132 {
133 u32 temp;
134 int ret;
135
136 temp = readl(&xhci->op_regs->command);
137 temp |= (CMD_RUN);
138 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
139 temp);
140 writel(temp, &xhci->op_regs->command);
141
142 /*
143 * Wait for the HCHalted Status bit to be 0 to indicate the host is
144 * running.
145 */
146 ret = xhci_handshake(&xhci->op_regs->status,
147 STS_HALT, 0, XHCI_MAX_HALT_USEC);
148 if (ret == -ETIMEDOUT)
149 xhci_err(xhci, "Host took too long to start, "
150 "waited %u microseconds.\n",
151 XHCI_MAX_HALT_USEC);
152 if (!ret)
153 /* clear state flags. Including dying, halted or removing */
154 xhci->xhc_state = 0;
155
156 return ret;
157 }
158
159 /*
160 * Reset a halted HC.
161 *
162 * This resets pipelines, timers, counters, state machines, etc.
163 * Transactions will be terminated immediately, and operational registers
164 * will be set to their defaults.
165 */
xhci_reset(struct xhci_hcd * xhci)166 int xhci_reset(struct xhci_hcd *xhci)
167 {
168 u32 command;
169 u32 state;
170 int ret;
171
172 state = readl(&xhci->op_regs->status);
173
174 if (state == ~(u32)0) {
175 xhci_warn(xhci, "Host not accessible, reset failed.\n");
176 return -ENODEV;
177 }
178
179 if ((state & STS_HALT) == 0) {
180 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
181 return 0;
182 }
183
184 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
185 command = readl(&xhci->op_regs->command);
186 command |= CMD_RESET;
187 writel(command, &xhci->op_regs->command);
188
189 /* Existing Intel xHCI controllers require a delay of 1 mS,
190 * after setting the CMD_RESET bit, and before accessing any
191 * HC registers. This allows the HC to complete the
192 * reset operation and be ready for HC register access.
193 * Without this delay, the subsequent HC register access,
194 * may result in a system hang very rarely.
195 */
196 if (xhci->quirks & XHCI_INTEL_HOST)
197 udelay(1000);
198
199 ret = xhci_handshake(&xhci->op_regs->command,
200 CMD_RESET, 0, 10 * 1000 * 1000);
201 if (ret)
202 return ret;
203
204 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
205 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
206
207 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
208 "Wait for controller to be ready for doorbell rings");
209 /*
210 * xHCI cannot write to any doorbells or operational registers other
211 * than status until the "Controller Not Ready" flag is cleared.
212 */
213 ret = xhci_handshake(&xhci->op_regs->status,
214 STS_CNR, 0, 10 * 1000 * 1000);
215
216 xhci->usb2_rhub.bus_state.port_c_suspend = 0;
217 xhci->usb2_rhub.bus_state.suspended_ports = 0;
218 xhci->usb2_rhub.bus_state.resuming_ports = 0;
219 xhci->usb3_rhub.bus_state.port_c_suspend = 0;
220 xhci->usb3_rhub.bus_state.suspended_ports = 0;
221 xhci->usb3_rhub.bus_state.resuming_ports = 0;
222
223 return ret;
224 }
225
xhci_zero_64b_regs(struct xhci_hcd * xhci)226 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
227 {
228 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
229 int err, i;
230 u64 val;
231 u32 intrs;
232
233 /*
234 * Some Renesas controllers get into a weird state if they are
235 * reset while programmed with 64bit addresses (they will preserve
236 * the top half of the address in internal, non visible
237 * registers). You end up with half the address coming from the
238 * kernel, and the other half coming from the firmware. Also,
239 * changing the programming leads to extra accesses even if the
240 * controller is supposed to be halted. The controller ends up with
241 * a fatal fault, and is then ripe for being properly reset.
242 *
243 * Special care is taken to only apply this if the device is behind
244 * an iommu. Doing anything when there is no iommu is definitely
245 * unsafe...
246 */
247 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
248 return;
249
250 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
251
252 /* Clear HSEIE so that faults do not get signaled */
253 val = readl(&xhci->op_regs->command);
254 val &= ~CMD_HSEIE;
255 writel(val, &xhci->op_regs->command);
256
257 /* Clear HSE (aka FATAL) */
258 val = readl(&xhci->op_regs->status);
259 val |= STS_FATAL;
260 writel(val, &xhci->op_regs->status);
261
262 /* Now zero the registers, and brace for impact */
263 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
264 if (upper_32_bits(val))
265 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
266 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
267 if (upper_32_bits(val))
268 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
269
270 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
271 ARRAY_SIZE(xhci->run_regs->ir_set));
272
273 for (i = 0; i < intrs; i++) {
274 struct xhci_intr_reg __iomem *ir;
275
276 ir = &xhci->run_regs->ir_set[i];
277 val = xhci_read_64(xhci, &ir->erst_base);
278 if (upper_32_bits(val))
279 xhci_write_64(xhci, 0, &ir->erst_base);
280 val= xhci_read_64(xhci, &ir->erst_dequeue);
281 if (upper_32_bits(val))
282 xhci_write_64(xhci, 0, &ir->erst_dequeue);
283 }
284
285 /* Wait for the fault to appear. It will be cleared on reset */
286 err = xhci_handshake(&xhci->op_regs->status,
287 STS_FATAL, STS_FATAL,
288 XHCI_MAX_HALT_USEC);
289 if (!err)
290 xhci_info(xhci, "Fault detected\n");
291 }
292
293 #ifdef CONFIG_USB_PCI
294 /*
295 * Set up MSI
296 */
xhci_setup_msi(struct xhci_hcd * xhci)297 static int xhci_setup_msi(struct xhci_hcd *xhci)
298 {
299 int ret;
300 /*
301 * TODO:Check with MSI Soc for sysdev
302 */
303 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
304
305 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
306 if (ret < 0) {
307 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
308 "failed to allocate MSI entry");
309 return ret;
310 }
311
312 ret = request_irq(pdev->irq, xhci_msi_irq,
313 0, "xhci_hcd", xhci_to_hcd(xhci));
314 if (ret) {
315 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
316 "disable MSI interrupt");
317 pci_free_irq_vectors(pdev);
318 }
319
320 return ret;
321 }
322
323 /*
324 * Set up MSI-X
325 */
xhci_setup_msix(struct xhci_hcd * xhci)326 static int xhci_setup_msix(struct xhci_hcd *xhci)
327 {
328 int i, ret = 0;
329 struct usb_hcd *hcd = xhci_to_hcd(xhci);
330 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
331
332 /*
333 * calculate number of msi-x vectors supported.
334 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
335 * with max number of interrupters based on the xhci HCSPARAMS1.
336 * - num_online_cpus: maximum msi-x vectors per CPUs core.
337 * Add additional 1 vector to ensure always available interrupt.
338 */
339 xhci->msix_count = min(num_online_cpus() + 1,
340 HCS_MAX_INTRS(xhci->hcs_params1));
341
342 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
343 PCI_IRQ_MSIX);
344 if (ret < 0) {
345 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
346 "Failed to enable MSI-X");
347 return ret;
348 }
349
350 for (i = 0; i < xhci->msix_count; i++) {
351 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
352 "xhci_hcd", xhci_to_hcd(xhci));
353 if (ret)
354 goto disable_msix;
355 }
356
357 hcd->msix_enabled = 1;
358 return ret;
359
360 disable_msix:
361 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
362 while (--i >= 0)
363 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
364 pci_free_irq_vectors(pdev);
365 return ret;
366 }
367
368 /* Free any IRQs and disable MSI-X */
xhci_cleanup_msix(struct xhci_hcd * xhci)369 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
370 {
371 struct usb_hcd *hcd = xhci_to_hcd(xhci);
372 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
373
374 if (xhci->quirks & XHCI_PLAT)
375 return;
376
377 /* return if using legacy interrupt */
378 if (hcd->irq > 0)
379 return;
380
381 if (hcd->msix_enabled) {
382 int i;
383
384 for (i = 0; i < xhci->msix_count; i++)
385 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
386 } else {
387 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
388 }
389
390 pci_free_irq_vectors(pdev);
391 hcd->msix_enabled = 0;
392 }
393
xhci_msix_sync_irqs(struct xhci_hcd * xhci)394 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
395 {
396 struct usb_hcd *hcd = xhci_to_hcd(xhci);
397
398 if (hcd->msix_enabled) {
399 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
400 int i;
401
402 for (i = 0; i < xhci->msix_count; i++)
403 synchronize_irq(pci_irq_vector(pdev, i));
404 }
405 }
406
xhci_try_enable_msi(struct usb_hcd * hcd)407 static int xhci_try_enable_msi(struct usb_hcd *hcd)
408 {
409 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
410 struct pci_dev *pdev;
411 int ret;
412
413 /* The xhci platform device has set up IRQs through usb_add_hcd. */
414 if (xhci->quirks & XHCI_PLAT)
415 return 0;
416
417 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
418 /*
419 * Some Fresco Logic host controllers advertise MSI, but fail to
420 * generate interrupts. Don't even try to enable MSI.
421 */
422 if (xhci->quirks & XHCI_BROKEN_MSI)
423 goto legacy_irq;
424
425 /* unregister the legacy interrupt */
426 if (hcd->irq)
427 free_irq(hcd->irq, hcd);
428 hcd->irq = 0;
429
430 ret = xhci_setup_msix(xhci);
431 if (ret)
432 /* fall back to msi*/
433 ret = xhci_setup_msi(xhci);
434
435 if (!ret) {
436 hcd->msi_enabled = 1;
437 return 0;
438 }
439
440 if (!pdev->irq) {
441 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
442 return -EINVAL;
443 }
444
445 legacy_irq:
446 if (!strlen(hcd->irq_descr))
447 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
448 hcd->driver->description, hcd->self.busnum);
449
450 /* fall back to legacy interrupt*/
451 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
452 hcd->irq_descr, hcd);
453 if (ret) {
454 xhci_err(xhci, "request interrupt %d failed\n",
455 pdev->irq);
456 return ret;
457 }
458 hcd->irq = pdev->irq;
459 return 0;
460 }
461
462 #else
463
xhci_try_enable_msi(struct usb_hcd * hcd)464 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
465 {
466 return 0;
467 }
468
xhci_cleanup_msix(struct xhci_hcd * xhci)469 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
470 {
471 }
472
xhci_msix_sync_irqs(struct xhci_hcd * xhci)473 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
474 {
475 }
476
477 #endif
478
compliance_mode_recovery(struct timer_list * t)479 static void compliance_mode_recovery(struct timer_list *t)
480 {
481 struct xhci_hcd *xhci;
482 struct usb_hcd *hcd;
483 struct xhci_hub *rhub;
484 u32 temp;
485 int i;
486
487 xhci = from_timer(xhci, t, comp_mode_recovery_timer);
488 rhub = &xhci->usb3_rhub;
489
490 for (i = 0; i < rhub->num_ports; i++) {
491 temp = readl(rhub->ports[i]->addr);
492 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
493 /*
494 * Compliance Mode Detected. Letting USB Core
495 * handle the Warm Reset
496 */
497 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
498 "Compliance mode detected->port %d",
499 i + 1);
500 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
501 "Attempting compliance mode recovery");
502 hcd = xhci->shared_hcd;
503
504 if (hcd->state == HC_STATE_SUSPENDED)
505 usb_hcd_resume_root_hub(hcd);
506
507 usb_hcd_poll_rh_status(hcd);
508 }
509 }
510
511 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
512 mod_timer(&xhci->comp_mode_recovery_timer,
513 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
514 }
515
516 /*
517 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
518 * that causes ports behind that hardware to enter compliance mode sometimes.
519 * The quirk creates a timer that polls every 2 seconds the link state of
520 * each host controller's port and recovers it by issuing a Warm reset
521 * if Compliance mode is detected, otherwise the port will become "dead" (no
522 * device connections or disconnections will be detected anymore). Becasue no
523 * status event is generated when entering compliance mode (per xhci spec),
524 * this quirk is needed on systems that have the failing hardware installed.
525 */
compliance_mode_recovery_timer_init(struct xhci_hcd * xhci)526 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
527 {
528 xhci->port_status_u0 = 0;
529 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
530 0);
531 xhci->comp_mode_recovery_timer.expires = jiffies +
532 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
533
534 add_timer(&xhci->comp_mode_recovery_timer);
535 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
536 "Compliance mode recovery timer initialized");
537 }
538
539 /*
540 * This function identifies the systems that have installed the SN65LVPE502CP
541 * USB3.0 re-driver and that need the Compliance Mode Quirk.
542 * Systems:
543 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
544 */
xhci_compliance_mode_recovery_timer_quirk_check(void)545 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
546 {
547 const char *dmi_product_name, *dmi_sys_vendor;
548
549 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
550 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
551 if (!dmi_product_name || !dmi_sys_vendor)
552 return false;
553
554 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
555 return false;
556
557 if (strstr(dmi_product_name, "Z420") ||
558 strstr(dmi_product_name, "Z620") ||
559 strstr(dmi_product_name, "Z820") ||
560 strstr(dmi_product_name, "Z1 Workstation"))
561 return true;
562
563 return false;
564 }
565
xhci_all_ports_seen_u0(struct xhci_hcd * xhci)566 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
567 {
568 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
569 }
570
571
572 /*
573 * Initialize memory for HCD and xHC (one-time init).
574 *
575 * Program the PAGESIZE register, initialize the device context array, create
576 * device contexts (?), set up a command ring segment (or two?), create event
577 * ring (one for now).
578 */
xhci_init(struct usb_hcd * hcd)579 static int xhci_init(struct usb_hcd *hcd)
580 {
581 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
582 int retval = 0;
583
584 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
585 spin_lock_init(&xhci->lock);
586 if (xhci->hci_version == 0x95 && link_quirk) {
587 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
588 "QUIRK: Not clearing Link TRB chain bits.");
589 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
590 } else {
591 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
592 "xHCI doesn't need link TRB QUIRK");
593 }
594 retval = xhci_mem_init(xhci, GFP_KERNEL);
595 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
596
597 /* Initializing Compliance Mode Recovery Data If Needed */
598 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
599 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
600 compliance_mode_recovery_timer_init(xhci);
601 }
602
603 return retval;
604 }
605
606 /*-------------------------------------------------------------------------*/
607
608
xhci_run_finished(struct xhci_hcd * xhci)609 static int xhci_run_finished(struct xhci_hcd *xhci)
610 {
611 if (xhci_start(xhci)) {
612 xhci_halt(xhci);
613 return -ENODEV;
614 }
615 xhci->shared_hcd->state = HC_STATE_RUNNING;
616 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
617
618 if (xhci->quirks & XHCI_NEC_HOST)
619 xhci_ring_cmd_db(xhci);
620
621 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
622 "Finished xhci_run for USB3 roothub");
623 return 0;
624 }
625
626 /*
627 * Start the HC after it was halted.
628 *
629 * This function is called by the USB core when the HC driver is added.
630 * Its opposite is xhci_stop().
631 *
632 * xhci_init() must be called once before this function can be called.
633 * Reset the HC, enable device slot contexts, program DCBAAP, and
634 * set command ring pointer and event ring pointer.
635 *
636 * Setup MSI-X vectors and enable interrupts.
637 */
xhci_run(struct usb_hcd * hcd)638 int xhci_run(struct usb_hcd *hcd)
639 {
640 u32 temp;
641 u64 temp_64;
642 int ret;
643 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
644
645 /* Start the xHCI host controller running only after the USB 2.0 roothub
646 * is setup.
647 */
648
649 hcd->uses_new_polling = 1;
650 if (!usb_hcd_is_primary_hcd(hcd))
651 return xhci_run_finished(xhci);
652
653 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
654
655 ret = xhci_try_enable_msi(hcd);
656 if (ret)
657 return ret;
658
659 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
660 temp_64 &= ~ERST_PTR_MASK;
661 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
662 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
663
664 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
665 "// Set the interrupt modulation register");
666 temp = readl(&xhci->ir_set->irq_control);
667 temp &= ~ER_IRQ_INTERVAL_MASK;
668 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
669 writel(temp, &xhci->ir_set->irq_control);
670
671 /* Set the HCD state before we enable the irqs */
672 temp = readl(&xhci->op_regs->command);
673 temp |= (CMD_EIE);
674 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
675 "// Enable interrupts, cmd = 0x%x.", temp);
676 writel(temp, &xhci->op_regs->command);
677
678 temp = readl(&xhci->ir_set->irq_pending);
679 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
680 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
681 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
682 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
683
684 if (xhci->quirks & XHCI_NEC_HOST) {
685 struct xhci_command *command;
686
687 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
688 if (!command)
689 return -ENOMEM;
690
691 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
692 TRB_TYPE(TRB_NEC_GET_FW));
693 if (ret)
694 xhci_free_command(xhci, command);
695 }
696 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
697 "Finished xhci_run for USB2 roothub");
698
699 xhci_dbc_init(xhci);
700
701 xhci_debugfs_init(xhci);
702
703 return 0;
704 }
705 EXPORT_SYMBOL_GPL(xhci_run);
706
707 /*
708 * Stop xHCI driver.
709 *
710 * This function is called by the USB core when the HC driver is removed.
711 * Its opposite is xhci_run().
712 *
713 * Disable device contexts, disable IRQs, and quiesce the HC.
714 * Reset the HC, finish any completed transactions, and cleanup memory.
715 */
xhci_stop(struct usb_hcd * hcd)716 static void xhci_stop(struct usb_hcd *hcd)
717 {
718 u32 temp;
719 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
720
721 mutex_lock(&xhci->mutex);
722
723 /* Only halt host and free memory after both hcds are removed */
724 if (!usb_hcd_is_primary_hcd(hcd)) {
725 mutex_unlock(&xhci->mutex);
726 return;
727 }
728
729 xhci_dbc_exit(xhci);
730
731 spin_lock_irq(&xhci->lock);
732 xhci->xhc_state |= XHCI_STATE_HALTED;
733 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
734 xhci_halt(xhci);
735 xhci_reset(xhci);
736 spin_unlock_irq(&xhci->lock);
737
738 xhci_cleanup_msix(xhci);
739
740 /* Deleting Compliance Mode Recovery Timer */
741 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
742 (!(xhci_all_ports_seen_u0(xhci)))) {
743 del_timer_sync(&xhci->comp_mode_recovery_timer);
744 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
745 "%s: compliance mode recovery timer deleted",
746 __func__);
747 }
748
749 if (xhci->quirks & XHCI_AMD_PLL_FIX)
750 usb_amd_dev_put();
751
752 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
753 "// Disabling event ring interrupts");
754 temp = readl(&xhci->op_regs->status);
755 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
756 temp = readl(&xhci->ir_set->irq_pending);
757 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
758
759 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
760 xhci_mem_cleanup(xhci);
761 xhci_debugfs_exit(xhci);
762 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
763 "xhci_stop completed - status = %x",
764 readl(&xhci->op_regs->status));
765 mutex_unlock(&xhci->mutex);
766 }
767
768 /*
769 * Shutdown HC (not bus-specific)
770 *
771 * This is called when the machine is rebooting or halting. We assume that the
772 * machine will be powered off, and the HC's internal state will be reset.
773 * Don't bother to free memory.
774 *
775 * This will only ever be called with the main usb_hcd (the USB3 roothub).
776 */
xhci_shutdown(struct usb_hcd * hcd)777 void xhci_shutdown(struct usb_hcd *hcd)
778 {
779 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
780
781 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
782 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
783
784 spin_lock_irq(&xhci->lock);
785 xhci_halt(xhci);
786 /* Workaround for spurious wakeups at shutdown with HSW */
787 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
788 xhci_reset(xhci);
789 spin_unlock_irq(&xhci->lock);
790
791 xhci_cleanup_msix(xhci);
792
793 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
794 "xhci_shutdown completed - status = %x",
795 readl(&xhci->op_regs->status));
796 }
797 EXPORT_SYMBOL_GPL(xhci_shutdown);
798
799 #ifdef CONFIG_PM
xhci_save_registers(struct xhci_hcd * xhci)800 static void xhci_save_registers(struct xhci_hcd *xhci)
801 {
802 xhci->s3.command = readl(&xhci->op_regs->command);
803 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
804 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
805 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
806 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
807 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
808 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
809 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
810 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
811 }
812
xhci_restore_registers(struct xhci_hcd * xhci)813 static void xhci_restore_registers(struct xhci_hcd *xhci)
814 {
815 writel(xhci->s3.command, &xhci->op_regs->command);
816 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
817 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
818 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
819 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
820 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
821 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
822 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
823 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
824 }
825
xhci_set_cmd_ring_deq(struct xhci_hcd * xhci)826 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
827 {
828 u64 val_64;
829
830 /* step 2: initialize command ring buffer */
831 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
832 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
833 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
834 xhci->cmd_ring->dequeue) &
835 (u64) ~CMD_RING_RSVD_BITS) |
836 xhci->cmd_ring->cycle_state;
837 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
838 "// Setting command ring address to 0x%llx",
839 (long unsigned long) val_64);
840 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
841 }
842
843 /*
844 * The whole command ring must be cleared to zero when we suspend the host.
845 *
846 * The host doesn't save the command ring pointer in the suspend well, so we
847 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
848 * aligned, because of the reserved bits in the command ring dequeue pointer
849 * register. Therefore, we can't just set the dequeue pointer back in the
850 * middle of the ring (TRBs are 16-byte aligned).
851 */
xhci_clear_command_ring(struct xhci_hcd * xhci)852 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
853 {
854 struct xhci_ring *ring;
855 struct xhci_segment *seg;
856
857 ring = xhci->cmd_ring;
858 seg = ring->deq_seg;
859 do {
860 memset(seg->trbs, 0,
861 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
862 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
863 cpu_to_le32(~TRB_CYCLE);
864 seg = seg->next;
865 } while (seg != ring->deq_seg);
866
867 /* Reset the software enqueue and dequeue pointers */
868 ring->deq_seg = ring->first_seg;
869 ring->dequeue = ring->first_seg->trbs;
870 ring->enq_seg = ring->deq_seg;
871 ring->enqueue = ring->dequeue;
872
873 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
874 /*
875 * Ring is now zeroed, so the HW should look for change of ownership
876 * when the cycle bit is set to 1.
877 */
878 ring->cycle_state = 1;
879
880 /*
881 * Reset the hardware dequeue pointer.
882 * Yes, this will need to be re-written after resume, but we're paranoid
883 * and want to make sure the hardware doesn't access bogus memory
884 * because, say, the BIOS or an SMI started the host without changing
885 * the command ring pointers.
886 */
887 xhci_set_cmd_ring_deq(xhci);
888 }
889
890 /*
891 * Disable port wake bits if do_wakeup is not set.
892 *
893 * Also clear a possible internal port wake state left hanging for ports that
894 * detected termination but never successfully enumerated (trained to 0U).
895 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
896 * at enumeration clears this wake, force one here as well for unconnected ports
897 */
898
xhci_disable_hub_port_wake(struct xhci_hcd * xhci,struct xhci_hub * rhub,bool do_wakeup)899 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
900 struct xhci_hub *rhub,
901 bool do_wakeup)
902 {
903 unsigned long flags;
904 u32 t1, t2, portsc;
905 int i;
906
907 spin_lock_irqsave(&xhci->lock, flags);
908
909 for (i = 0; i < rhub->num_ports; i++) {
910 portsc = readl(rhub->ports[i]->addr);
911 t1 = xhci_port_state_to_neutral(portsc);
912 t2 = t1;
913
914 /* clear wake bits if do_wake is not set */
915 if (!do_wakeup)
916 t2 &= ~PORT_WAKE_BITS;
917
918 /* Don't touch csc bit if connected or connect change is set */
919 if (!(portsc & (PORT_CSC | PORT_CONNECT)))
920 t2 |= PORT_CSC;
921
922 if (t1 != t2) {
923 writel(t2, rhub->ports[i]->addr);
924 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
925 rhub->hcd->self.busnum, i + 1, portsc, t2);
926 }
927 }
928 spin_unlock_irqrestore(&xhci->lock, flags);
929 }
930
xhci_pending_portevent(struct xhci_hcd * xhci)931 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
932 {
933 struct xhci_port **ports;
934 int port_index;
935 u32 status;
936 u32 portsc;
937
938 status = readl(&xhci->op_regs->status);
939 if (status & STS_EINT)
940 return true;
941 /*
942 * Checking STS_EINT is not enough as there is a lag between a change
943 * bit being set and the Port Status Change Event that it generated
944 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
945 */
946
947 port_index = xhci->usb2_rhub.num_ports;
948 ports = xhci->usb2_rhub.ports;
949 while (port_index--) {
950 portsc = readl(ports[port_index]->addr);
951 if (portsc & PORT_CHANGE_MASK ||
952 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
953 return true;
954 }
955 port_index = xhci->usb3_rhub.num_ports;
956 ports = xhci->usb3_rhub.ports;
957 while (port_index--) {
958 portsc = readl(ports[port_index]->addr);
959 if (portsc & PORT_CHANGE_MASK ||
960 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
961 return true;
962 }
963 return false;
964 }
965
966 /*
967 * Stop HC (not bus-specific)
968 *
969 * This is called when the machine transition into S3/S4 mode.
970 *
971 */
xhci_suspend(struct xhci_hcd * xhci,bool do_wakeup)972 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
973 {
974 int rc = 0;
975 unsigned int delay = XHCI_MAX_HALT_USEC * 2;
976 struct usb_hcd *hcd = xhci_to_hcd(xhci);
977 u32 command;
978 u32 res;
979
980 if (!hcd->state)
981 return 0;
982
983 if (hcd->state != HC_STATE_SUSPENDED ||
984 xhci->shared_hcd->state != HC_STATE_SUSPENDED)
985 return -EINVAL;
986
987 /* Clear root port wake on bits if wakeup not allowed. */
988 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
989 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
990
991 if (!HCD_HW_ACCESSIBLE(hcd))
992 return 0;
993
994 xhci_dbc_suspend(xhci);
995
996 /* Don't poll the roothubs on bus suspend. */
997 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
998 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
999 del_timer_sync(&hcd->rh_timer);
1000 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1001 del_timer_sync(&xhci->shared_hcd->rh_timer);
1002
1003 if (xhci->quirks & XHCI_SUSPEND_DELAY)
1004 usleep_range(1000, 1500);
1005
1006 spin_lock_irq(&xhci->lock);
1007 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1008 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1009 /* step 1: stop endpoint */
1010 /* skipped assuming that port suspend has done */
1011
1012 /* step 2: clear Run/Stop bit */
1013 command = readl(&xhci->op_regs->command);
1014 command &= ~CMD_RUN;
1015 writel(command, &xhci->op_regs->command);
1016
1017 /* Some chips from Fresco Logic need an extraordinary delay */
1018 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1019
1020 if (xhci_handshake(&xhci->op_regs->status,
1021 STS_HALT, STS_HALT, delay)) {
1022 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1023 spin_unlock_irq(&xhci->lock);
1024 return -ETIMEDOUT;
1025 }
1026 xhci_clear_command_ring(xhci);
1027
1028 /* step 3: save registers */
1029 xhci_save_registers(xhci);
1030
1031 /* step 4: set CSS flag */
1032 command = readl(&xhci->op_regs->command);
1033 command |= CMD_CSS;
1034 writel(command, &xhci->op_regs->command);
1035 xhci->broken_suspend = 0;
1036 if (xhci_handshake(&xhci->op_regs->status,
1037 STS_SAVE, 0, 20 * 1000)) {
1038 /*
1039 * AMD SNPS xHC 3.0 occasionally does not clear the
1040 * SSS bit of USBSTS and when driver tries to poll
1041 * to see if the xHC clears BIT(8) which never happens
1042 * and driver assumes that controller is not responding
1043 * and times out. To workaround this, its good to check
1044 * if SRE and HCE bits are not set (as per xhci
1045 * Section 5.4.2) and bypass the timeout.
1046 */
1047 res = readl(&xhci->op_regs->status);
1048 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1049 (((res & STS_SRE) == 0) &&
1050 ((res & STS_HCE) == 0))) {
1051 xhci->broken_suspend = 1;
1052 } else {
1053 xhci_warn(xhci, "WARN: xHC save state timeout\n");
1054 spin_unlock_irq(&xhci->lock);
1055 return -ETIMEDOUT;
1056 }
1057 }
1058 spin_unlock_irq(&xhci->lock);
1059
1060 /*
1061 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1062 * is about to be suspended.
1063 */
1064 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1065 (!(xhci_all_ports_seen_u0(xhci)))) {
1066 del_timer_sync(&xhci->comp_mode_recovery_timer);
1067 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1068 "%s: compliance mode recovery timer deleted",
1069 __func__);
1070 }
1071
1072 /* step 5: remove core well power */
1073 /* synchronize irq when using MSI-X */
1074 xhci_msix_sync_irqs(xhci);
1075
1076 return rc;
1077 }
1078 EXPORT_SYMBOL_GPL(xhci_suspend);
1079
1080 /*
1081 * start xHC (not bus-specific)
1082 *
1083 * This is called when the machine transition from S3/S4 mode.
1084 *
1085 */
xhci_resume(struct xhci_hcd * xhci,bool hibernated)1086 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1087 {
1088 u32 command, temp = 0;
1089 struct usb_hcd *hcd = xhci_to_hcd(xhci);
1090 struct usb_hcd *secondary_hcd;
1091 int retval = 0;
1092 bool comp_timer_running = false;
1093 bool pending_portevent = false;
1094
1095 if (!hcd->state)
1096 return 0;
1097
1098 /* Wait a bit if either of the roothubs need to settle from the
1099 * transition into bus suspend.
1100 */
1101
1102 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1103 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1104 msleep(100);
1105
1106 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1107 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1108
1109 spin_lock_irq(&xhci->lock);
1110 if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend)
1111 hibernated = true;
1112
1113 if (!hibernated) {
1114 /*
1115 * Some controllers might lose power during suspend, so wait
1116 * for controller not ready bit to clear, just as in xHC init.
1117 */
1118 retval = xhci_handshake(&xhci->op_regs->status,
1119 STS_CNR, 0, 10 * 1000 * 1000);
1120 if (retval) {
1121 xhci_warn(xhci, "Controller not ready at resume %d\n",
1122 retval);
1123 spin_unlock_irq(&xhci->lock);
1124 return retval;
1125 }
1126 /* step 1: restore register */
1127 xhci_restore_registers(xhci);
1128 /* step 2: initialize command ring buffer */
1129 xhci_set_cmd_ring_deq(xhci);
1130 /* step 3: restore state and start state*/
1131 /* step 3: set CRS flag */
1132 command = readl(&xhci->op_regs->command);
1133 command |= CMD_CRS;
1134 writel(command, &xhci->op_regs->command);
1135 /*
1136 * Some controllers take up to 55+ ms to complete the controller
1137 * restore so setting the timeout to 100ms. Xhci specification
1138 * doesn't mention any timeout value.
1139 */
1140 if (xhci_handshake(&xhci->op_regs->status,
1141 STS_RESTORE, 0, 100 * 1000)) {
1142 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1143 spin_unlock_irq(&xhci->lock);
1144 return -ETIMEDOUT;
1145 }
1146 temp = readl(&xhci->op_regs->status);
1147 }
1148
1149 /* If restore operation fails, re-initialize the HC during resume */
1150 if ((temp & STS_SRE) || hibernated) {
1151
1152 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1153 !(xhci_all_ports_seen_u0(xhci))) {
1154 del_timer_sync(&xhci->comp_mode_recovery_timer);
1155 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1156 "Compliance Mode Recovery Timer deleted!");
1157 }
1158
1159 /* Let the USB core know _both_ roothubs lost power. */
1160 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1161 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1162
1163 xhci_dbg(xhci, "Stop HCD\n");
1164 xhci_halt(xhci);
1165 xhci_zero_64b_regs(xhci);
1166 retval = xhci_reset(xhci);
1167 spin_unlock_irq(&xhci->lock);
1168 if (retval)
1169 return retval;
1170 xhci_cleanup_msix(xhci);
1171
1172 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1173 temp = readl(&xhci->op_regs->status);
1174 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1175 temp = readl(&xhci->ir_set->irq_pending);
1176 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1177
1178 xhci_dbg(xhci, "cleaning up memory\n");
1179 xhci_mem_cleanup(xhci);
1180 xhci_debugfs_exit(xhci);
1181 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1182 readl(&xhci->op_regs->status));
1183
1184 /* USB core calls the PCI reinit and start functions twice:
1185 * first with the primary HCD, and then with the secondary HCD.
1186 * If we don't do the same, the host will never be started.
1187 */
1188 if (!usb_hcd_is_primary_hcd(hcd))
1189 secondary_hcd = hcd;
1190 else
1191 secondary_hcd = xhci->shared_hcd;
1192
1193 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1194 retval = xhci_init(hcd->primary_hcd);
1195 if (retval)
1196 return retval;
1197 comp_timer_running = true;
1198
1199 xhci_dbg(xhci, "Start the primary HCD\n");
1200 retval = xhci_run(hcd->primary_hcd);
1201 if (!retval) {
1202 xhci_dbg(xhci, "Start the secondary HCD\n");
1203 retval = xhci_run(secondary_hcd);
1204 }
1205 hcd->state = HC_STATE_SUSPENDED;
1206 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1207 goto done;
1208 }
1209
1210 /* step 4: set Run/Stop bit */
1211 command = readl(&xhci->op_regs->command);
1212 command |= CMD_RUN;
1213 writel(command, &xhci->op_regs->command);
1214 xhci_handshake(&xhci->op_regs->status, STS_HALT,
1215 0, 250 * 1000);
1216
1217 /* step 5: walk topology and initialize portsc,
1218 * portpmsc and portli
1219 */
1220 /* this is done in bus_resume */
1221
1222 /* step 6: restart each of the previously
1223 * Running endpoints by ringing their doorbells
1224 */
1225
1226 spin_unlock_irq(&xhci->lock);
1227
1228 xhci_dbc_resume(xhci);
1229
1230 done:
1231 if (retval == 0) {
1232 /*
1233 * Resume roothubs only if there are pending events.
1234 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1235 * the first wake signalling failed, give it that chance.
1236 */
1237 pending_portevent = xhci_pending_portevent(xhci);
1238 if (!pending_portevent) {
1239 msleep(120);
1240 pending_portevent = xhci_pending_portevent(xhci);
1241 }
1242
1243 if (pending_portevent) {
1244 usb_hcd_resume_root_hub(xhci->shared_hcd);
1245 usb_hcd_resume_root_hub(hcd);
1246 }
1247 }
1248 /*
1249 * If system is subject to the Quirk, Compliance Mode Timer needs to
1250 * be re-initialized Always after a system resume. Ports are subject
1251 * to suffer the Compliance Mode issue again. It doesn't matter if
1252 * ports have entered previously to U0 before system's suspension.
1253 */
1254 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1255 compliance_mode_recovery_timer_init(xhci);
1256
1257 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1258 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1259
1260 /* Re-enable port polling. */
1261 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1262 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1263 usb_hcd_poll_rh_status(xhci->shared_hcd);
1264 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1265 usb_hcd_poll_rh_status(hcd);
1266
1267 return retval;
1268 }
1269 EXPORT_SYMBOL_GPL(xhci_resume);
1270 #endif /* CONFIG_PM */
1271
1272 /*-------------------------------------------------------------------------*/
1273
1274 /*
1275 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1276 * we'll copy the actual data into the TRB address register. This is limited to
1277 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1278 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1279 */
xhci_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1280 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1281 gfp_t mem_flags)
1282 {
1283 if (xhci_urb_suitable_for_idt(urb))
1284 return 0;
1285
1286 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1287 }
1288
1289 /*
1290 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1291 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1292 * value to right shift 1 for the bitmask.
1293 *
1294 * Index = (epnum * 2) + direction - 1,
1295 * where direction = 0 for OUT, 1 for IN.
1296 * For control endpoints, the IN index is used (OUT index is unused), so
1297 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1298 */
xhci_get_endpoint_index(struct usb_endpoint_descriptor * desc)1299 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1300 {
1301 unsigned int index;
1302 if (usb_endpoint_xfer_control(desc))
1303 index = (unsigned int) (usb_endpoint_num(desc)*2);
1304 else
1305 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1306 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1307 return index;
1308 }
1309
1310 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1311 * address from the XHCI endpoint index.
1312 */
xhci_get_endpoint_address(unsigned int ep_index)1313 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1314 {
1315 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1316 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1317 return direction | number;
1318 }
1319
1320 /* Find the flag for this endpoint (for use in the control context). Use the
1321 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1322 * bit 1, etc.
1323 */
xhci_get_endpoint_flag(struct usb_endpoint_descriptor * desc)1324 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1325 {
1326 return 1 << (xhci_get_endpoint_index(desc) + 1);
1327 }
1328
1329 /* Find the flag for this endpoint (for use in the control context). Use the
1330 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1331 * bit 1, etc.
1332 */
xhci_get_endpoint_flag_from_index(unsigned int ep_index)1333 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1334 {
1335 return 1 << (ep_index + 1);
1336 }
1337
1338 /* Compute the last valid endpoint context index. Basically, this is the
1339 * endpoint index plus one. For slot contexts with more than valid endpoint,
1340 * we find the most significant bit set in the added contexts flags.
1341 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1342 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1343 */
xhci_last_valid_endpoint(u32 added_ctxs)1344 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1345 {
1346 return fls(added_ctxs) - 1;
1347 }
1348
1349 /* Returns 1 if the arguments are OK;
1350 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1351 */
xhci_check_args(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep,int check_ep,bool check_virt_dev,const char * func)1352 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1353 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1354 const char *func) {
1355 struct xhci_hcd *xhci;
1356 struct xhci_virt_device *virt_dev;
1357
1358 if (!hcd || (check_ep && !ep) || !udev) {
1359 pr_debug("xHCI %s called with invalid args\n", func);
1360 return -EINVAL;
1361 }
1362 if (!udev->parent) {
1363 pr_debug("xHCI %s called for root hub\n", func);
1364 return 0;
1365 }
1366
1367 xhci = hcd_to_xhci(hcd);
1368 if (check_virt_dev) {
1369 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1370 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1371 func);
1372 return -EINVAL;
1373 }
1374
1375 virt_dev = xhci->devs[udev->slot_id];
1376 if (virt_dev->udev != udev) {
1377 xhci_dbg(xhci, "xHCI %s called with udev and "
1378 "virt_dev does not match\n", func);
1379 return -EINVAL;
1380 }
1381 }
1382
1383 if (xhci->xhc_state & XHCI_STATE_HALTED)
1384 return -ENODEV;
1385
1386 return 1;
1387 }
1388
1389 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1390 struct usb_device *udev, struct xhci_command *command,
1391 bool ctx_change, bool must_succeed);
1392
1393 /*
1394 * Full speed devices may have a max packet size greater than 8 bytes, but the
1395 * USB core doesn't know that until it reads the first 8 bytes of the
1396 * descriptor. If the usb_device's max packet size changes after that point,
1397 * we need to issue an evaluate context command and wait on it.
1398 */
xhci_check_maxpacket(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,struct urb * urb,gfp_t mem_flags)1399 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1400 unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1401 {
1402 struct xhci_container_ctx *out_ctx;
1403 struct xhci_input_control_ctx *ctrl_ctx;
1404 struct xhci_ep_ctx *ep_ctx;
1405 struct xhci_command *command;
1406 int max_packet_size;
1407 int hw_max_packet_size;
1408 int ret = 0;
1409
1410 out_ctx = xhci->devs[slot_id]->out_ctx;
1411 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1412 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1413 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1414 if (hw_max_packet_size != max_packet_size) {
1415 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1416 "Max Packet Size for ep 0 changed.");
1417 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1418 "Max packet size in usb_device = %d",
1419 max_packet_size);
1420 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1421 "Max packet size in xHCI HW = %d",
1422 hw_max_packet_size);
1423 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1424 "Issuing evaluate context command.");
1425
1426 /* Set up the input context flags for the command */
1427 /* FIXME: This won't work if a non-default control endpoint
1428 * changes max packet sizes.
1429 */
1430
1431 command = xhci_alloc_command(xhci, true, mem_flags);
1432 if (!command)
1433 return -ENOMEM;
1434
1435 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1436 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1437 if (!ctrl_ctx) {
1438 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1439 __func__);
1440 ret = -ENOMEM;
1441 goto command_cleanup;
1442 }
1443 /* Set up the modified control endpoint 0 */
1444 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1445 xhci->devs[slot_id]->out_ctx, ep_index);
1446
1447 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1448 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1449 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1450 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1451
1452 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1453 ctrl_ctx->drop_flags = 0;
1454
1455 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1456 true, false);
1457
1458 /* Clean up the input context for later use by bandwidth
1459 * functions.
1460 */
1461 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1462 command_cleanup:
1463 kfree(command->completion);
1464 kfree(command);
1465 }
1466 return ret;
1467 }
1468
1469 /*
1470 * non-error returns are a promise to giveback() the urb later
1471 * we drop ownership so next owner (or urb unlink) can get it
1472 */
xhci_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1473 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1474 {
1475 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1476 unsigned long flags;
1477 int ret = 0;
1478 unsigned int slot_id, ep_index;
1479 unsigned int *ep_state;
1480 struct urb_priv *urb_priv;
1481 int num_tds;
1482
1483 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1484 true, true, __func__) <= 0)
1485 return -EINVAL;
1486
1487 slot_id = urb->dev->slot_id;
1488 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1489 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1490
1491 if (!HCD_HW_ACCESSIBLE(hcd)) {
1492 if (!in_interrupt())
1493 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1494 return -ESHUTDOWN;
1495 }
1496 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1497 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1498 return -ENODEV;
1499 }
1500
1501 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1502 num_tds = urb->number_of_packets;
1503 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1504 urb->transfer_buffer_length > 0 &&
1505 urb->transfer_flags & URB_ZERO_PACKET &&
1506 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1507 num_tds = 2;
1508 else
1509 num_tds = 1;
1510
1511 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1512 if (!urb_priv)
1513 return -ENOMEM;
1514
1515 urb_priv->num_tds = num_tds;
1516 urb_priv->num_tds_done = 0;
1517 urb->hcpriv = urb_priv;
1518
1519 trace_xhci_urb_enqueue(urb);
1520
1521 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1522 /* Check to see if the max packet size for the default control
1523 * endpoint changed during FS device enumeration
1524 */
1525 if (urb->dev->speed == USB_SPEED_FULL) {
1526 ret = xhci_check_maxpacket(xhci, slot_id,
1527 ep_index, urb, mem_flags);
1528 if (ret < 0) {
1529 xhci_urb_free_priv(urb_priv);
1530 urb->hcpriv = NULL;
1531 return ret;
1532 }
1533 }
1534 }
1535
1536 spin_lock_irqsave(&xhci->lock, flags);
1537
1538 if (xhci->xhc_state & XHCI_STATE_DYING) {
1539 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1540 urb->ep->desc.bEndpointAddress, urb);
1541 ret = -ESHUTDOWN;
1542 goto free_priv;
1543 }
1544 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1545 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1546 *ep_state);
1547 ret = -EINVAL;
1548 goto free_priv;
1549 }
1550 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1551 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1552 ret = -EINVAL;
1553 goto free_priv;
1554 }
1555
1556 switch (usb_endpoint_type(&urb->ep->desc)) {
1557
1558 case USB_ENDPOINT_XFER_CONTROL:
1559 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1560 slot_id, ep_index);
1561 break;
1562 case USB_ENDPOINT_XFER_BULK:
1563 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1564 slot_id, ep_index);
1565 break;
1566 case USB_ENDPOINT_XFER_INT:
1567 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1568 slot_id, ep_index);
1569 break;
1570 case USB_ENDPOINT_XFER_ISOC:
1571 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1572 slot_id, ep_index);
1573 }
1574
1575 if (ret) {
1576 free_priv:
1577 xhci_urb_free_priv(urb_priv);
1578 urb->hcpriv = NULL;
1579 }
1580 spin_unlock_irqrestore(&xhci->lock, flags);
1581 return ret;
1582 }
1583
1584 /*
1585 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1586 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1587 * should pick up where it left off in the TD, unless a Set Transfer Ring
1588 * Dequeue Pointer is issued.
1589 *
1590 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1591 * the ring. Since the ring is a contiguous structure, they can't be physically
1592 * removed. Instead, there are two options:
1593 *
1594 * 1) If the HC is in the middle of processing the URB to be canceled, we
1595 * simply move the ring's dequeue pointer past those TRBs using the Set
1596 * Transfer Ring Dequeue Pointer command. This will be the common case,
1597 * when drivers timeout on the last submitted URB and attempt to cancel.
1598 *
1599 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1600 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1601 * HC will need to invalidate the any TRBs it has cached after the stop
1602 * endpoint command, as noted in the xHCI 0.95 errata.
1603 *
1604 * 3) The TD may have completed by the time the Stop Endpoint Command
1605 * completes, so software needs to handle that case too.
1606 *
1607 * This function should protect against the TD enqueueing code ringing the
1608 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1609 * It also needs to account for multiple cancellations on happening at the same
1610 * time for the same endpoint.
1611 *
1612 * Note that this function can be called in any context, or so says
1613 * usb_hcd_unlink_urb()
1614 */
xhci_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)1615 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1616 {
1617 unsigned long flags;
1618 int ret, i;
1619 u32 temp;
1620 struct xhci_hcd *xhci;
1621 struct urb_priv *urb_priv;
1622 struct xhci_td *td;
1623 unsigned int ep_index;
1624 struct xhci_ring *ep_ring;
1625 struct xhci_virt_ep *ep;
1626 struct xhci_command *command;
1627 struct xhci_virt_device *vdev;
1628
1629 xhci = hcd_to_xhci(hcd);
1630 spin_lock_irqsave(&xhci->lock, flags);
1631
1632 trace_xhci_urb_dequeue(urb);
1633
1634 /* Make sure the URB hasn't completed or been unlinked already */
1635 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1636 if (ret)
1637 goto done;
1638
1639 /* give back URB now if we can't queue it for cancel */
1640 vdev = xhci->devs[urb->dev->slot_id];
1641 urb_priv = urb->hcpriv;
1642 if (!vdev || !urb_priv)
1643 goto err_giveback;
1644
1645 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1646 ep = &vdev->eps[ep_index];
1647 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1648 if (!ep || !ep_ring)
1649 goto err_giveback;
1650
1651 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1652 temp = readl(&xhci->op_regs->status);
1653 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1654 xhci_hc_died(xhci);
1655 goto done;
1656 }
1657
1658 /*
1659 * check ring is not re-allocated since URB was enqueued. If it is, then
1660 * make sure none of the ring related pointers in this URB private data
1661 * are touched, such as td_list, otherwise we overwrite freed data
1662 */
1663 if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1664 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1665 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1666 td = &urb_priv->td[i];
1667 if (!list_empty(&td->cancelled_td_list))
1668 list_del_init(&td->cancelled_td_list);
1669 }
1670 goto err_giveback;
1671 }
1672
1673 if (xhci->xhc_state & XHCI_STATE_HALTED) {
1674 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1675 "HC halted, freeing TD manually.");
1676 for (i = urb_priv->num_tds_done;
1677 i < urb_priv->num_tds;
1678 i++) {
1679 td = &urb_priv->td[i];
1680 if (!list_empty(&td->td_list))
1681 list_del_init(&td->td_list);
1682 if (!list_empty(&td->cancelled_td_list))
1683 list_del_init(&td->cancelled_td_list);
1684 }
1685 goto err_giveback;
1686 }
1687
1688 i = urb_priv->num_tds_done;
1689 if (i < urb_priv->num_tds)
1690 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1691 "Cancel URB %p, dev %s, ep 0x%x, "
1692 "starting at offset 0x%llx",
1693 urb, urb->dev->devpath,
1694 urb->ep->desc.bEndpointAddress,
1695 (unsigned long long) xhci_trb_virt_to_dma(
1696 urb_priv->td[i].start_seg,
1697 urb_priv->td[i].first_trb));
1698
1699 for (; i < urb_priv->num_tds; i++) {
1700 td = &urb_priv->td[i];
1701 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1702 }
1703
1704 /* Queue a stop endpoint command, but only if this is
1705 * the first cancellation to be handled.
1706 */
1707 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1708 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1709 if (!command) {
1710 ret = -ENOMEM;
1711 goto done;
1712 }
1713 ep->ep_state |= EP_STOP_CMD_PENDING;
1714 ep->stop_cmd_timer.expires = jiffies +
1715 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1716 add_timer(&ep->stop_cmd_timer);
1717 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1718 ep_index, 0);
1719 xhci_ring_cmd_db(xhci);
1720 }
1721 done:
1722 spin_unlock_irqrestore(&xhci->lock, flags);
1723 return ret;
1724
1725 err_giveback:
1726 if (urb_priv)
1727 xhci_urb_free_priv(urb_priv);
1728 usb_hcd_unlink_urb_from_ep(hcd, urb);
1729 spin_unlock_irqrestore(&xhci->lock, flags);
1730 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1731 return ret;
1732 }
1733
1734 /* Drop an endpoint from a new bandwidth configuration for this device.
1735 * Only one call to this function is allowed per endpoint before
1736 * check_bandwidth() or reset_bandwidth() must be called.
1737 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1738 * add the endpoint to the schedule with possibly new parameters denoted by a
1739 * different endpoint descriptor in usb_host_endpoint.
1740 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1741 * not allowed.
1742 *
1743 * The USB core will not allow URBs to be queued to an endpoint that is being
1744 * disabled, so there's no need for mutual exclusion to protect
1745 * the xhci->devs[slot_id] structure.
1746 */
xhci_drop_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1747 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1748 struct usb_host_endpoint *ep)
1749 {
1750 struct xhci_hcd *xhci;
1751 struct xhci_container_ctx *in_ctx, *out_ctx;
1752 struct xhci_input_control_ctx *ctrl_ctx;
1753 unsigned int ep_index;
1754 struct xhci_ep_ctx *ep_ctx;
1755 u32 drop_flag;
1756 u32 new_add_flags, new_drop_flags;
1757 int ret;
1758
1759 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1760 if (ret <= 0)
1761 return ret;
1762 xhci = hcd_to_xhci(hcd);
1763 if (xhci->xhc_state & XHCI_STATE_DYING)
1764 return -ENODEV;
1765
1766 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1767 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1768 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1769 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1770 __func__, drop_flag);
1771 return 0;
1772 }
1773
1774 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1775 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1776 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1777 if (!ctrl_ctx) {
1778 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1779 __func__);
1780 return 0;
1781 }
1782
1783 ep_index = xhci_get_endpoint_index(&ep->desc);
1784 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1785 /* If the HC already knows the endpoint is disabled,
1786 * or the HCD has noted it is disabled, ignore this request
1787 */
1788 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1789 le32_to_cpu(ctrl_ctx->drop_flags) &
1790 xhci_get_endpoint_flag(&ep->desc)) {
1791 /* Do not warn when called after a usb_device_reset */
1792 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1793 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1794 __func__, ep);
1795 return 0;
1796 }
1797
1798 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1799 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1800
1801 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1802 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1803
1804 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1805
1806 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1807
1808 if (xhci->quirks & XHCI_MTK_HOST)
1809 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1810
1811 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1812 (unsigned int) ep->desc.bEndpointAddress,
1813 udev->slot_id,
1814 (unsigned int) new_drop_flags,
1815 (unsigned int) new_add_flags);
1816 return 0;
1817 }
1818
1819 /* Add an endpoint to a new possible bandwidth configuration for this device.
1820 * Only one call to this function is allowed per endpoint before
1821 * check_bandwidth() or reset_bandwidth() must be called.
1822 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1823 * add the endpoint to the schedule with possibly new parameters denoted by a
1824 * different endpoint descriptor in usb_host_endpoint.
1825 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1826 * not allowed.
1827 *
1828 * The USB core will not allow URBs to be queued to an endpoint until the
1829 * configuration or alt setting is installed in the device, so there's no need
1830 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1831 */
xhci_add_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1832 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1833 struct usb_host_endpoint *ep)
1834 {
1835 struct xhci_hcd *xhci;
1836 struct xhci_container_ctx *in_ctx;
1837 unsigned int ep_index;
1838 struct xhci_input_control_ctx *ctrl_ctx;
1839 struct xhci_ep_ctx *ep_ctx;
1840 u32 added_ctxs;
1841 u32 new_add_flags, new_drop_flags;
1842 struct xhci_virt_device *virt_dev;
1843 int ret = 0;
1844
1845 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1846 if (ret <= 0) {
1847 /* So we won't queue a reset ep command for a root hub */
1848 ep->hcpriv = NULL;
1849 return ret;
1850 }
1851 xhci = hcd_to_xhci(hcd);
1852 if (xhci->xhc_state & XHCI_STATE_DYING)
1853 return -ENODEV;
1854
1855 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1856 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1857 /* FIXME when we have to issue an evaluate endpoint command to
1858 * deal with ep0 max packet size changing once we get the
1859 * descriptors
1860 */
1861 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1862 __func__, added_ctxs);
1863 return 0;
1864 }
1865
1866 virt_dev = xhci->devs[udev->slot_id];
1867 in_ctx = virt_dev->in_ctx;
1868 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1869 if (!ctrl_ctx) {
1870 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1871 __func__);
1872 return 0;
1873 }
1874
1875 ep_index = xhci_get_endpoint_index(&ep->desc);
1876 /* If this endpoint is already in use, and the upper layers are trying
1877 * to add it again without dropping it, reject the addition.
1878 */
1879 if (virt_dev->eps[ep_index].ring &&
1880 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1881 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1882 "without dropping it.\n",
1883 (unsigned int) ep->desc.bEndpointAddress);
1884 return -EINVAL;
1885 }
1886
1887 /* If the HCD has already noted the endpoint is enabled,
1888 * ignore this request.
1889 */
1890 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1891 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1892 __func__, ep);
1893 return 0;
1894 }
1895
1896 /*
1897 * Configuration and alternate setting changes must be done in
1898 * process context, not interrupt context (or so documenation
1899 * for usb_set_interface() and usb_set_configuration() claim).
1900 */
1901 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1902 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1903 __func__, ep->desc.bEndpointAddress);
1904 return -ENOMEM;
1905 }
1906
1907 if (xhci->quirks & XHCI_MTK_HOST) {
1908 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1909 if (ret < 0) {
1910 xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1911 virt_dev->eps[ep_index].new_ring = NULL;
1912 return ret;
1913 }
1914 }
1915
1916 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1917 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1918
1919 /* If xhci_endpoint_disable() was called for this endpoint, but the
1920 * xHC hasn't been notified yet through the check_bandwidth() call,
1921 * this re-adds a new state for the endpoint from the new endpoint
1922 * descriptors. We must drop and re-add this endpoint, so we leave the
1923 * drop flags alone.
1924 */
1925 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1926
1927 /* Store the usb_device pointer for later use */
1928 ep->hcpriv = udev;
1929
1930 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1931 trace_xhci_add_endpoint(ep_ctx);
1932
1933 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1934 (unsigned int) ep->desc.bEndpointAddress,
1935 udev->slot_id,
1936 (unsigned int) new_drop_flags,
1937 (unsigned int) new_add_flags);
1938 return 0;
1939 }
1940
xhci_zero_in_ctx(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)1941 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1942 {
1943 struct xhci_input_control_ctx *ctrl_ctx;
1944 struct xhci_ep_ctx *ep_ctx;
1945 struct xhci_slot_ctx *slot_ctx;
1946 int i;
1947
1948 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1949 if (!ctrl_ctx) {
1950 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1951 __func__);
1952 return;
1953 }
1954
1955 /* When a device's add flag and drop flag are zero, any subsequent
1956 * configure endpoint command will leave that endpoint's state
1957 * untouched. Make sure we don't leave any old state in the input
1958 * endpoint contexts.
1959 */
1960 ctrl_ctx->drop_flags = 0;
1961 ctrl_ctx->add_flags = 0;
1962 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1963 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1964 /* Endpoint 0 is always valid */
1965 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1966 for (i = 1; i < 31; i++) {
1967 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1968 ep_ctx->ep_info = 0;
1969 ep_ctx->ep_info2 = 0;
1970 ep_ctx->deq = 0;
1971 ep_ctx->tx_info = 0;
1972 }
1973 }
1974
xhci_configure_endpoint_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)1975 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1976 struct usb_device *udev, u32 *cmd_status)
1977 {
1978 int ret;
1979
1980 switch (*cmd_status) {
1981 case COMP_COMMAND_ABORTED:
1982 case COMP_COMMAND_RING_STOPPED:
1983 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1984 ret = -ETIME;
1985 break;
1986 case COMP_RESOURCE_ERROR:
1987 dev_warn(&udev->dev,
1988 "Not enough host controller resources for new device state.\n");
1989 ret = -ENOMEM;
1990 /* FIXME: can we allocate more resources for the HC? */
1991 break;
1992 case COMP_BANDWIDTH_ERROR:
1993 case COMP_SECONDARY_BANDWIDTH_ERROR:
1994 dev_warn(&udev->dev,
1995 "Not enough bandwidth for new device state.\n");
1996 ret = -ENOSPC;
1997 /* FIXME: can we go back to the old state? */
1998 break;
1999 case COMP_TRB_ERROR:
2000 /* the HCD set up something wrong */
2001 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2002 "add flag = 1, "
2003 "and endpoint is not disabled.\n");
2004 ret = -EINVAL;
2005 break;
2006 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2007 dev_warn(&udev->dev,
2008 "ERROR: Incompatible device for endpoint configure command.\n");
2009 ret = -ENODEV;
2010 break;
2011 case COMP_SUCCESS:
2012 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2013 "Successful Endpoint Configure command");
2014 ret = 0;
2015 break;
2016 default:
2017 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2018 *cmd_status);
2019 ret = -EINVAL;
2020 break;
2021 }
2022 return ret;
2023 }
2024
xhci_evaluate_context_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2025 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2026 struct usb_device *udev, u32 *cmd_status)
2027 {
2028 int ret;
2029
2030 switch (*cmd_status) {
2031 case COMP_COMMAND_ABORTED:
2032 case COMP_COMMAND_RING_STOPPED:
2033 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2034 ret = -ETIME;
2035 break;
2036 case COMP_PARAMETER_ERROR:
2037 dev_warn(&udev->dev,
2038 "WARN: xHCI driver setup invalid evaluate context command.\n");
2039 ret = -EINVAL;
2040 break;
2041 case COMP_SLOT_NOT_ENABLED_ERROR:
2042 dev_warn(&udev->dev,
2043 "WARN: slot not enabled for evaluate context command.\n");
2044 ret = -EINVAL;
2045 break;
2046 case COMP_CONTEXT_STATE_ERROR:
2047 dev_warn(&udev->dev,
2048 "WARN: invalid context state for evaluate context command.\n");
2049 ret = -EINVAL;
2050 break;
2051 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2052 dev_warn(&udev->dev,
2053 "ERROR: Incompatible device for evaluate context command.\n");
2054 ret = -ENODEV;
2055 break;
2056 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2057 /* Max Exit Latency too large error */
2058 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2059 ret = -EINVAL;
2060 break;
2061 case COMP_SUCCESS:
2062 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2063 "Successful evaluate context command");
2064 ret = 0;
2065 break;
2066 default:
2067 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2068 *cmd_status);
2069 ret = -EINVAL;
2070 break;
2071 }
2072 return ret;
2073 }
2074
xhci_count_num_new_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2075 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2076 struct xhci_input_control_ctx *ctrl_ctx)
2077 {
2078 u32 valid_add_flags;
2079 u32 valid_drop_flags;
2080
2081 /* Ignore the slot flag (bit 0), and the default control endpoint flag
2082 * (bit 1). The default control endpoint is added during the Address
2083 * Device command and is never removed until the slot is disabled.
2084 */
2085 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2086 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2087
2088 /* Use hweight32 to count the number of ones in the add flags, or
2089 * number of endpoints added. Don't count endpoints that are changed
2090 * (both added and dropped).
2091 */
2092 return hweight32(valid_add_flags) -
2093 hweight32(valid_add_flags & valid_drop_flags);
2094 }
2095
xhci_count_num_dropped_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2096 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2097 struct xhci_input_control_ctx *ctrl_ctx)
2098 {
2099 u32 valid_add_flags;
2100 u32 valid_drop_flags;
2101
2102 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2103 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2104
2105 return hweight32(valid_drop_flags) -
2106 hweight32(valid_add_flags & valid_drop_flags);
2107 }
2108
2109 /*
2110 * We need to reserve the new number of endpoints before the configure endpoint
2111 * command completes. We can't subtract the dropped endpoints from the number
2112 * of active endpoints until the command completes because we can oversubscribe
2113 * the host in this case:
2114 *
2115 * - the first configure endpoint command drops more endpoints than it adds
2116 * - a second configure endpoint command that adds more endpoints is queued
2117 * - the first configure endpoint command fails, so the config is unchanged
2118 * - the second command may succeed, even though there isn't enough resources
2119 *
2120 * Must be called with xhci->lock held.
2121 */
xhci_reserve_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2122 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2123 struct xhci_input_control_ctx *ctrl_ctx)
2124 {
2125 u32 added_eps;
2126
2127 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2128 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2129 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2130 "Not enough ep ctxs: "
2131 "%u active, need to add %u, limit is %u.",
2132 xhci->num_active_eps, added_eps,
2133 xhci->limit_active_eps);
2134 return -ENOMEM;
2135 }
2136 xhci->num_active_eps += added_eps;
2137 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2138 "Adding %u ep ctxs, %u now active.", added_eps,
2139 xhci->num_active_eps);
2140 return 0;
2141 }
2142
2143 /*
2144 * The configure endpoint was failed by the xHC for some other reason, so we
2145 * need to revert the resources that failed configuration would have used.
2146 *
2147 * Must be called with xhci->lock held.
2148 */
xhci_free_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2149 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2150 struct xhci_input_control_ctx *ctrl_ctx)
2151 {
2152 u32 num_failed_eps;
2153
2154 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2155 xhci->num_active_eps -= num_failed_eps;
2156 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2157 "Removing %u failed ep ctxs, %u now active.",
2158 num_failed_eps,
2159 xhci->num_active_eps);
2160 }
2161
2162 /*
2163 * Now that the command has completed, clean up the active endpoint count by
2164 * subtracting out the endpoints that were dropped (but not changed).
2165 *
2166 * Must be called with xhci->lock held.
2167 */
xhci_finish_resource_reservation(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2168 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2169 struct xhci_input_control_ctx *ctrl_ctx)
2170 {
2171 u32 num_dropped_eps;
2172
2173 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2174 xhci->num_active_eps -= num_dropped_eps;
2175 if (num_dropped_eps)
2176 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2177 "Removing %u dropped ep ctxs, %u now active.",
2178 num_dropped_eps,
2179 xhci->num_active_eps);
2180 }
2181
xhci_get_block_size(struct usb_device * udev)2182 static unsigned int xhci_get_block_size(struct usb_device *udev)
2183 {
2184 switch (udev->speed) {
2185 case USB_SPEED_LOW:
2186 case USB_SPEED_FULL:
2187 return FS_BLOCK;
2188 case USB_SPEED_HIGH:
2189 return HS_BLOCK;
2190 case USB_SPEED_SUPER:
2191 case USB_SPEED_SUPER_PLUS:
2192 return SS_BLOCK;
2193 case USB_SPEED_UNKNOWN:
2194 case USB_SPEED_WIRELESS:
2195 default:
2196 /* Should never happen */
2197 return 1;
2198 }
2199 }
2200
2201 static unsigned int
xhci_get_largest_overhead(struct xhci_interval_bw * interval_bw)2202 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2203 {
2204 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2205 return LS_OVERHEAD;
2206 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2207 return FS_OVERHEAD;
2208 return HS_OVERHEAD;
2209 }
2210
2211 /* If we are changing a LS/FS device under a HS hub,
2212 * make sure (if we are activating a new TT) that the HS bus has enough
2213 * bandwidth for this new TT.
2214 */
xhci_check_tt_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2215 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2216 struct xhci_virt_device *virt_dev,
2217 int old_active_eps)
2218 {
2219 struct xhci_interval_bw_table *bw_table;
2220 struct xhci_tt_bw_info *tt_info;
2221
2222 /* Find the bandwidth table for the root port this TT is attached to. */
2223 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2224 tt_info = virt_dev->tt_info;
2225 /* If this TT already had active endpoints, the bandwidth for this TT
2226 * has already been added. Removing all periodic endpoints (and thus
2227 * making the TT enactive) will only decrease the bandwidth used.
2228 */
2229 if (old_active_eps)
2230 return 0;
2231 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2232 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2233 return -ENOMEM;
2234 return 0;
2235 }
2236 /* Not sure why we would have no new active endpoints...
2237 *
2238 * Maybe because of an Evaluate Context change for a hub update or a
2239 * control endpoint 0 max packet size change?
2240 * FIXME: skip the bandwidth calculation in that case.
2241 */
2242 return 0;
2243 }
2244
xhci_check_ss_bw(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)2245 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2246 struct xhci_virt_device *virt_dev)
2247 {
2248 unsigned int bw_reserved;
2249
2250 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2251 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2252 return -ENOMEM;
2253
2254 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2255 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2256 return -ENOMEM;
2257
2258 return 0;
2259 }
2260
2261 /*
2262 * This algorithm is a very conservative estimate of the worst-case scheduling
2263 * scenario for any one interval. The hardware dynamically schedules the
2264 * packets, so we can't tell which microframe could be the limiting factor in
2265 * the bandwidth scheduling. This only takes into account periodic endpoints.
2266 *
2267 * Obviously, we can't solve an NP complete problem to find the minimum worst
2268 * case scenario. Instead, we come up with an estimate that is no less than
2269 * the worst case bandwidth used for any one microframe, but may be an
2270 * over-estimate.
2271 *
2272 * We walk the requirements for each endpoint by interval, starting with the
2273 * smallest interval, and place packets in the schedule where there is only one
2274 * possible way to schedule packets for that interval. In order to simplify
2275 * this algorithm, we record the largest max packet size for each interval, and
2276 * assume all packets will be that size.
2277 *
2278 * For interval 0, we obviously must schedule all packets for each interval.
2279 * The bandwidth for interval 0 is just the amount of data to be transmitted
2280 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2281 * the number of packets).
2282 *
2283 * For interval 1, we have two possible microframes to schedule those packets
2284 * in. For this algorithm, if we can schedule the same number of packets for
2285 * each possible scheduling opportunity (each microframe), we will do so. The
2286 * remaining number of packets will be saved to be transmitted in the gaps in
2287 * the next interval's scheduling sequence.
2288 *
2289 * As we move those remaining packets to be scheduled with interval 2 packets,
2290 * we have to double the number of remaining packets to transmit. This is
2291 * because the intervals are actually powers of 2, and we would be transmitting
2292 * the previous interval's packets twice in this interval. We also have to be
2293 * sure that when we look at the largest max packet size for this interval, we
2294 * also look at the largest max packet size for the remaining packets and take
2295 * the greater of the two.
2296 *
2297 * The algorithm continues to evenly distribute packets in each scheduling
2298 * opportunity, and push the remaining packets out, until we get to the last
2299 * interval. Then those packets and their associated overhead are just added
2300 * to the bandwidth used.
2301 */
xhci_check_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2302 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2303 struct xhci_virt_device *virt_dev,
2304 int old_active_eps)
2305 {
2306 unsigned int bw_reserved;
2307 unsigned int max_bandwidth;
2308 unsigned int bw_used;
2309 unsigned int block_size;
2310 struct xhci_interval_bw_table *bw_table;
2311 unsigned int packet_size = 0;
2312 unsigned int overhead = 0;
2313 unsigned int packets_transmitted = 0;
2314 unsigned int packets_remaining = 0;
2315 unsigned int i;
2316
2317 if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2318 return xhci_check_ss_bw(xhci, virt_dev);
2319
2320 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2321 max_bandwidth = HS_BW_LIMIT;
2322 /* Convert percent of bus BW reserved to blocks reserved */
2323 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2324 } else {
2325 max_bandwidth = FS_BW_LIMIT;
2326 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2327 }
2328
2329 bw_table = virt_dev->bw_table;
2330 /* We need to translate the max packet size and max ESIT payloads into
2331 * the units the hardware uses.
2332 */
2333 block_size = xhci_get_block_size(virt_dev->udev);
2334
2335 /* If we are manipulating a LS/FS device under a HS hub, double check
2336 * that the HS bus has enough bandwidth if we are activing a new TT.
2337 */
2338 if (virt_dev->tt_info) {
2339 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2340 "Recalculating BW for rootport %u",
2341 virt_dev->real_port);
2342 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2343 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2344 "newly activated TT.\n");
2345 return -ENOMEM;
2346 }
2347 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2348 "Recalculating BW for TT slot %u port %u",
2349 virt_dev->tt_info->slot_id,
2350 virt_dev->tt_info->ttport);
2351 } else {
2352 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2353 "Recalculating BW for rootport %u",
2354 virt_dev->real_port);
2355 }
2356
2357 /* Add in how much bandwidth will be used for interval zero, or the
2358 * rounded max ESIT payload + number of packets * largest overhead.
2359 */
2360 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2361 bw_table->interval_bw[0].num_packets *
2362 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2363
2364 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2365 unsigned int bw_added;
2366 unsigned int largest_mps;
2367 unsigned int interval_overhead;
2368
2369 /*
2370 * How many packets could we transmit in this interval?
2371 * If packets didn't fit in the previous interval, we will need
2372 * to transmit that many packets twice within this interval.
2373 */
2374 packets_remaining = 2 * packets_remaining +
2375 bw_table->interval_bw[i].num_packets;
2376
2377 /* Find the largest max packet size of this or the previous
2378 * interval.
2379 */
2380 if (list_empty(&bw_table->interval_bw[i].endpoints))
2381 largest_mps = 0;
2382 else {
2383 struct xhci_virt_ep *virt_ep;
2384 struct list_head *ep_entry;
2385
2386 ep_entry = bw_table->interval_bw[i].endpoints.next;
2387 virt_ep = list_entry(ep_entry,
2388 struct xhci_virt_ep, bw_endpoint_list);
2389 /* Convert to blocks, rounding up */
2390 largest_mps = DIV_ROUND_UP(
2391 virt_ep->bw_info.max_packet_size,
2392 block_size);
2393 }
2394 if (largest_mps > packet_size)
2395 packet_size = largest_mps;
2396
2397 /* Use the larger overhead of this or the previous interval. */
2398 interval_overhead = xhci_get_largest_overhead(
2399 &bw_table->interval_bw[i]);
2400 if (interval_overhead > overhead)
2401 overhead = interval_overhead;
2402
2403 /* How many packets can we evenly distribute across
2404 * (1 << (i + 1)) possible scheduling opportunities?
2405 */
2406 packets_transmitted = packets_remaining >> (i + 1);
2407
2408 /* Add in the bandwidth used for those scheduled packets */
2409 bw_added = packets_transmitted * (overhead + packet_size);
2410
2411 /* How many packets do we have remaining to transmit? */
2412 packets_remaining = packets_remaining % (1 << (i + 1));
2413
2414 /* What largest max packet size should those packets have? */
2415 /* If we've transmitted all packets, don't carry over the
2416 * largest packet size.
2417 */
2418 if (packets_remaining == 0) {
2419 packet_size = 0;
2420 overhead = 0;
2421 } else if (packets_transmitted > 0) {
2422 /* Otherwise if we do have remaining packets, and we've
2423 * scheduled some packets in this interval, take the
2424 * largest max packet size from endpoints with this
2425 * interval.
2426 */
2427 packet_size = largest_mps;
2428 overhead = interval_overhead;
2429 }
2430 /* Otherwise carry over packet_size and overhead from the last
2431 * time we had a remainder.
2432 */
2433 bw_used += bw_added;
2434 if (bw_used > max_bandwidth) {
2435 xhci_warn(xhci, "Not enough bandwidth. "
2436 "Proposed: %u, Max: %u\n",
2437 bw_used, max_bandwidth);
2438 return -ENOMEM;
2439 }
2440 }
2441 /*
2442 * Ok, we know we have some packets left over after even-handedly
2443 * scheduling interval 15. We don't know which microframes they will
2444 * fit into, so we over-schedule and say they will be scheduled every
2445 * microframe.
2446 */
2447 if (packets_remaining > 0)
2448 bw_used += overhead + packet_size;
2449
2450 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2451 unsigned int port_index = virt_dev->real_port - 1;
2452
2453 /* OK, we're manipulating a HS device attached to a
2454 * root port bandwidth domain. Include the number of active TTs
2455 * in the bandwidth used.
2456 */
2457 bw_used += TT_HS_OVERHEAD *
2458 xhci->rh_bw[port_index].num_active_tts;
2459 }
2460
2461 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2462 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2463 "Available: %u " "percent",
2464 bw_used, max_bandwidth, bw_reserved,
2465 (max_bandwidth - bw_used - bw_reserved) * 100 /
2466 max_bandwidth);
2467
2468 bw_used += bw_reserved;
2469 if (bw_used > max_bandwidth) {
2470 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2471 bw_used, max_bandwidth);
2472 return -ENOMEM;
2473 }
2474
2475 bw_table->bw_used = bw_used;
2476 return 0;
2477 }
2478
xhci_is_async_ep(unsigned int ep_type)2479 static bool xhci_is_async_ep(unsigned int ep_type)
2480 {
2481 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2482 ep_type != ISOC_IN_EP &&
2483 ep_type != INT_IN_EP);
2484 }
2485
xhci_is_sync_in_ep(unsigned int ep_type)2486 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2487 {
2488 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2489 }
2490
xhci_get_ss_bw_consumed(struct xhci_bw_info * ep_bw)2491 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2492 {
2493 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2494
2495 if (ep_bw->ep_interval == 0)
2496 return SS_OVERHEAD_BURST +
2497 (ep_bw->mult * ep_bw->num_packets *
2498 (SS_OVERHEAD + mps));
2499 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2500 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2501 1 << ep_bw->ep_interval);
2502
2503 }
2504
xhci_drop_ep_from_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2505 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2506 struct xhci_bw_info *ep_bw,
2507 struct xhci_interval_bw_table *bw_table,
2508 struct usb_device *udev,
2509 struct xhci_virt_ep *virt_ep,
2510 struct xhci_tt_bw_info *tt_info)
2511 {
2512 struct xhci_interval_bw *interval_bw;
2513 int normalized_interval;
2514
2515 if (xhci_is_async_ep(ep_bw->type))
2516 return;
2517
2518 if (udev->speed >= USB_SPEED_SUPER) {
2519 if (xhci_is_sync_in_ep(ep_bw->type))
2520 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2521 xhci_get_ss_bw_consumed(ep_bw);
2522 else
2523 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2524 xhci_get_ss_bw_consumed(ep_bw);
2525 return;
2526 }
2527
2528 /* SuperSpeed endpoints never get added to intervals in the table, so
2529 * this check is only valid for HS/FS/LS devices.
2530 */
2531 if (list_empty(&virt_ep->bw_endpoint_list))
2532 return;
2533 /* For LS/FS devices, we need to translate the interval expressed in
2534 * microframes to frames.
2535 */
2536 if (udev->speed == USB_SPEED_HIGH)
2537 normalized_interval = ep_bw->ep_interval;
2538 else
2539 normalized_interval = ep_bw->ep_interval - 3;
2540
2541 if (normalized_interval == 0)
2542 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2543 interval_bw = &bw_table->interval_bw[normalized_interval];
2544 interval_bw->num_packets -= ep_bw->num_packets;
2545 switch (udev->speed) {
2546 case USB_SPEED_LOW:
2547 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2548 break;
2549 case USB_SPEED_FULL:
2550 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2551 break;
2552 case USB_SPEED_HIGH:
2553 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2554 break;
2555 case USB_SPEED_SUPER:
2556 case USB_SPEED_SUPER_PLUS:
2557 case USB_SPEED_UNKNOWN:
2558 case USB_SPEED_WIRELESS:
2559 /* Should never happen because only LS/FS/HS endpoints will get
2560 * added to the endpoint list.
2561 */
2562 return;
2563 }
2564 if (tt_info)
2565 tt_info->active_eps -= 1;
2566 list_del_init(&virt_ep->bw_endpoint_list);
2567 }
2568
xhci_add_ep_to_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2569 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2570 struct xhci_bw_info *ep_bw,
2571 struct xhci_interval_bw_table *bw_table,
2572 struct usb_device *udev,
2573 struct xhci_virt_ep *virt_ep,
2574 struct xhci_tt_bw_info *tt_info)
2575 {
2576 struct xhci_interval_bw *interval_bw;
2577 struct xhci_virt_ep *smaller_ep;
2578 int normalized_interval;
2579
2580 if (xhci_is_async_ep(ep_bw->type))
2581 return;
2582
2583 if (udev->speed == USB_SPEED_SUPER) {
2584 if (xhci_is_sync_in_ep(ep_bw->type))
2585 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2586 xhci_get_ss_bw_consumed(ep_bw);
2587 else
2588 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2589 xhci_get_ss_bw_consumed(ep_bw);
2590 return;
2591 }
2592
2593 /* For LS/FS devices, we need to translate the interval expressed in
2594 * microframes to frames.
2595 */
2596 if (udev->speed == USB_SPEED_HIGH)
2597 normalized_interval = ep_bw->ep_interval;
2598 else
2599 normalized_interval = ep_bw->ep_interval - 3;
2600
2601 if (normalized_interval == 0)
2602 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2603 interval_bw = &bw_table->interval_bw[normalized_interval];
2604 interval_bw->num_packets += ep_bw->num_packets;
2605 switch (udev->speed) {
2606 case USB_SPEED_LOW:
2607 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2608 break;
2609 case USB_SPEED_FULL:
2610 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2611 break;
2612 case USB_SPEED_HIGH:
2613 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2614 break;
2615 case USB_SPEED_SUPER:
2616 case USB_SPEED_SUPER_PLUS:
2617 case USB_SPEED_UNKNOWN:
2618 case USB_SPEED_WIRELESS:
2619 /* Should never happen because only LS/FS/HS endpoints will get
2620 * added to the endpoint list.
2621 */
2622 return;
2623 }
2624
2625 if (tt_info)
2626 tt_info->active_eps += 1;
2627 /* Insert the endpoint into the list, largest max packet size first. */
2628 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2629 bw_endpoint_list) {
2630 if (ep_bw->max_packet_size >=
2631 smaller_ep->bw_info.max_packet_size) {
2632 /* Add the new ep before the smaller endpoint */
2633 list_add_tail(&virt_ep->bw_endpoint_list,
2634 &smaller_ep->bw_endpoint_list);
2635 return;
2636 }
2637 }
2638 /* Add the new endpoint at the end of the list. */
2639 list_add_tail(&virt_ep->bw_endpoint_list,
2640 &interval_bw->endpoints);
2641 }
2642
xhci_update_tt_active_eps(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2643 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2644 struct xhci_virt_device *virt_dev,
2645 int old_active_eps)
2646 {
2647 struct xhci_root_port_bw_info *rh_bw_info;
2648 if (!virt_dev->tt_info)
2649 return;
2650
2651 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2652 if (old_active_eps == 0 &&
2653 virt_dev->tt_info->active_eps != 0) {
2654 rh_bw_info->num_active_tts += 1;
2655 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2656 } else if (old_active_eps != 0 &&
2657 virt_dev->tt_info->active_eps == 0) {
2658 rh_bw_info->num_active_tts -= 1;
2659 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2660 }
2661 }
2662
xhci_reserve_bandwidth(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct xhci_container_ctx * in_ctx)2663 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2664 struct xhci_virt_device *virt_dev,
2665 struct xhci_container_ctx *in_ctx)
2666 {
2667 struct xhci_bw_info ep_bw_info[31];
2668 int i;
2669 struct xhci_input_control_ctx *ctrl_ctx;
2670 int old_active_eps = 0;
2671
2672 if (virt_dev->tt_info)
2673 old_active_eps = virt_dev->tt_info->active_eps;
2674
2675 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2676 if (!ctrl_ctx) {
2677 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2678 __func__);
2679 return -ENOMEM;
2680 }
2681
2682 for (i = 0; i < 31; i++) {
2683 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2684 continue;
2685
2686 /* Make a copy of the BW info in case we need to revert this */
2687 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2688 sizeof(ep_bw_info[i]));
2689 /* Drop the endpoint from the interval table if the endpoint is
2690 * being dropped or changed.
2691 */
2692 if (EP_IS_DROPPED(ctrl_ctx, i))
2693 xhci_drop_ep_from_interval_table(xhci,
2694 &virt_dev->eps[i].bw_info,
2695 virt_dev->bw_table,
2696 virt_dev->udev,
2697 &virt_dev->eps[i],
2698 virt_dev->tt_info);
2699 }
2700 /* Overwrite the information stored in the endpoints' bw_info */
2701 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2702 for (i = 0; i < 31; i++) {
2703 /* Add any changed or added endpoints to the interval table */
2704 if (EP_IS_ADDED(ctrl_ctx, i))
2705 xhci_add_ep_to_interval_table(xhci,
2706 &virt_dev->eps[i].bw_info,
2707 virt_dev->bw_table,
2708 virt_dev->udev,
2709 &virt_dev->eps[i],
2710 virt_dev->tt_info);
2711 }
2712
2713 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2714 /* Ok, this fits in the bandwidth we have.
2715 * Update the number of active TTs.
2716 */
2717 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2718 return 0;
2719 }
2720
2721 /* We don't have enough bandwidth for this, revert the stored info. */
2722 for (i = 0; i < 31; i++) {
2723 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2724 continue;
2725
2726 /* Drop the new copies of any added or changed endpoints from
2727 * the interval table.
2728 */
2729 if (EP_IS_ADDED(ctrl_ctx, i)) {
2730 xhci_drop_ep_from_interval_table(xhci,
2731 &virt_dev->eps[i].bw_info,
2732 virt_dev->bw_table,
2733 virt_dev->udev,
2734 &virt_dev->eps[i],
2735 virt_dev->tt_info);
2736 }
2737 /* Revert the endpoint back to its old information */
2738 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2739 sizeof(ep_bw_info[i]));
2740 /* Add any changed or dropped endpoints back into the table */
2741 if (EP_IS_DROPPED(ctrl_ctx, i))
2742 xhci_add_ep_to_interval_table(xhci,
2743 &virt_dev->eps[i].bw_info,
2744 virt_dev->bw_table,
2745 virt_dev->udev,
2746 &virt_dev->eps[i],
2747 virt_dev->tt_info);
2748 }
2749 return -ENOMEM;
2750 }
2751
2752
2753 /* Issue a configure endpoint command or evaluate context command
2754 * and wait for it to finish.
2755 */
xhci_configure_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct xhci_command * command,bool ctx_change,bool must_succeed)2756 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2757 struct usb_device *udev,
2758 struct xhci_command *command,
2759 bool ctx_change, bool must_succeed)
2760 {
2761 int ret;
2762 unsigned long flags;
2763 struct xhci_input_control_ctx *ctrl_ctx;
2764 struct xhci_virt_device *virt_dev;
2765 struct xhci_slot_ctx *slot_ctx;
2766
2767 if (!command)
2768 return -EINVAL;
2769
2770 spin_lock_irqsave(&xhci->lock, flags);
2771
2772 if (xhci->xhc_state & XHCI_STATE_DYING) {
2773 spin_unlock_irqrestore(&xhci->lock, flags);
2774 return -ESHUTDOWN;
2775 }
2776
2777 virt_dev = xhci->devs[udev->slot_id];
2778
2779 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2780 if (!ctrl_ctx) {
2781 spin_unlock_irqrestore(&xhci->lock, flags);
2782 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2783 __func__);
2784 return -ENOMEM;
2785 }
2786
2787 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2788 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2789 spin_unlock_irqrestore(&xhci->lock, flags);
2790 xhci_warn(xhci, "Not enough host resources, "
2791 "active endpoint contexts = %u\n",
2792 xhci->num_active_eps);
2793 return -ENOMEM;
2794 }
2795 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2796 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2797 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2798 xhci_free_host_resources(xhci, ctrl_ctx);
2799 spin_unlock_irqrestore(&xhci->lock, flags);
2800 xhci_warn(xhci, "Not enough bandwidth\n");
2801 return -ENOMEM;
2802 }
2803
2804 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2805
2806 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2807 trace_xhci_configure_endpoint(slot_ctx);
2808
2809 if (!ctx_change)
2810 ret = xhci_queue_configure_endpoint(xhci, command,
2811 command->in_ctx->dma,
2812 udev->slot_id, must_succeed);
2813 else
2814 ret = xhci_queue_evaluate_context(xhci, command,
2815 command->in_ctx->dma,
2816 udev->slot_id, must_succeed);
2817 if (ret < 0) {
2818 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2819 xhci_free_host_resources(xhci, ctrl_ctx);
2820 spin_unlock_irqrestore(&xhci->lock, flags);
2821 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2822 "FIXME allocate a new ring segment");
2823 return -ENOMEM;
2824 }
2825 xhci_ring_cmd_db(xhci);
2826 spin_unlock_irqrestore(&xhci->lock, flags);
2827
2828 /* Wait for the configure endpoint command to complete */
2829 wait_for_completion(command->completion);
2830
2831 if (!ctx_change)
2832 ret = xhci_configure_endpoint_result(xhci, udev,
2833 &command->status);
2834 else
2835 ret = xhci_evaluate_context_result(xhci, udev,
2836 &command->status);
2837
2838 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2839 spin_lock_irqsave(&xhci->lock, flags);
2840 /* If the command failed, remove the reserved resources.
2841 * Otherwise, clean up the estimate to include dropped eps.
2842 */
2843 if (ret)
2844 xhci_free_host_resources(xhci, ctrl_ctx);
2845 else
2846 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2847 spin_unlock_irqrestore(&xhci->lock, flags);
2848 }
2849 return ret;
2850 }
2851
xhci_check_bw_drop_ep_streams(struct xhci_hcd * xhci,struct xhci_virt_device * vdev,int i)2852 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2853 struct xhci_virt_device *vdev, int i)
2854 {
2855 struct xhci_virt_ep *ep = &vdev->eps[i];
2856
2857 if (ep->ep_state & EP_HAS_STREAMS) {
2858 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2859 xhci_get_endpoint_address(i));
2860 xhci_free_stream_info(xhci, ep->stream_info);
2861 ep->stream_info = NULL;
2862 ep->ep_state &= ~EP_HAS_STREAMS;
2863 }
2864 }
2865
2866 /* Called after one or more calls to xhci_add_endpoint() or
2867 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2868 * to call xhci_reset_bandwidth().
2869 *
2870 * Since we are in the middle of changing either configuration or
2871 * installing a new alt setting, the USB core won't allow URBs to be
2872 * enqueued for any endpoint on the old config or interface. Nothing
2873 * else should be touching the xhci->devs[slot_id] structure, so we
2874 * don't need to take the xhci->lock for manipulating that.
2875 */
xhci_check_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)2876 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2877 {
2878 int i;
2879 int ret = 0;
2880 struct xhci_hcd *xhci;
2881 struct xhci_virt_device *virt_dev;
2882 struct xhci_input_control_ctx *ctrl_ctx;
2883 struct xhci_slot_ctx *slot_ctx;
2884 struct xhci_command *command;
2885
2886 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2887 if (ret <= 0)
2888 return ret;
2889 xhci = hcd_to_xhci(hcd);
2890 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2891 (xhci->xhc_state & XHCI_STATE_REMOVING))
2892 return -ENODEV;
2893
2894 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2895 virt_dev = xhci->devs[udev->slot_id];
2896
2897 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2898 if (!command)
2899 return -ENOMEM;
2900
2901 command->in_ctx = virt_dev->in_ctx;
2902
2903 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2904 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2905 if (!ctrl_ctx) {
2906 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2907 __func__);
2908 ret = -ENOMEM;
2909 goto command_cleanup;
2910 }
2911 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2912 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2913 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2914
2915 /* Don't issue the command if there's no endpoints to update. */
2916 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2917 ctrl_ctx->drop_flags == 0) {
2918 ret = 0;
2919 goto command_cleanup;
2920 }
2921 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2922 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2923 for (i = 31; i >= 1; i--) {
2924 __le32 le32 = cpu_to_le32(BIT(i));
2925
2926 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2927 || (ctrl_ctx->add_flags & le32) || i == 1) {
2928 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2929 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2930 break;
2931 }
2932 }
2933
2934 ret = xhci_configure_endpoint(xhci, udev, command,
2935 false, false);
2936 if (ret)
2937 /* Callee should call reset_bandwidth() */
2938 goto command_cleanup;
2939
2940 /* Free any rings that were dropped, but not changed. */
2941 for (i = 1; i < 31; i++) {
2942 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2943 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2944 xhci_free_endpoint_ring(xhci, virt_dev, i);
2945 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2946 }
2947 }
2948 xhci_zero_in_ctx(xhci, virt_dev);
2949 /*
2950 * Install any rings for completely new endpoints or changed endpoints,
2951 * and free any old rings from changed endpoints.
2952 */
2953 for (i = 1; i < 31; i++) {
2954 if (!virt_dev->eps[i].new_ring)
2955 continue;
2956 /* Only free the old ring if it exists.
2957 * It may not if this is the first add of an endpoint.
2958 */
2959 if (virt_dev->eps[i].ring) {
2960 xhci_free_endpoint_ring(xhci, virt_dev, i);
2961 }
2962 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2963 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2964 virt_dev->eps[i].new_ring = NULL;
2965 xhci_debugfs_create_endpoint(xhci, virt_dev, i);
2966 }
2967 command_cleanup:
2968 kfree(command->completion);
2969 kfree(command);
2970
2971 return ret;
2972 }
2973
xhci_reset_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)2974 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2975 {
2976 struct xhci_hcd *xhci;
2977 struct xhci_virt_device *virt_dev;
2978 int i, ret;
2979
2980 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2981 if (ret <= 0)
2982 return;
2983 xhci = hcd_to_xhci(hcd);
2984
2985 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2986 virt_dev = xhci->devs[udev->slot_id];
2987 /* Free any rings allocated for added endpoints */
2988 for (i = 0; i < 31; i++) {
2989 if (virt_dev->eps[i].new_ring) {
2990 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2991 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2992 virt_dev->eps[i].new_ring = NULL;
2993 }
2994 }
2995 xhci_zero_in_ctx(xhci, virt_dev);
2996 }
2997
xhci_setup_input_ctx_for_config_ep(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,struct xhci_input_control_ctx * ctrl_ctx,u32 add_flags,u32 drop_flags)2998 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2999 struct xhci_container_ctx *in_ctx,
3000 struct xhci_container_ctx *out_ctx,
3001 struct xhci_input_control_ctx *ctrl_ctx,
3002 u32 add_flags, u32 drop_flags)
3003 {
3004 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3005 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3006 xhci_slot_copy(xhci, in_ctx, out_ctx);
3007 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3008 }
3009
xhci_setup_input_ctx_for_quirk(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,struct xhci_dequeue_state * deq_state)3010 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
3011 unsigned int slot_id, unsigned int ep_index,
3012 struct xhci_dequeue_state *deq_state)
3013 {
3014 struct xhci_input_control_ctx *ctrl_ctx;
3015 struct xhci_container_ctx *in_ctx;
3016 struct xhci_ep_ctx *ep_ctx;
3017 u32 added_ctxs;
3018 dma_addr_t addr;
3019
3020 in_ctx = xhci->devs[slot_id]->in_ctx;
3021 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
3022 if (!ctrl_ctx) {
3023 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3024 __func__);
3025 return;
3026 }
3027
3028 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
3029 xhci->devs[slot_id]->out_ctx, ep_index);
3030 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
3031 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
3032 deq_state->new_deq_ptr);
3033 if (addr == 0) {
3034 xhci_warn(xhci, "WARN Cannot submit config ep after "
3035 "reset ep command\n");
3036 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
3037 deq_state->new_deq_seg,
3038 deq_state->new_deq_ptr);
3039 return;
3040 }
3041 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
3042
3043 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
3044 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
3045 xhci->devs[slot_id]->out_ctx, ctrl_ctx,
3046 added_ctxs, added_ctxs);
3047 }
3048
xhci_cleanup_stalled_ring(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,unsigned int stream_id,struct xhci_td * td)3049 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int slot_id,
3050 unsigned int ep_index, unsigned int stream_id,
3051 struct xhci_td *td)
3052 {
3053 struct xhci_dequeue_state deq_state;
3054
3055 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3056 "Cleaning up stalled endpoint ring");
3057 /* We need to move the HW's dequeue pointer past this TD,
3058 * or it will attempt to resend it on the next doorbell ring.
3059 */
3060 xhci_find_new_dequeue_state(xhci, slot_id, ep_index, stream_id, td,
3061 &deq_state);
3062
3063 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
3064 return;
3065
3066 /* HW with the reset endpoint quirk will use the saved dequeue state to
3067 * issue a configure endpoint command later.
3068 */
3069 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
3070 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3071 "Queueing new dequeue state");
3072 xhci_queue_new_dequeue_state(xhci, slot_id,
3073 ep_index, &deq_state);
3074 } else {
3075 /* Better hope no one uses the input context between now and the
3076 * reset endpoint completion!
3077 * XXX: No idea how this hardware will react when stream rings
3078 * are enabled.
3079 */
3080 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3081 "Setting up input context for "
3082 "configure endpoint command");
3083 xhci_setup_input_ctx_for_quirk(xhci, slot_id,
3084 ep_index, &deq_state);
3085 }
3086 }
3087
xhci_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3088 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3089 struct usb_host_endpoint *host_ep)
3090 {
3091 struct xhci_hcd *xhci;
3092 struct xhci_virt_device *vdev;
3093 struct xhci_virt_ep *ep;
3094 struct usb_device *udev;
3095 unsigned long flags;
3096 unsigned int ep_index;
3097
3098 xhci = hcd_to_xhci(hcd);
3099 rescan:
3100 spin_lock_irqsave(&xhci->lock, flags);
3101
3102 udev = (struct usb_device *)host_ep->hcpriv;
3103 if (!udev || !udev->slot_id)
3104 goto done;
3105
3106 vdev = xhci->devs[udev->slot_id];
3107 if (!vdev)
3108 goto done;
3109
3110 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3111 ep = &vdev->eps[ep_index];
3112 if (!ep)
3113 goto done;
3114
3115 /* wait for hub_tt_work to finish clearing hub TT */
3116 if (ep->ep_state & EP_CLEARING_TT) {
3117 spin_unlock_irqrestore(&xhci->lock, flags);
3118 schedule_timeout_uninterruptible(1);
3119 goto rescan;
3120 }
3121
3122 if (ep->ep_state)
3123 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3124 ep->ep_state);
3125 done:
3126 host_ep->hcpriv = NULL;
3127 spin_unlock_irqrestore(&xhci->lock, flags);
3128 }
3129
3130 /*
3131 * Called after usb core issues a clear halt control message.
3132 * The host side of the halt should already be cleared by a reset endpoint
3133 * command issued when the STALL event was received.
3134 *
3135 * The reset endpoint command may only be issued to endpoints in the halted
3136 * state. For software that wishes to reset the data toggle or sequence number
3137 * of an endpoint that isn't in the halted state this function will issue a
3138 * configure endpoint command with the Drop and Add bits set for the target
3139 * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3140 */
3141
xhci_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3142 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3143 struct usb_host_endpoint *host_ep)
3144 {
3145 struct xhci_hcd *xhci;
3146 struct usb_device *udev;
3147 struct xhci_virt_device *vdev;
3148 struct xhci_virt_ep *ep;
3149 struct xhci_input_control_ctx *ctrl_ctx;
3150 struct xhci_command *stop_cmd, *cfg_cmd;
3151 unsigned int ep_index;
3152 unsigned long flags;
3153 u32 ep_flag;
3154 int err;
3155
3156 xhci = hcd_to_xhci(hcd);
3157 if (!host_ep->hcpriv)
3158 return;
3159 udev = (struct usb_device *) host_ep->hcpriv;
3160 vdev = xhci->devs[udev->slot_id];
3161
3162 /*
3163 * vdev may be lost due to xHC restore error and re-initialization
3164 * during S3/S4 resume. A new vdev will be allocated later by
3165 * xhci_discover_or_reset_device()
3166 */
3167 if (!udev->slot_id || !vdev)
3168 return;
3169 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3170 ep = &vdev->eps[ep_index];
3171 if (!ep)
3172 return;
3173
3174 /* Bail out if toggle is already being cleared by a endpoint reset */
3175 spin_lock_irqsave(&xhci->lock, flags);
3176 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3177 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3178 spin_unlock_irqrestore(&xhci->lock, flags);
3179 return;
3180 }
3181 spin_unlock_irqrestore(&xhci->lock, flags);
3182 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3183 if (usb_endpoint_xfer_control(&host_ep->desc) ||
3184 usb_endpoint_xfer_isoc(&host_ep->desc))
3185 return;
3186
3187 ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3188
3189 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3190 return;
3191
3192 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3193 if (!stop_cmd)
3194 return;
3195
3196 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3197 if (!cfg_cmd)
3198 goto cleanup;
3199
3200 spin_lock_irqsave(&xhci->lock, flags);
3201
3202 /* block queuing new trbs and ringing ep doorbell */
3203 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3204
3205 /*
3206 * Make sure endpoint ring is empty before resetting the toggle/seq.
3207 * Driver is required to synchronously cancel all transfer request.
3208 * Stop the endpoint to force xHC to update the output context
3209 */
3210
3211 if (!list_empty(&ep->ring->td_list)) {
3212 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3213 spin_unlock_irqrestore(&xhci->lock, flags);
3214 xhci_free_command(xhci, cfg_cmd);
3215 goto cleanup;
3216 }
3217
3218 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3219 ep_index, 0);
3220 if (err < 0) {
3221 spin_unlock_irqrestore(&xhci->lock, flags);
3222 xhci_free_command(xhci, cfg_cmd);
3223 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3224 __func__, err);
3225 goto cleanup;
3226 }
3227
3228 xhci_ring_cmd_db(xhci);
3229 spin_unlock_irqrestore(&xhci->lock, flags);
3230
3231 wait_for_completion(stop_cmd->completion);
3232
3233 spin_lock_irqsave(&xhci->lock, flags);
3234
3235 /* config ep command clears toggle if add and drop ep flags are set */
3236 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3237 if (!ctrl_ctx) {
3238 spin_unlock_irqrestore(&xhci->lock, flags);
3239 xhci_free_command(xhci, cfg_cmd);
3240 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3241 __func__);
3242 goto cleanup;
3243 }
3244
3245 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3246 ctrl_ctx, ep_flag, ep_flag);
3247 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3248
3249 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3250 udev->slot_id, false);
3251 if (err < 0) {
3252 spin_unlock_irqrestore(&xhci->lock, flags);
3253 xhci_free_command(xhci, cfg_cmd);
3254 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3255 __func__, err);
3256 goto cleanup;
3257 }
3258
3259 xhci_ring_cmd_db(xhci);
3260 spin_unlock_irqrestore(&xhci->lock, flags);
3261
3262 wait_for_completion(cfg_cmd->completion);
3263
3264 xhci_free_command(xhci, cfg_cmd);
3265 cleanup:
3266 xhci_free_command(xhci, stop_cmd);
3267 spin_lock_irqsave(&xhci->lock, flags);
3268 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3269 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3270 spin_unlock_irqrestore(&xhci->lock, flags);
3271 }
3272
xhci_check_streams_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int slot_id)3273 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3274 struct usb_device *udev, struct usb_host_endpoint *ep,
3275 unsigned int slot_id)
3276 {
3277 int ret;
3278 unsigned int ep_index;
3279 unsigned int ep_state;
3280
3281 if (!ep)
3282 return -EINVAL;
3283 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3284 if (ret <= 0)
3285 return -EINVAL;
3286 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3287 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3288 " descriptor for ep 0x%x does not support streams\n",
3289 ep->desc.bEndpointAddress);
3290 return -EINVAL;
3291 }
3292
3293 ep_index = xhci_get_endpoint_index(&ep->desc);
3294 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3295 if (ep_state & EP_HAS_STREAMS ||
3296 ep_state & EP_GETTING_STREAMS) {
3297 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3298 "already has streams set up.\n",
3299 ep->desc.bEndpointAddress);
3300 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3301 "dynamic stream context array reallocation.\n");
3302 return -EINVAL;
3303 }
3304 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3305 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3306 "endpoint 0x%x; URBs are pending.\n",
3307 ep->desc.bEndpointAddress);
3308 return -EINVAL;
3309 }
3310 return 0;
3311 }
3312
xhci_calculate_streams_entries(struct xhci_hcd * xhci,unsigned int * num_streams,unsigned int * num_stream_ctxs)3313 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3314 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3315 {
3316 unsigned int max_streams;
3317
3318 /* The stream context array size must be a power of two */
3319 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3320 /*
3321 * Find out how many primary stream array entries the host controller
3322 * supports. Later we may use secondary stream arrays (similar to 2nd
3323 * level page entries), but that's an optional feature for xHCI host
3324 * controllers. xHCs must support at least 4 stream IDs.
3325 */
3326 max_streams = HCC_MAX_PSA(xhci->hcc_params);
3327 if (*num_stream_ctxs > max_streams) {
3328 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3329 max_streams);
3330 *num_stream_ctxs = max_streams;
3331 *num_streams = max_streams;
3332 }
3333 }
3334
3335 /* Returns an error code if one of the endpoint already has streams.
3336 * This does not change any data structures, it only checks and gathers
3337 * information.
3338 */
xhci_calculate_streams_and_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int * num_streams,u32 * changed_ep_bitmask)3339 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3340 struct usb_device *udev,
3341 struct usb_host_endpoint **eps, unsigned int num_eps,
3342 unsigned int *num_streams, u32 *changed_ep_bitmask)
3343 {
3344 unsigned int max_streams;
3345 unsigned int endpoint_flag;
3346 int i;
3347 int ret;
3348
3349 for (i = 0; i < num_eps; i++) {
3350 ret = xhci_check_streams_endpoint(xhci, udev,
3351 eps[i], udev->slot_id);
3352 if (ret < 0)
3353 return ret;
3354
3355 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3356 if (max_streams < (*num_streams - 1)) {
3357 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3358 eps[i]->desc.bEndpointAddress,
3359 max_streams);
3360 *num_streams = max_streams+1;
3361 }
3362
3363 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3364 if (*changed_ep_bitmask & endpoint_flag)
3365 return -EINVAL;
3366 *changed_ep_bitmask |= endpoint_flag;
3367 }
3368 return 0;
3369 }
3370
xhci_calculate_no_streams_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps)3371 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3372 struct usb_device *udev,
3373 struct usb_host_endpoint **eps, unsigned int num_eps)
3374 {
3375 u32 changed_ep_bitmask = 0;
3376 unsigned int slot_id;
3377 unsigned int ep_index;
3378 unsigned int ep_state;
3379 int i;
3380
3381 slot_id = udev->slot_id;
3382 if (!xhci->devs[slot_id])
3383 return 0;
3384
3385 for (i = 0; i < num_eps; i++) {
3386 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3387 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3388 /* Are streams already being freed for the endpoint? */
3389 if (ep_state & EP_GETTING_NO_STREAMS) {
3390 xhci_warn(xhci, "WARN Can't disable streams for "
3391 "endpoint 0x%x, "
3392 "streams are being disabled already\n",
3393 eps[i]->desc.bEndpointAddress);
3394 return 0;
3395 }
3396 /* Are there actually any streams to free? */
3397 if (!(ep_state & EP_HAS_STREAMS) &&
3398 !(ep_state & EP_GETTING_STREAMS)) {
3399 xhci_warn(xhci, "WARN Can't disable streams for "
3400 "endpoint 0x%x, "
3401 "streams are already disabled!\n",
3402 eps[i]->desc.bEndpointAddress);
3403 xhci_warn(xhci, "WARN xhci_free_streams() called "
3404 "with non-streams endpoint\n");
3405 return 0;
3406 }
3407 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3408 }
3409 return changed_ep_bitmask;
3410 }
3411
3412 /*
3413 * The USB device drivers use this function (through the HCD interface in USB
3414 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3415 * coordinate mass storage command queueing across multiple endpoints (basically
3416 * a stream ID == a task ID).
3417 *
3418 * Setting up streams involves allocating the same size stream context array
3419 * for each endpoint and issuing a configure endpoint command for all endpoints.
3420 *
3421 * Don't allow the call to succeed if one endpoint only supports one stream
3422 * (which means it doesn't support streams at all).
3423 *
3424 * Drivers may get less stream IDs than they asked for, if the host controller
3425 * hardware or endpoints claim they can't support the number of requested
3426 * stream IDs.
3427 */
xhci_alloc_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)3428 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3429 struct usb_host_endpoint **eps, unsigned int num_eps,
3430 unsigned int num_streams, gfp_t mem_flags)
3431 {
3432 int i, ret;
3433 struct xhci_hcd *xhci;
3434 struct xhci_virt_device *vdev;
3435 struct xhci_command *config_cmd;
3436 struct xhci_input_control_ctx *ctrl_ctx;
3437 unsigned int ep_index;
3438 unsigned int num_stream_ctxs;
3439 unsigned int max_packet;
3440 unsigned long flags;
3441 u32 changed_ep_bitmask = 0;
3442
3443 if (!eps)
3444 return -EINVAL;
3445
3446 /* Add one to the number of streams requested to account for
3447 * stream 0 that is reserved for xHCI usage.
3448 */
3449 num_streams += 1;
3450 xhci = hcd_to_xhci(hcd);
3451 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3452 num_streams);
3453
3454 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3455 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3456 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3457 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3458 return -ENOSYS;
3459 }
3460
3461 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3462 if (!config_cmd)
3463 return -ENOMEM;
3464
3465 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3466 if (!ctrl_ctx) {
3467 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3468 __func__);
3469 xhci_free_command(xhci, config_cmd);
3470 return -ENOMEM;
3471 }
3472
3473 /* Check to make sure all endpoints are not already configured for
3474 * streams. While we're at it, find the maximum number of streams that
3475 * all the endpoints will support and check for duplicate endpoints.
3476 */
3477 spin_lock_irqsave(&xhci->lock, flags);
3478 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3479 num_eps, &num_streams, &changed_ep_bitmask);
3480 if (ret < 0) {
3481 xhci_free_command(xhci, config_cmd);
3482 spin_unlock_irqrestore(&xhci->lock, flags);
3483 return ret;
3484 }
3485 if (num_streams <= 1) {
3486 xhci_warn(xhci, "WARN: endpoints can't handle "
3487 "more than one stream.\n");
3488 xhci_free_command(xhci, config_cmd);
3489 spin_unlock_irqrestore(&xhci->lock, flags);
3490 return -EINVAL;
3491 }
3492 vdev = xhci->devs[udev->slot_id];
3493 /* Mark each endpoint as being in transition, so
3494 * xhci_urb_enqueue() will reject all URBs.
3495 */
3496 for (i = 0; i < num_eps; i++) {
3497 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3498 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3499 }
3500 spin_unlock_irqrestore(&xhci->lock, flags);
3501
3502 /* Setup internal data structures and allocate HW data structures for
3503 * streams (but don't install the HW structures in the input context
3504 * until we're sure all memory allocation succeeded).
3505 */
3506 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3507 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3508 num_stream_ctxs, num_streams);
3509
3510 for (i = 0; i < num_eps; i++) {
3511 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3512 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3513 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3514 num_stream_ctxs,
3515 num_streams,
3516 max_packet, mem_flags);
3517 if (!vdev->eps[ep_index].stream_info)
3518 goto cleanup;
3519 /* Set maxPstreams in endpoint context and update deq ptr to
3520 * point to stream context array. FIXME
3521 */
3522 }
3523
3524 /* Set up the input context for a configure endpoint command. */
3525 for (i = 0; i < num_eps; i++) {
3526 struct xhci_ep_ctx *ep_ctx;
3527
3528 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3529 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3530
3531 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3532 vdev->out_ctx, ep_index);
3533 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3534 vdev->eps[ep_index].stream_info);
3535 }
3536 /* Tell the HW to drop its old copy of the endpoint context info
3537 * and add the updated copy from the input context.
3538 */
3539 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3540 vdev->out_ctx, ctrl_ctx,
3541 changed_ep_bitmask, changed_ep_bitmask);
3542
3543 /* Issue and wait for the configure endpoint command */
3544 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3545 false, false);
3546
3547 /* xHC rejected the configure endpoint command for some reason, so we
3548 * leave the old ring intact and free our internal streams data
3549 * structure.
3550 */
3551 if (ret < 0)
3552 goto cleanup;
3553
3554 spin_lock_irqsave(&xhci->lock, flags);
3555 for (i = 0; i < num_eps; i++) {
3556 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3557 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3558 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3559 udev->slot_id, ep_index);
3560 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3561 }
3562 xhci_free_command(xhci, config_cmd);
3563 spin_unlock_irqrestore(&xhci->lock, flags);
3564
3565 for (i = 0; i < num_eps; i++) {
3566 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3567 xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3568 }
3569 /* Subtract 1 for stream 0, which drivers can't use */
3570 return num_streams - 1;
3571
3572 cleanup:
3573 /* If it didn't work, free the streams! */
3574 for (i = 0; i < num_eps; i++) {
3575 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3576 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3577 vdev->eps[ep_index].stream_info = NULL;
3578 /* FIXME Unset maxPstreams in endpoint context and
3579 * update deq ptr to point to normal string ring.
3580 */
3581 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3582 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3583 xhci_endpoint_zero(xhci, vdev, eps[i]);
3584 }
3585 xhci_free_command(xhci, config_cmd);
3586 return -ENOMEM;
3587 }
3588
3589 /* Transition the endpoint from using streams to being a "normal" endpoint
3590 * without streams.
3591 *
3592 * Modify the endpoint context state, submit a configure endpoint command,
3593 * and free all endpoint rings for streams if that completes successfully.
3594 */
xhci_free_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)3595 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3596 struct usb_host_endpoint **eps, unsigned int num_eps,
3597 gfp_t mem_flags)
3598 {
3599 int i, ret;
3600 struct xhci_hcd *xhci;
3601 struct xhci_virt_device *vdev;
3602 struct xhci_command *command;
3603 struct xhci_input_control_ctx *ctrl_ctx;
3604 unsigned int ep_index;
3605 unsigned long flags;
3606 u32 changed_ep_bitmask;
3607
3608 xhci = hcd_to_xhci(hcd);
3609 vdev = xhci->devs[udev->slot_id];
3610
3611 /* Set up a configure endpoint command to remove the streams rings */
3612 spin_lock_irqsave(&xhci->lock, flags);
3613 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3614 udev, eps, num_eps);
3615 if (changed_ep_bitmask == 0) {
3616 spin_unlock_irqrestore(&xhci->lock, flags);
3617 return -EINVAL;
3618 }
3619
3620 /* Use the xhci_command structure from the first endpoint. We may have
3621 * allocated too many, but the driver may call xhci_free_streams() for
3622 * each endpoint it grouped into one call to xhci_alloc_streams().
3623 */
3624 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3625 command = vdev->eps[ep_index].stream_info->free_streams_command;
3626 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3627 if (!ctrl_ctx) {
3628 spin_unlock_irqrestore(&xhci->lock, flags);
3629 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3630 __func__);
3631 return -EINVAL;
3632 }
3633
3634 for (i = 0; i < num_eps; i++) {
3635 struct xhci_ep_ctx *ep_ctx;
3636
3637 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3638 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3639 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3640 EP_GETTING_NO_STREAMS;
3641
3642 xhci_endpoint_copy(xhci, command->in_ctx,
3643 vdev->out_ctx, ep_index);
3644 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3645 &vdev->eps[ep_index]);
3646 }
3647 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3648 vdev->out_ctx, ctrl_ctx,
3649 changed_ep_bitmask, changed_ep_bitmask);
3650 spin_unlock_irqrestore(&xhci->lock, flags);
3651
3652 /* Issue and wait for the configure endpoint command,
3653 * which must succeed.
3654 */
3655 ret = xhci_configure_endpoint(xhci, udev, command,
3656 false, true);
3657
3658 /* xHC rejected the configure endpoint command for some reason, so we
3659 * leave the streams rings intact.
3660 */
3661 if (ret < 0)
3662 return ret;
3663
3664 spin_lock_irqsave(&xhci->lock, flags);
3665 for (i = 0; i < num_eps; i++) {
3666 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3667 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3668 vdev->eps[ep_index].stream_info = NULL;
3669 /* FIXME Unset maxPstreams in endpoint context and
3670 * update deq ptr to point to normal string ring.
3671 */
3672 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3673 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3674 }
3675 spin_unlock_irqrestore(&xhci->lock, flags);
3676
3677 return 0;
3678 }
3679
3680 /*
3681 * Deletes endpoint resources for endpoints that were active before a Reset
3682 * Device command, or a Disable Slot command. The Reset Device command leaves
3683 * the control endpoint intact, whereas the Disable Slot command deletes it.
3684 *
3685 * Must be called with xhci->lock held.
3686 */
xhci_free_device_endpoint_resources(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,bool drop_control_ep)3687 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3688 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3689 {
3690 int i;
3691 unsigned int num_dropped_eps = 0;
3692 unsigned int drop_flags = 0;
3693
3694 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3695 if (virt_dev->eps[i].ring) {
3696 drop_flags |= 1 << i;
3697 num_dropped_eps++;
3698 }
3699 }
3700 xhci->num_active_eps -= num_dropped_eps;
3701 if (num_dropped_eps)
3702 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3703 "Dropped %u ep ctxs, flags = 0x%x, "
3704 "%u now active.",
3705 num_dropped_eps, drop_flags,
3706 xhci->num_active_eps);
3707 }
3708
3709 /*
3710 * This submits a Reset Device Command, which will set the device state to 0,
3711 * set the device address to 0, and disable all the endpoints except the default
3712 * control endpoint. The USB core should come back and call
3713 * xhci_address_device(), and then re-set up the configuration. If this is
3714 * called because of a usb_reset_and_verify_device(), then the old alternate
3715 * settings will be re-installed through the normal bandwidth allocation
3716 * functions.
3717 *
3718 * Wait for the Reset Device command to finish. Remove all structures
3719 * associated with the endpoints that were disabled. Clear the input device
3720 * structure? Reset the control endpoint 0 max packet size?
3721 *
3722 * If the virt_dev to be reset does not exist or does not match the udev,
3723 * it means the device is lost, possibly due to the xHC restore error and
3724 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3725 * re-allocate the device.
3726 */
xhci_discover_or_reset_device(struct usb_hcd * hcd,struct usb_device * udev)3727 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3728 struct usb_device *udev)
3729 {
3730 int ret, i;
3731 unsigned long flags;
3732 struct xhci_hcd *xhci;
3733 unsigned int slot_id;
3734 struct xhci_virt_device *virt_dev;
3735 struct xhci_command *reset_device_cmd;
3736 struct xhci_slot_ctx *slot_ctx;
3737 int old_active_eps = 0;
3738
3739 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3740 if (ret <= 0)
3741 return ret;
3742 xhci = hcd_to_xhci(hcd);
3743 slot_id = udev->slot_id;
3744 virt_dev = xhci->devs[slot_id];
3745 if (!virt_dev) {
3746 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3747 "not exist. Re-allocate the device\n", slot_id);
3748 ret = xhci_alloc_dev(hcd, udev);
3749 if (ret == 1)
3750 return 0;
3751 else
3752 return -EINVAL;
3753 }
3754
3755 if (virt_dev->tt_info)
3756 old_active_eps = virt_dev->tt_info->active_eps;
3757
3758 if (virt_dev->udev != udev) {
3759 /* If the virt_dev and the udev does not match, this virt_dev
3760 * may belong to another udev.
3761 * Re-allocate the device.
3762 */
3763 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3764 "not match the udev. Re-allocate the device\n",
3765 slot_id);
3766 ret = xhci_alloc_dev(hcd, udev);
3767 if (ret == 1)
3768 return 0;
3769 else
3770 return -EINVAL;
3771 }
3772
3773 /* If device is not setup, there is no point in resetting it */
3774 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3775 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3776 SLOT_STATE_DISABLED)
3777 return 0;
3778
3779 trace_xhci_discover_or_reset_device(slot_ctx);
3780
3781 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3782 /* Allocate the command structure that holds the struct completion.
3783 * Assume we're in process context, since the normal device reset
3784 * process has to wait for the device anyway. Storage devices are
3785 * reset as part of error handling, so use GFP_NOIO instead of
3786 * GFP_KERNEL.
3787 */
3788 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3789 if (!reset_device_cmd) {
3790 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3791 return -ENOMEM;
3792 }
3793
3794 /* Attempt to submit the Reset Device command to the command ring */
3795 spin_lock_irqsave(&xhci->lock, flags);
3796
3797 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3798 if (ret) {
3799 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3800 spin_unlock_irqrestore(&xhci->lock, flags);
3801 goto command_cleanup;
3802 }
3803 xhci_ring_cmd_db(xhci);
3804 spin_unlock_irqrestore(&xhci->lock, flags);
3805
3806 /* Wait for the Reset Device command to finish */
3807 wait_for_completion(reset_device_cmd->completion);
3808
3809 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3810 * unless we tried to reset a slot ID that wasn't enabled,
3811 * or the device wasn't in the addressed or configured state.
3812 */
3813 ret = reset_device_cmd->status;
3814 switch (ret) {
3815 case COMP_COMMAND_ABORTED:
3816 case COMP_COMMAND_RING_STOPPED:
3817 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3818 ret = -ETIME;
3819 goto command_cleanup;
3820 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3821 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3822 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3823 slot_id,
3824 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3825 xhci_dbg(xhci, "Not freeing device rings.\n");
3826 /* Don't treat this as an error. May change my mind later. */
3827 ret = 0;
3828 goto command_cleanup;
3829 case COMP_SUCCESS:
3830 xhci_dbg(xhci, "Successful reset device command.\n");
3831 break;
3832 default:
3833 if (xhci_is_vendor_info_code(xhci, ret))
3834 break;
3835 xhci_warn(xhci, "Unknown completion code %u for "
3836 "reset device command.\n", ret);
3837 ret = -EINVAL;
3838 goto command_cleanup;
3839 }
3840
3841 /* Free up host controller endpoint resources */
3842 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3843 spin_lock_irqsave(&xhci->lock, flags);
3844 /* Don't delete the default control endpoint resources */
3845 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3846 spin_unlock_irqrestore(&xhci->lock, flags);
3847 }
3848
3849 /* Everything but endpoint 0 is disabled, so free the rings. */
3850 for (i = 1; i < 31; i++) {
3851 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3852
3853 if (ep->ep_state & EP_HAS_STREAMS) {
3854 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3855 xhci_get_endpoint_address(i));
3856 xhci_free_stream_info(xhci, ep->stream_info);
3857 ep->stream_info = NULL;
3858 ep->ep_state &= ~EP_HAS_STREAMS;
3859 }
3860
3861 if (ep->ring) {
3862 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3863 xhci_free_endpoint_ring(xhci, virt_dev, i);
3864 }
3865 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3866 xhci_drop_ep_from_interval_table(xhci,
3867 &virt_dev->eps[i].bw_info,
3868 virt_dev->bw_table,
3869 udev,
3870 &virt_dev->eps[i],
3871 virt_dev->tt_info);
3872 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3873 }
3874 /* If necessary, update the number of active TTs on this root port */
3875 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3876 virt_dev->flags = 0;
3877 ret = 0;
3878
3879 command_cleanup:
3880 xhci_free_command(xhci, reset_device_cmd);
3881 return ret;
3882 }
3883
3884 /*
3885 * At this point, the struct usb_device is about to go away, the device has
3886 * disconnected, and all traffic has been stopped and the endpoints have been
3887 * disabled. Free any HC data structures associated with that device.
3888 */
xhci_free_dev(struct usb_hcd * hcd,struct usb_device * udev)3889 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3890 {
3891 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3892 struct xhci_virt_device *virt_dev;
3893 struct xhci_slot_ctx *slot_ctx;
3894 int i, ret;
3895
3896 /*
3897 * We called pm_runtime_get_noresume when the device was attached.
3898 * Decrement the counter here to allow controller to runtime suspend
3899 * if no devices remain.
3900 */
3901 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3902 pm_runtime_put_noidle(hcd->self.controller);
3903
3904 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3905 /* If the host is halted due to driver unload, we still need to free the
3906 * device.
3907 */
3908 if (ret <= 0 && ret != -ENODEV)
3909 return;
3910
3911 virt_dev = xhci->devs[udev->slot_id];
3912 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3913 trace_xhci_free_dev(slot_ctx);
3914
3915 /* Stop any wayward timer functions (which may grab the lock) */
3916 for (i = 0; i < 31; i++) {
3917 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3918 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3919 }
3920 virt_dev->udev = NULL;
3921 xhci_disable_slot(xhci, udev->slot_id);
3922 xhci_free_virt_device(xhci, udev->slot_id);
3923 }
3924
xhci_disable_slot(struct xhci_hcd * xhci,u32 slot_id)3925 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3926 {
3927 struct xhci_command *command;
3928 unsigned long flags;
3929 u32 state;
3930 int ret = 0;
3931
3932 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3933 if (!command)
3934 return -ENOMEM;
3935
3936 xhci_debugfs_remove_slot(xhci, slot_id);
3937
3938 spin_lock_irqsave(&xhci->lock, flags);
3939 /* Don't disable the slot if the host controller is dead. */
3940 state = readl(&xhci->op_regs->status);
3941 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3942 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3943 spin_unlock_irqrestore(&xhci->lock, flags);
3944 kfree(command);
3945 return -ENODEV;
3946 }
3947
3948 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3949 slot_id);
3950 if (ret) {
3951 spin_unlock_irqrestore(&xhci->lock, flags);
3952 kfree(command);
3953 return ret;
3954 }
3955 xhci_ring_cmd_db(xhci);
3956 spin_unlock_irqrestore(&xhci->lock, flags);
3957
3958 wait_for_completion(command->completion);
3959
3960 if (command->status != COMP_SUCCESS)
3961 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
3962 slot_id, command->status);
3963
3964 xhci_free_command(xhci, command);
3965
3966 return ret;
3967 }
3968
3969 /*
3970 * Checks if we have enough host controller resources for the default control
3971 * endpoint.
3972 *
3973 * Must be called with xhci->lock held.
3974 */
xhci_reserve_host_control_ep_resources(struct xhci_hcd * xhci)3975 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3976 {
3977 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3978 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3979 "Not enough ep ctxs: "
3980 "%u active, need to add 1, limit is %u.",
3981 xhci->num_active_eps, xhci->limit_active_eps);
3982 return -ENOMEM;
3983 }
3984 xhci->num_active_eps += 1;
3985 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3986 "Adding 1 ep ctx, %u now active.",
3987 xhci->num_active_eps);
3988 return 0;
3989 }
3990
3991
3992 /*
3993 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3994 * timed out, or allocating memory failed. Returns 1 on success.
3995 */
xhci_alloc_dev(struct usb_hcd * hcd,struct usb_device * udev)3996 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3997 {
3998 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3999 struct xhci_virt_device *vdev;
4000 struct xhci_slot_ctx *slot_ctx;
4001 unsigned long flags;
4002 int ret, slot_id;
4003 struct xhci_command *command;
4004
4005 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4006 if (!command)
4007 return 0;
4008
4009 spin_lock_irqsave(&xhci->lock, flags);
4010 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4011 if (ret) {
4012 spin_unlock_irqrestore(&xhci->lock, flags);
4013 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4014 xhci_free_command(xhci, command);
4015 return 0;
4016 }
4017 xhci_ring_cmd_db(xhci);
4018 spin_unlock_irqrestore(&xhci->lock, flags);
4019
4020 wait_for_completion(command->completion);
4021 slot_id = command->slot_id;
4022
4023 if (!slot_id || command->status != COMP_SUCCESS) {
4024 xhci_err(xhci, "Error while assigning device slot ID\n");
4025 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4026 HCS_MAX_SLOTS(
4027 readl(&xhci->cap_regs->hcs_params1)));
4028 xhci_free_command(xhci, command);
4029 return 0;
4030 }
4031
4032 xhci_free_command(xhci, command);
4033
4034 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4035 spin_lock_irqsave(&xhci->lock, flags);
4036 ret = xhci_reserve_host_control_ep_resources(xhci);
4037 if (ret) {
4038 spin_unlock_irqrestore(&xhci->lock, flags);
4039 xhci_warn(xhci, "Not enough host resources, "
4040 "active endpoint contexts = %u\n",
4041 xhci->num_active_eps);
4042 goto disable_slot;
4043 }
4044 spin_unlock_irqrestore(&xhci->lock, flags);
4045 }
4046 /* Use GFP_NOIO, since this function can be called from
4047 * xhci_discover_or_reset_device(), which may be called as part of
4048 * mass storage driver error handling.
4049 */
4050 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4051 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4052 goto disable_slot;
4053 }
4054 vdev = xhci->devs[slot_id];
4055 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4056 trace_xhci_alloc_dev(slot_ctx);
4057
4058 udev->slot_id = slot_id;
4059
4060 xhci_debugfs_create_slot(xhci, slot_id);
4061
4062 /*
4063 * If resetting upon resume, we can't put the controller into runtime
4064 * suspend if there is a device attached.
4065 */
4066 if (xhci->quirks & XHCI_RESET_ON_RESUME)
4067 pm_runtime_get_noresume(hcd->self.controller);
4068
4069 /* Is this a LS or FS device under a HS hub? */
4070 /* Hub or peripherial? */
4071 return 1;
4072
4073 disable_slot:
4074 xhci_disable_slot(xhci, udev->slot_id);
4075 xhci_free_virt_device(xhci, udev->slot_id);
4076
4077 return 0;
4078 }
4079
4080 /*
4081 * Issue an Address Device command and optionally send a corresponding
4082 * SetAddress request to the device.
4083 */
xhci_setup_device(struct usb_hcd * hcd,struct usb_device * udev,enum xhci_setup_dev setup)4084 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4085 enum xhci_setup_dev setup)
4086 {
4087 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4088 unsigned long flags;
4089 struct xhci_virt_device *virt_dev;
4090 int ret = 0;
4091 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4092 struct xhci_slot_ctx *slot_ctx;
4093 struct xhci_input_control_ctx *ctrl_ctx;
4094 u64 temp_64;
4095 struct xhci_command *command = NULL;
4096
4097 mutex_lock(&xhci->mutex);
4098
4099 if (xhci->xhc_state) { /* dying, removing or halted */
4100 ret = -ESHUTDOWN;
4101 goto out;
4102 }
4103
4104 if (!udev->slot_id) {
4105 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4106 "Bad Slot ID %d", udev->slot_id);
4107 ret = -EINVAL;
4108 goto out;
4109 }
4110
4111 virt_dev = xhci->devs[udev->slot_id];
4112
4113 if (WARN_ON(!virt_dev)) {
4114 /*
4115 * In plug/unplug torture test with an NEC controller,
4116 * a zero-dereference was observed once due to virt_dev = 0.
4117 * Print useful debug rather than crash if it is observed again!
4118 */
4119 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4120 udev->slot_id);
4121 ret = -EINVAL;
4122 goto out;
4123 }
4124 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4125 trace_xhci_setup_device_slot(slot_ctx);
4126
4127 if (setup == SETUP_CONTEXT_ONLY) {
4128 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4129 SLOT_STATE_DEFAULT) {
4130 xhci_dbg(xhci, "Slot already in default state\n");
4131 goto out;
4132 }
4133 }
4134
4135 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4136 if (!command) {
4137 ret = -ENOMEM;
4138 goto out;
4139 }
4140
4141 command->in_ctx = virt_dev->in_ctx;
4142
4143 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4144 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4145 if (!ctrl_ctx) {
4146 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4147 __func__);
4148 ret = -EINVAL;
4149 goto out;
4150 }
4151 /*
4152 * If this is the first Set Address since device plug-in or
4153 * virt_device realloaction after a resume with an xHCI power loss,
4154 * then set up the slot context.
4155 */
4156 if (!slot_ctx->dev_info)
4157 xhci_setup_addressable_virt_dev(xhci, udev);
4158 /* Otherwise, update the control endpoint ring enqueue pointer. */
4159 else
4160 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4161 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4162 ctrl_ctx->drop_flags = 0;
4163
4164 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4165 le32_to_cpu(slot_ctx->dev_info) >> 27);
4166
4167 trace_xhci_address_ctrl_ctx(ctrl_ctx);
4168 spin_lock_irqsave(&xhci->lock, flags);
4169 trace_xhci_setup_device(virt_dev);
4170 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4171 udev->slot_id, setup);
4172 if (ret) {
4173 spin_unlock_irqrestore(&xhci->lock, flags);
4174 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4175 "FIXME: allocate a command ring segment");
4176 goto out;
4177 }
4178 xhci_ring_cmd_db(xhci);
4179 spin_unlock_irqrestore(&xhci->lock, flags);
4180
4181 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4182 wait_for_completion(command->completion);
4183
4184 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4185 * the SetAddress() "recovery interval" required by USB and aborting the
4186 * command on a timeout.
4187 */
4188 switch (command->status) {
4189 case COMP_COMMAND_ABORTED:
4190 case COMP_COMMAND_RING_STOPPED:
4191 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4192 ret = -ETIME;
4193 break;
4194 case COMP_CONTEXT_STATE_ERROR:
4195 case COMP_SLOT_NOT_ENABLED_ERROR:
4196 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4197 act, udev->slot_id);
4198 ret = -EINVAL;
4199 break;
4200 case COMP_USB_TRANSACTION_ERROR:
4201 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4202
4203 mutex_unlock(&xhci->mutex);
4204 ret = xhci_disable_slot(xhci, udev->slot_id);
4205 xhci_free_virt_device(xhci, udev->slot_id);
4206 if (!ret)
4207 xhci_alloc_dev(hcd, udev);
4208 kfree(command->completion);
4209 kfree(command);
4210 return -EPROTO;
4211 case COMP_INCOMPATIBLE_DEVICE_ERROR:
4212 dev_warn(&udev->dev,
4213 "ERROR: Incompatible device for setup %s command\n", act);
4214 ret = -ENODEV;
4215 break;
4216 case COMP_SUCCESS:
4217 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4218 "Successful setup %s command", act);
4219 break;
4220 default:
4221 xhci_err(xhci,
4222 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4223 act, command->status);
4224 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4225 ret = -EINVAL;
4226 break;
4227 }
4228 if (ret)
4229 goto out;
4230 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4231 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4232 "Op regs DCBAA ptr = %#016llx", temp_64);
4233 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4234 "Slot ID %d dcbaa entry @%p = %#016llx",
4235 udev->slot_id,
4236 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4237 (unsigned long long)
4238 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4239 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4240 "Output Context DMA address = %#08llx",
4241 (unsigned long long)virt_dev->out_ctx->dma);
4242 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4243 le32_to_cpu(slot_ctx->dev_info) >> 27);
4244 /*
4245 * USB core uses address 1 for the roothubs, so we add one to the
4246 * address given back to us by the HC.
4247 */
4248 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4249 le32_to_cpu(slot_ctx->dev_info) >> 27);
4250 /* Zero the input context control for later use */
4251 ctrl_ctx->add_flags = 0;
4252 ctrl_ctx->drop_flags = 0;
4253 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4254 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4255
4256 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4257 "Internal device address = %d",
4258 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4259 out:
4260 mutex_unlock(&xhci->mutex);
4261 if (command) {
4262 kfree(command->completion);
4263 kfree(command);
4264 }
4265 return ret;
4266 }
4267
xhci_address_device(struct usb_hcd * hcd,struct usb_device * udev)4268 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4269 {
4270 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4271 }
4272
xhci_enable_device(struct usb_hcd * hcd,struct usb_device * udev)4273 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4274 {
4275 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4276 }
4277
4278 /*
4279 * Transfer the port index into real index in the HW port status
4280 * registers. Caculate offset between the port's PORTSC register
4281 * and port status base. Divide the number of per port register
4282 * to get the real index. The raw port number bases 1.
4283 */
xhci_find_raw_port_number(struct usb_hcd * hcd,int port1)4284 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4285 {
4286 struct xhci_hub *rhub;
4287
4288 rhub = xhci_get_rhub(hcd);
4289 return rhub->ports[port1 - 1]->hw_portnum + 1;
4290 }
4291
4292 /*
4293 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4294 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
4295 */
xhci_change_max_exit_latency(struct xhci_hcd * xhci,struct usb_device * udev,u16 max_exit_latency)4296 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4297 struct usb_device *udev, u16 max_exit_latency)
4298 {
4299 struct xhci_virt_device *virt_dev;
4300 struct xhci_command *command;
4301 struct xhci_input_control_ctx *ctrl_ctx;
4302 struct xhci_slot_ctx *slot_ctx;
4303 unsigned long flags;
4304 int ret;
4305
4306 spin_lock_irqsave(&xhci->lock, flags);
4307
4308 virt_dev = xhci->devs[udev->slot_id];
4309
4310 /*
4311 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4312 * xHC was re-initialized. Exit latency will be set later after
4313 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4314 */
4315
4316 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4317 spin_unlock_irqrestore(&xhci->lock, flags);
4318 return 0;
4319 }
4320
4321 /* Attempt to issue an Evaluate Context command to change the MEL. */
4322 command = xhci->lpm_command;
4323 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4324 if (!ctrl_ctx) {
4325 spin_unlock_irqrestore(&xhci->lock, flags);
4326 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4327 __func__);
4328 return -ENOMEM;
4329 }
4330
4331 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4332 spin_unlock_irqrestore(&xhci->lock, flags);
4333
4334 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4335 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4336 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4337 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4338 slot_ctx->dev_state = 0;
4339
4340 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4341 "Set up evaluate context for LPM MEL change.");
4342
4343 /* Issue and wait for the evaluate context command. */
4344 ret = xhci_configure_endpoint(xhci, udev, command,
4345 true, true);
4346
4347 if (!ret) {
4348 spin_lock_irqsave(&xhci->lock, flags);
4349 virt_dev->current_mel = max_exit_latency;
4350 spin_unlock_irqrestore(&xhci->lock, flags);
4351 }
4352 return ret;
4353 }
4354
4355 #ifdef CONFIG_PM
4356
4357 /* BESL to HIRD Encoding array for USB2 LPM */
4358 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4359 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4360
4361 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
xhci_calculate_hird_besl(struct xhci_hcd * xhci,struct usb_device * udev)4362 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4363 struct usb_device *udev)
4364 {
4365 int u2del, besl, besl_host;
4366 int besl_device = 0;
4367 u32 field;
4368
4369 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4370 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4371
4372 if (field & USB_BESL_SUPPORT) {
4373 for (besl_host = 0; besl_host < 16; besl_host++) {
4374 if (xhci_besl_encoding[besl_host] >= u2del)
4375 break;
4376 }
4377 /* Use baseline BESL value as default */
4378 if (field & USB_BESL_BASELINE_VALID)
4379 besl_device = USB_GET_BESL_BASELINE(field);
4380 else if (field & USB_BESL_DEEP_VALID)
4381 besl_device = USB_GET_BESL_DEEP(field);
4382 } else {
4383 if (u2del <= 50)
4384 besl_host = 0;
4385 else
4386 besl_host = (u2del - 51) / 75 + 1;
4387 }
4388
4389 besl = besl_host + besl_device;
4390 if (besl > 15)
4391 besl = 15;
4392
4393 return besl;
4394 }
4395
4396 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
xhci_calculate_usb2_hw_lpm_params(struct usb_device * udev)4397 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4398 {
4399 u32 field;
4400 int l1;
4401 int besld = 0;
4402 int hirdm = 0;
4403
4404 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4405
4406 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4407 l1 = udev->l1_params.timeout / 256;
4408
4409 /* device has preferred BESLD */
4410 if (field & USB_BESL_DEEP_VALID) {
4411 besld = USB_GET_BESL_DEEP(field);
4412 hirdm = 1;
4413 }
4414
4415 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4416 }
4417
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)4418 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4419 struct usb_device *udev, int enable)
4420 {
4421 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4422 struct xhci_port **ports;
4423 __le32 __iomem *pm_addr, *hlpm_addr;
4424 u32 pm_val, hlpm_val, field;
4425 unsigned int port_num;
4426 unsigned long flags;
4427 int hird, exit_latency;
4428 int ret;
4429
4430 if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4431 return -EPERM;
4432
4433 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4434 !udev->lpm_capable)
4435 return -EPERM;
4436
4437 if (!udev->parent || udev->parent->parent ||
4438 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4439 return -EPERM;
4440
4441 if (udev->usb2_hw_lpm_capable != 1)
4442 return -EPERM;
4443
4444 spin_lock_irqsave(&xhci->lock, flags);
4445
4446 ports = xhci->usb2_rhub.ports;
4447 port_num = udev->portnum - 1;
4448 pm_addr = ports[port_num]->addr + PORTPMSC;
4449 pm_val = readl(pm_addr);
4450 hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4451
4452 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4453 enable ? "enable" : "disable", port_num + 1);
4454
4455 if (enable) {
4456 /* Host supports BESL timeout instead of HIRD */
4457 if (udev->usb2_hw_lpm_besl_capable) {
4458 /* if device doesn't have a preferred BESL value use a
4459 * default one which works with mixed HIRD and BESL
4460 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4461 */
4462 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4463 if ((field & USB_BESL_SUPPORT) &&
4464 (field & USB_BESL_BASELINE_VALID))
4465 hird = USB_GET_BESL_BASELINE(field);
4466 else
4467 hird = udev->l1_params.besl;
4468
4469 exit_latency = xhci_besl_encoding[hird];
4470 spin_unlock_irqrestore(&xhci->lock, flags);
4471
4472 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4473 * input context for link powermanagement evaluate
4474 * context commands. It is protected by hcd->bandwidth
4475 * mutex and is shared by all devices. We need to set
4476 * the max ext latency in USB 2 BESL LPM as well, so
4477 * use the same mutex and xhci_change_max_exit_latency()
4478 */
4479 mutex_lock(hcd->bandwidth_mutex);
4480 ret = xhci_change_max_exit_latency(xhci, udev,
4481 exit_latency);
4482 mutex_unlock(hcd->bandwidth_mutex);
4483
4484 if (ret < 0)
4485 return ret;
4486 spin_lock_irqsave(&xhci->lock, flags);
4487
4488 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4489 writel(hlpm_val, hlpm_addr);
4490 /* flush write */
4491 readl(hlpm_addr);
4492 } else {
4493 hird = xhci_calculate_hird_besl(xhci, udev);
4494 }
4495
4496 pm_val &= ~PORT_HIRD_MASK;
4497 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4498 writel(pm_val, pm_addr);
4499 pm_val = readl(pm_addr);
4500 pm_val |= PORT_HLE;
4501 writel(pm_val, pm_addr);
4502 /* flush write */
4503 readl(pm_addr);
4504 } else {
4505 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4506 writel(pm_val, pm_addr);
4507 /* flush write */
4508 readl(pm_addr);
4509 if (udev->usb2_hw_lpm_besl_capable) {
4510 spin_unlock_irqrestore(&xhci->lock, flags);
4511 mutex_lock(hcd->bandwidth_mutex);
4512 xhci_change_max_exit_latency(xhci, udev, 0);
4513 mutex_unlock(hcd->bandwidth_mutex);
4514 readl_poll_timeout(ports[port_num]->addr, pm_val,
4515 (pm_val & PORT_PLS_MASK) == XDEV_U0,
4516 100, 10000);
4517 return 0;
4518 }
4519 }
4520
4521 spin_unlock_irqrestore(&xhci->lock, flags);
4522 return 0;
4523 }
4524
4525 /* check if a usb2 port supports a given extened capability protocol
4526 * only USB2 ports extended protocol capability values are cached.
4527 * Return 1 if capability is supported
4528 */
xhci_check_usb2_port_capability(struct xhci_hcd * xhci,int port,unsigned capability)4529 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4530 unsigned capability)
4531 {
4532 u32 port_offset, port_count;
4533 int i;
4534
4535 for (i = 0; i < xhci->num_ext_caps; i++) {
4536 if (xhci->ext_caps[i] & capability) {
4537 /* port offsets starts at 1 */
4538 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4539 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4540 if (port >= port_offset &&
4541 port < port_offset + port_count)
4542 return 1;
4543 }
4544 }
4545 return 0;
4546 }
4547
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)4548 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4549 {
4550 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4551 int portnum = udev->portnum - 1;
4552
4553 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4554 return 0;
4555
4556 /* we only support lpm for non-hub device connected to root hub yet */
4557 if (!udev->parent || udev->parent->parent ||
4558 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4559 return 0;
4560
4561 if (xhci->hw_lpm_support == 1 &&
4562 xhci_check_usb2_port_capability(
4563 xhci, portnum, XHCI_HLC)) {
4564 udev->usb2_hw_lpm_capable = 1;
4565 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4566 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4567 if (xhci_check_usb2_port_capability(xhci, portnum,
4568 XHCI_BLC))
4569 udev->usb2_hw_lpm_besl_capable = 1;
4570 }
4571
4572 return 0;
4573 }
4574
4575 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4576
4577 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
xhci_service_interval_to_ns(struct usb_endpoint_descriptor * desc)4578 static unsigned long long xhci_service_interval_to_ns(
4579 struct usb_endpoint_descriptor *desc)
4580 {
4581 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4582 }
4583
xhci_get_timeout_no_hub_lpm(struct usb_device * udev,enum usb3_link_state state)4584 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4585 enum usb3_link_state state)
4586 {
4587 unsigned long long sel;
4588 unsigned long long pel;
4589 unsigned int max_sel_pel;
4590 char *state_name;
4591
4592 switch (state) {
4593 case USB3_LPM_U1:
4594 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4595 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4596 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4597 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4598 state_name = "U1";
4599 break;
4600 case USB3_LPM_U2:
4601 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4602 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4603 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4604 state_name = "U2";
4605 break;
4606 default:
4607 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4608 __func__);
4609 return USB3_LPM_DISABLED;
4610 }
4611
4612 if (sel <= max_sel_pel && pel <= max_sel_pel)
4613 return USB3_LPM_DEVICE_INITIATED;
4614
4615 if (sel > max_sel_pel)
4616 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4617 "due to long SEL %llu ms\n",
4618 state_name, sel);
4619 else
4620 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4621 "due to long PEL %llu ms\n",
4622 state_name, pel);
4623 return USB3_LPM_DISABLED;
4624 }
4625
4626 /* The U1 timeout should be the maximum of the following values:
4627 * - For control endpoints, U1 system exit latency (SEL) * 3
4628 * - For bulk endpoints, U1 SEL * 5
4629 * - For interrupt endpoints:
4630 * - Notification EPs, U1 SEL * 3
4631 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4632 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4633 */
xhci_calculate_intel_u1_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4634 static unsigned long long xhci_calculate_intel_u1_timeout(
4635 struct usb_device *udev,
4636 struct usb_endpoint_descriptor *desc)
4637 {
4638 unsigned long long timeout_ns;
4639 int ep_type;
4640 int intr_type;
4641
4642 ep_type = usb_endpoint_type(desc);
4643 switch (ep_type) {
4644 case USB_ENDPOINT_XFER_CONTROL:
4645 timeout_ns = udev->u1_params.sel * 3;
4646 break;
4647 case USB_ENDPOINT_XFER_BULK:
4648 timeout_ns = udev->u1_params.sel * 5;
4649 break;
4650 case USB_ENDPOINT_XFER_INT:
4651 intr_type = usb_endpoint_interrupt_type(desc);
4652 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4653 timeout_ns = udev->u1_params.sel * 3;
4654 break;
4655 }
4656 /* Otherwise the calculation is the same as isoc eps */
4657 fallthrough;
4658 case USB_ENDPOINT_XFER_ISOC:
4659 timeout_ns = xhci_service_interval_to_ns(desc);
4660 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4661 if (timeout_ns < udev->u1_params.sel * 2)
4662 timeout_ns = udev->u1_params.sel * 2;
4663 break;
4664 default:
4665 return 0;
4666 }
4667
4668 return timeout_ns;
4669 }
4670
4671 /* Returns the hub-encoded U1 timeout value. */
xhci_calculate_u1_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4672 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4673 struct usb_device *udev,
4674 struct usb_endpoint_descriptor *desc)
4675 {
4676 unsigned long long timeout_ns;
4677
4678 /* Prevent U1 if service interval is shorter than U1 exit latency */
4679 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4680 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4681 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4682 return USB3_LPM_DISABLED;
4683 }
4684 }
4685
4686 if (xhci->quirks & XHCI_INTEL_HOST)
4687 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4688 else
4689 timeout_ns = udev->u1_params.sel;
4690
4691 /* The U1 timeout is encoded in 1us intervals.
4692 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4693 */
4694 if (timeout_ns == USB3_LPM_DISABLED)
4695 timeout_ns = 1;
4696 else
4697 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4698
4699 /* If the necessary timeout value is bigger than what we can set in the
4700 * USB 3.0 hub, we have to disable hub-initiated U1.
4701 */
4702 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4703 return timeout_ns;
4704 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4705 "due to long timeout %llu ms\n", timeout_ns);
4706 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4707 }
4708
4709 /* The U2 timeout should be the maximum of:
4710 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4711 * - largest bInterval of any active periodic endpoint (to avoid going
4712 * into lower power link states between intervals).
4713 * - the U2 Exit Latency of the device
4714 */
xhci_calculate_intel_u2_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4715 static unsigned long long xhci_calculate_intel_u2_timeout(
4716 struct usb_device *udev,
4717 struct usb_endpoint_descriptor *desc)
4718 {
4719 unsigned long long timeout_ns;
4720 unsigned long long u2_del_ns;
4721
4722 timeout_ns = 10 * 1000 * 1000;
4723
4724 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4725 (xhci_service_interval_to_ns(desc) > timeout_ns))
4726 timeout_ns = xhci_service_interval_to_ns(desc);
4727
4728 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4729 if (u2_del_ns > timeout_ns)
4730 timeout_ns = u2_del_ns;
4731
4732 return timeout_ns;
4733 }
4734
4735 /* Returns the hub-encoded U2 timeout value. */
xhci_calculate_u2_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4736 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4737 struct usb_device *udev,
4738 struct usb_endpoint_descriptor *desc)
4739 {
4740 unsigned long long timeout_ns;
4741
4742 /* Prevent U2 if service interval is shorter than U2 exit latency */
4743 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4744 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4745 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4746 return USB3_LPM_DISABLED;
4747 }
4748 }
4749
4750 if (xhci->quirks & XHCI_INTEL_HOST)
4751 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4752 else
4753 timeout_ns = udev->u2_params.sel;
4754
4755 /* The U2 timeout is encoded in 256us intervals */
4756 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4757 /* If the necessary timeout value is bigger than what we can set in the
4758 * USB 3.0 hub, we have to disable hub-initiated U2.
4759 */
4760 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4761 return timeout_ns;
4762 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4763 "due to long timeout %llu ms\n", timeout_ns);
4764 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4765 }
4766
xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4767 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4768 struct usb_device *udev,
4769 struct usb_endpoint_descriptor *desc,
4770 enum usb3_link_state state,
4771 u16 *timeout)
4772 {
4773 if (state == USB3_LPM_U1)
4774 return xhci_calculate_u1_timeout(xhci, udev, desc);
4775 else if (state == USB3_LPM_U2)
4776 return xhci_calculate_u2_timeout(xhci, udev, desc);
4777
4778 return USB3_LPM_DISABLED;
4779 }
4780
xhci_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4781 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4782 struct usb_device *udev,
4783 struct usb_endpoint_descriptor *desc,
4784 enum usb3_link_state state,
4785 u16 *timeout)
4786 {
4787 u16 alt_timeout;
4788
4789 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4790 desc, state, timeout);
4791
4792 /* If we found we can't enable hub-initiated LPM, and
4793 * the U1 or U2 exit latency was too high to allow
4794 * device-initiated LPM as well, then we will disable LPM
4795 * for this device, so stop searching any further.
4796 */
4797 if (alt_timeout == USB3_LPM_DISABLED) {
4798 *timeout = alt_timeout;
4799 return -E2BIG;
4800 }
4801 if (alt_timeout > *timeout)
4802 *timeout = alt_timeout;
4803 return 0;
4804 }
4805
xhci_update_timeout_for_interface(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_interface * alt,enum usb3_link_state state,u16 * timeout)4806 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4807 struct usb_device *udev,
4808 struct usb_host_interface *alt,
4809 enum usb3_link_state state,
4810 u16 *timeout)
4811 {
4812 int j;
4813
4814 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4815 if (xhci_update_timeout_for_endpoint(xhci, udev,
4816 &alt->endpoint[j].desc, state, timeout))
4817 return -E2BIG;
4818 continue;
4819 }
4820 return 0;
4821 }
4822
xhci_check_intel_tier_policy(struct usb_device * udev,enum usb3_link_state state)4823 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4824 enum usb3_link_state state)
4825 {
4826 struct usb_device *parent;
4827 unsigned int num_hubs;
4828
4829 if (state == USB3_LPM_U2)
4830 return 0;
4831
4832 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4833 for (parent = udev->parent, num_hubs = 0; parent->parent;
4834 parent = parent->parent)
4835 num_hubs++;
4836
4837 if (num_hubs < 2)
4838 return 0;
4839
4840 dev_dbg(&udev->dev, "Disabling U1 link state for device"
4841 " below second-tier hub.\n");
4842 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4843 "to decrease power consumption.\n");
4844 return -E2BIG;
4845 }
4846
xhci_check_tier_policy(struct xhci_hcd * xhci,struct usb_device * udev,enum usb3_link_state state)4847 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4848 struct usb_device *udev,
4849 enum usb3_link_state state)
4850 {
4851 if (xhci->quirks & XHCI_INTEL_HOST)
4852 return xhci_check_intel_tier_policy(udev, state);
4853 else
4854 return 0;
4855 }
4856
4857 /* Returns the U1 or U2 timeout that should be enabled.
4858 * If the tier check or timeout setting functions return with a non-zero exit
4859 * code, that means the timeout value has been finalized and we shouldn't look
4860 * at any more endpoints.
4861 */
xhci_calculate_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4862 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4863 struct usb_device *udev, enum usb3_link_state state)
4864 {
4865 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4866 struct usb_host_config *config;
4867 char *state_name;
4868 int i;
4869 u16 timeout = USB3_LPM_DISABLED;
4870
4871 if (state == USB3_LPM_U1)
4872 state_name = "U1";
4873 else if (state == USB3_LPM_U2)
4874 state_name = "U2";
4875 else {
4876 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4877 state);
4878 return timeout;
4879 }
4880
4881 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4882 return timeout;
4883
4884 /* Gather some information about the currently installed configuration
4885 * and alternate interface settings.
4886 */
4887 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4888 state, &timeout))
4889 return timeout;
4890
4891 config = udev->actconfig;
4892 if (!config)
4893 return timeout;
4894
4895 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4896 struct usb_driver *driver;
4897 struct usb_interface *intf = config->interface[i];
4898
4899 if (!intf)
4900 continue;
4901
4902 /* Check if any currently bound drivers want hub-initiated LPM
4903 * disabled.
4904 */
4905 if (intf->dev.driver) {
4906 driver = to_usb_driver(intf->dev.driver);
4907 if (driver && driver->disable_hub_initiated_lpm) {
4908 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4909 state_name, driver->name);
4910 timeout = xhci_get_timeout_no_hub_lpm(udev,
4911 state);
4912 if (timeout == USB3_LPM_DISABLED)
4913 return timeout;
4914 }
4915 }
4916
4917 /* Not sure how this could happen... */
4918 if (!intf->cur_altsetting)
4919 continue;
4920
4921 if (xhci_update_timeout_for_interface(xhci, udev,
4922 intf->cur_altsetting,
4923 state, &timeout))
4924 return timeout;
4925 }
4926 return timeout;
4927 }
4928
calculate_max_exit_latency(struct usb_device * udev,enum usb3_link_state state_changed,u16 hub_encoded_timeout)4929 static int calculate_max_exit_latency(struct usb_device *udev,
4930 enum usb3_link_state state_changed,
4931 u16 hub_encoded_timeout)
4932 {
4933 unsigned long long u1_mel_us = 0;
4934 unsigned long long u2_mel_us = 0;
4935 unsigned long long mel_us = 0;
4936 bool disabling_u1;
4937 bool disabling_u2;
4938 bool enabling_u1;
4939 bool enabling_u2;
4940
4941 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4942 hub_encoded_timeout == USB3_LPM_DISABLED);
4943 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4944 hub_encoded_timeout == USB3_LPM_DISABLED);
4945
4946 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4947 hub_encoded_timeout != USB3_LPM_DISABLED);
4948 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4949 hub_encoded_timeout != USB3_LPM_DISABLED);
4950
4951 /* If U1 was already enabled and we're not disabling it,
4952 * or we're going to enable U1, account for the U1 max exit latency.
4953 */
4954 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4955 enabling_u1)
4956 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4957 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4958 enabling_u2)
4959 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4960
4961 if (u1_mel_us > u2_mel_us)
4962 mel_us = u1_mel_us;
4963 else
4964 mel_us = u2_mel_us;
4965 /* xHCI host controller max exit latency field is only 16 bits wide. */
4966 if (mel_us > MAX_EXIT) {
4967 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4968 "is too big.\n", mel_us);
4969 return -E2BIG;
4970 }
4971 return mel_us;
4972 }
4973
4974 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4975 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4976 struct usb_device *udev, enum usb3_link_state state)
4977 {
4978 struct xhci_hcd *xhci;
4979 u16 hub_encoded_timeout;
4980 int mel;
4981 int ret;
4982
4983 xhci = hcd_to_xhci(hcd);
4984 /* The LPM timeout values are pretty host-controller specific, so don't
4985 * enable hub-initiated timeouts unless the vendor has provided
4986 * information about their timeout algorithm.
4987 */
4988 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4989 !xhci->devs[udev->slot_id])
4990 return USB3_LPM_DISABLED;
4991
4992 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4993 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4994 if (mel < 0) {
4995 /* Max Exit Latency is too big, disable LPM. */
4996 hub_encoded_timeout = USB3_LPM_DISABLED;
4997 mel = 0;
4998 }
4999
5000 ret = xhci_change_max_exit_latency(xhci, udev, mel);
5001 if (ret)
5002 return ret;
5003 return hub_encoded_timeout;
5004 }
5005
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5006 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5007 struct usb_device *udev, enum usb3_link_state state)
5008 {
5009 struct xhci_hcd *xhci;
5010 u16 mel;
5011
5012 xhci = hcd_to_xhci(hcd);
5013 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5014 !xhci->devs[udev->slot_id])
5015 return 0;
5016
5017 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5018 return xhci_change_max_exit_latency(xhci, udev, mel);
5019 }
5020 #else /* CONFIG_PM */
5021
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)5022 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5023 struct usb_device *udev, int enable)
5024 {
5025 return 0;
5026 }
5027
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)5028 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5029 {
5030 return 0;
5031 }
5032
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5033 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5034 struct usb_device *udev, enum usb3_link_state state)
5035 {
5036 return USB3_LPM_DISABLED;
5037 }
5038
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5039 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5040 struct usb_device *udev, enum usb3_link_state state)
5041 {
5042 return 0;
5043 }
5044 #endif /* CONFIG_PM */
5045
5046 /*-------------------------------------------------------------------------*/
5047
5048 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5049 * internal data structures for the device.
5050 */
xhci_update_hub_device(struct usb_hcd * hcd,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)5051 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5052 struct usb_tt *tt, gfp_t mem_flags)
5053 {
5054 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5055 struct xhci_virt_device *vdev;
5056 struct xhci_command *config_cmd;
5057 struct xhci_input_control_ctx *ctrl_ctx;
5058 struct xhci_slot_ctx *slot_ctx;
5059 unsigned long flags;
5060 unsigned think_time;
5061 int ret;
5062
5063 /* Ignore root hubs */
5064 if (!hdev->parent)
5065 return 0;
5066
5067 vdev = xhci->devs[hdev->slot_id];
5068 if (!vdev) {
5069 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5070 return -EINVAL;
5071 }
5072
5073 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5074 if (!config_cmd)
5075 return -ENOMEM;
5076
5077 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5078 if (!ctrl_ctx) {
5079 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5080 __func__);
5081 xhci_free_command(xhci, config_cmd);
5082 return -ENOMEM;
5083 }
5084
5085 spin_lock_irqsave(&xhci->lock, flags);
5086 if (hdev->speed == USB_SPEED_HIGH &&
5087 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5088 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5089 xhci_free_command(xhci, config_cmd);
5090 spin_unlock_irqrestore(&xhci->lock, flags);
5091 return -ENOMEM;
5092 }
5093
5094 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5095 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5096 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5097 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5098 /*
5099 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5100 * but it may be already set to 1 when setup an xHCI virtual
5101 * device, so clear it anyway.
5102 */
5103 if (tt->multi)
5104 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5105 else if (hdev->speed == USB_SPEED_FULL)
5106 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5107
5108 if (xhci->hci_version > 0x95) {
5109 xhci_dbg(xhci, "xHCI version %x needs hub "
5110 "TT think time and number of ports\n",
5111 (unsigned int) xhci->hci_version);
5112 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5113 /* Set TT think time - convert from ns to FS bit times.
5114 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5115 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5116 *
5117 * xHCI 1.0: this field shall be 0 if the device is not a
5118 * High-spped hub.
5119 */
5120 think_time = tt->think_time;
5121 if (think_time != 0)
5122 think_time = (think_time / 666) - 1;
5123 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5124 slot_ctx->tt_info |=
5125 cpu_to_le32(TT_THINK_TIME(think_time));
5126 } else {
5127 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5128 "TT think time or number of ports\n",
5129 (unsigned int) xhci->hci_version);
5130 }
5131 slot_ctx->dev_state = 0;
5132 spin_unlock_irqrestore(&xhci->lock, flags);
5133
5134 xhci_dbg(xhci, "Set up %s for hub device.\n",
5135 (xhci->hci_version > 0x95) ?
5136 "configure endpoint" : "evaluate context");
5137
5138 /* Issue and wait for the configure endpoint or
5139 * evaluate context command.
5140 */
5141 if (xhci->hci_version > 0x95)
5142 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5143 false, false);
5144 else
5145 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5146 true, false);
5147
5148 xhci_free_command(xhci, config_cmd);
5149 return ret;
5150 }
5151
xhci_get_frame(struct usb_hcd * hcd)5152 static int xhci_get_frame(struct usb_hcd *hcd)
5153 {
5154 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5155 /* EHCI mods by the periodic size. Why? */
5156 return readl(&xhci->run_regs->microframe_index) >> 3;
5157 }
5158
xhci_gen_setup(struct usb_hcd * hcd,xhci_get_quirks_t get_quirks)5159 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5160 {
5161 struct xhci_hcd *xhci;
5162 /*
5163 * TODO: Check with DWC3 clients for sysdev according to
5164 * quirks
5165 */
5166 struct device *dev = hcd->self.sysdev;
5167 unsigned int minor_rev;
5168 int retval;
5169
5170 /* Accept arbitrarily long scatter-gather lists */
5171 hcd->self.sg_tablesize = ~0;
5172
5173 /* support to build packet from discontinuous buffers */
5174 hcd->self.no_sg_constraint = 1;
5175
5176 /* XHCI controllers don't stop the ep queue on short packets :| */
5177 hcd->self.no_stop_on_short = 1;
5178
5179 xhci = hcd_to_xhci(hcd);
5180
5181 if (usb_hcd_is_primary_hcd(hcd)) {
5182 xhci->main_hcd = hcd;
5183 xhci->usb2_rhub.hcd = hcd;
5184 /* Mark the first roothub as being USB 2.0.
5185 * The xHCI driver will register the USB 3.0 roothub.
5186 */
5187 hcd->speed = HCD_USB2;
5188 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5189 /*
5190 * USB 2.0 roothub under xHCI has an integrated TT,
5191 * (rate matching hub) as opposed to having an OHCI/UHCI
5192 * companion controller.
5193 */
5194 hcd->has_tt = 1;
5195 } else {
5196 /*
5197 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5198 * should return 0x31 for sbrn, or that the minor revision
5199 * is a two digit BCD containig minor and sub-minor numbers.
5200 * This was later clarified in xHCI 1.2.
5201 *
5202 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5203 * minor revision set to 0x1 instead of 0x10.
5204 */
5205 if (xhci->usb3_rhub.min_rev == 0x1)
5206 minor_rev = 1;
5207 else
5208 minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5209
5210 switch (minor_rev) {
5211 case 2:
5212 hcd->speed = HCD_USB32;
5213 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5214 hcd->self.root_hub->rx_lanes = 2;
5215 hcd->self.root_hub->tx_lanes = 2;
5216 break;
5217 case 1:
5218 hcd->speed = HCD_USB31;
5219 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5220 break;
5221 }
5222 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5223 minor_rev,
5224 minor_rev ? "Enhanced " : "");
5225
5226 xhci->usb3_rhub.hcd = hcd;
5227 /* xHCI private pointer was set in xhci_pci_probe for the second
5228 * registered roothub.
5229 */
5230 return 0;
5231 }
5232
5233 mutex_init(&xhci->mutex);
5234 xhci->cap_regs = hcd->regs;
5235 xhci->op_regs = hcd->regs +
5236 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5237 xhci->run_regs = hcd->regs +
5238 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5239 /* Cache read-only capability registers */
5240 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5241 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5242 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5243 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5244 xhci->hci_version = HC_VERSION(xhci->hcc_params);
5245 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5246 if (xhci->hci_version > 0x100)
5247 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5248
5249 xhci->quirks |= quirks;
5250
5251 get_quirks(dev, xhci);
5252
5253 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5254 * success event after a short transfer. This quirk will ignore such
5255 * spurious event.
5256 */
5257 if (xhci->hci_version > 0x96)
5258 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5259
5260 /* Make sure the HC is halted. */
5261 retval = xhci_halt(xhci);
5262 if (retval)
5263 return retval;
5264
5265 xhci_zero_64b_regs(xhci);
5266
5267 xhci_dbg(xhci, "Resetting HCD\n");
5268 /* Reset the internal HC memory state and registers. */
5269 retval = xhci_reset(xhci);
5270 if (retval)
5271 return retval;
5272 xhci_dbg(xhci, "Reset complete\n");
5273
5274 /*
5275 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5276 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5277 * address memory pointers actually. So, this driver clears the AC64
5278 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5279 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5280 */
5281 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5282 xhci->hcc_params &= ~BIT(0);
5283
5284 /* Set dma_mask and coherent_dma_mask to 64-bits,
5285 * if xHC supports 64-bit addressing */
5286 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5287 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5288 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5289 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5290 } else {
5291 /*
5292 * This is to avoid error in cases where a 32-bit USB
5293 * controller is used on a 64-bit capable system.
5294 */
5295 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5296 if (retval)
5297 return retval;
5298 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5299 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5300 }
5301
5302 xhci_dbg(xhci, "Calling HCD init\n");
5303 /* Initialize HCD and host controller data structures. */
5304 retval = xhci_init(hcd);
5305 if (retval)
5306 return retval;
5307 xhci_dbg(xhci, "Called HCD init\n");
5308
5309 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5310 xhci->hcc_params, xhci->hci_version, xhci->quirks);
5311
5312 return 0;
5313 }
5314 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5315
xhci_clear_tt_buffer_complete(struct usb_hcd * hcd,struct usb_host_endpoint * ep)5316 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5317 struct usb_host_endpoint *ep)
5318 {
5319 struct xhci_hcd *xhci;
5320 struct usb_device *udev;
5321 unsigned int slot_id;
5322 unsigned int ep_index;
5323 unsigned long flags;
5324
5325 xhci = hcd_to_xhci(hcd);
5326
5327 spin_lock_irqsave(&xhci->lock, flags);
5328 udev = (struct usb_device *)ep->hcpriv;
5329 slot_id = udev->slot_id;
5330 ep_index = xhci_get_endpoint_index(&ep->desc);
5331
5332 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5333 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5334 spin_unlock_irqrestore(&xhci->lock, flags);
5335 }
5336
5337 static const struct hc_driver xhci_hc_driver = {
5338 .description = "xhci-hcd",
5339 .product_desc = "xHCI Host Controller",
5340 .hcd_priv_size = sizeof(struct xhci_hcd),
5341
5342 /*
5343 * generic hardware linkage
5344 */
5345 .irq = xhci_irq,
5346 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5347 HCD_BH,
5348
5349 /*
5350 * basic lifecycle operations
5351 */
5352 .reset = NULL, /* set in xhci_init_driver() */
5353 .start = xhci_run,
5354 .stop = xhci_stop,
5355 .shutdown = xhci_shutdown,
5356
5357 /*
5358 * managing i/o requests and associated device resources
5359 */
5360 .map_urb_for_dma = xhci_map_urb_for_dma,
5361 .urb_enqueue = xhci_urb_enqueue,
5362 .urb_dequeue = xhci_urb_dequeue,
5363 .alloc_dev = xhci_alloc_dev,
5364 .free_dev = xhci_free_dev,
5365 .alloc_streams = xhci_alloc_streams,
5366 .free_streams = xhci_free_streams,
5367 .add_endpoint = xhci_add_endpoint,
5368 .drop_endpoint = xhci_drop_endpoint,
5369 .endpoint_disable = xhci_endpoint_disable,
5370 .endpoint_reset = xhci_endpoint_reset,
5371 .check_bandwidth = xhci_check_bandwidth,
5372 .reset_bandwidth = xhci_reset_bandwidth,
5373 .address_device = xhci_address_device,
5374 .enable_device = xhci_enable_device,
5375 .update_hub_device = xhci_update_hub_device,
5376 .reset_device = xhci_discover_or_reset_device,
5377
5378 /*
5379 * scheduling support
5380 */
5381 .get_frame_number = xhci_get_frame,
5382
5383 /*
5384 * root hub support
5385 */
5386 .hub_control = xhci_hub_control,
5387 .hub_status_data = xhci_hub_status_data,
5388 .bus_suspend = xhci_bus_suspend,
5389 .bus_resume = xhci_bus_resume,
5390 .get_resuming_ports = xhci_get_resuming_ports,
5391
5392 /*
5393 * call back when device connected and addressed
5394 */
5395 .update_device = xhci_update_device,
5396 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
5397 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
5398 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
5399 .find_raw_port_number = xhci_find_raw_port_number,
5400 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5401 };
5402
xhci_init_driver(struct hc_driver * drv,const struct xhci_driver_overrides * over)5403 void xhci_init_driver(struct hc_driver *drv,
5404 const struct xhci_driver_overrides *over)
5405 {
5406 BUG_ON(!over);
5407
5408 /* Copy the generic table to drv then apply the overrides */
5409 *drv = xhci_hc_driver;
5410
5411 if (over) {
5412 drv->hcd_priv_size += over->extra_priv_size;
5413 if (over->reset)
5414 drv->reset = over->reset;
5415 if (over->start)
5416 drv->start = over->start;
5417 if (over->check_bandwidth)
5418 drv->check_bandwidth = over->check_bandwidth;
5419 if (over->reset_bandwidth)
5420 drv->reset_bandwidth = over->reset_bandwidth;
5421 }
5422 }
5423 EXPORT_SYMBOL_GPL(xhci_init_driver);
5424
5425 MODULE_DESCRIPTION(DRIVER_DESC);
5426 MODULE_AUTHOR(DRIVER_AUTHOR);
5427 MODULE_LICENSE("GPL");
5428
xhci_hcd_init(void)5429 static int __init xhci_hcd_init(void)
5430 {
5431 /*
5432 * Check the compiler generated sizes of structures that must be laid
5433 * out in specific ways for hardware access.
5434 */
5435 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5436 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5437 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5438 /* xhci_device_control has eight fields, and also
5439 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5440 */
5441 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5442 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5443 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5444 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5445 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5446 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5447 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5448
5449 if (usb_disabled())
5450 return -ENODEV;
5451
5452 xhci_debugfs_create_root();
5453
5454 return 0;
5455 }
5456
5457 /*
5458 * If an init function is provided, an exit function must also be provided
5459 * to allow module unload.
5460 */
xhci_hcd_fini(void)5461 static void __exit xhci_hcd_fini(void)
5462 {
5463 xhci_debugfs_remove_root();
5464 }
5465
5466 module_init(xhci_hcd_init);
5467 module_exit(xhci_hcd_fini);
5468