• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright Paul A. Bristow 2015.
2 
3 // Use, modification and distribution are subject to the
4 // Boost Software License, Version 1.0.
5 // (See accompanying file LICENSE_1_0.txt
6 // or copy at http://www.boost.org/LICENSE_1_0.txt)
7 
8 // Note that this file contains Quickbook mark-up as well as code
9 // and comments, don't change any of the special comment mark-ups!
10 
11 // Example of root finding using Boost.Multiprecision.
12 
13 #include <boost/math/tools/roots.hpp>
14 //using boost::math::policies::policy;
15 //using boost::math::tools::newton_raphson_iterate;
16 //using boost::math::tools::halley_iterate;
17 //using boost::math::tools::eps_tolerance; // Binary functor for specified number of bits.
18 //using boost::math::tools::bracket_and_solve_root;
19 //using boost::math::tools::toms748_solve;
20 
21 #include <boost/math/special_functions/next.hpp> // For float_distance.
22 #include <boost/math/special_functions/pow.hpp>
23 #include <boost/math/constants/constants.hpp>
24 
25 //[root_finding_multiprecision_include_1
26 #include <boost/multiprecision/cpp_bin_float.hpp> // For cpp_bin_float_50.
27 #include <boost/multiprecision/cpp_dec_float.hpp> // For cpp_dec_float_50.
28 #ifndef _MSC_VER  // float128 is not yet supported by Microsoft compiler at 2013.
29 #  include <boost/multiprecision/float128.hpp> // Requires libquadmath.
30 #endif
31 //] [/root_finding_multiprecision_include_1]
32 
33 #include <iostream>
34 // using std::cout; using std::endl;
35 #include <iomanip>
36 // using std::setw; using std::setprecision;
37 #include <limits>
38 // using std::numeric_limits;
39 #include <tuple>
40 #include <utility> // pair, make_pair
41 
42 // #define BUILTIN_POW_GUESS // define to use std::pow function to obtain a guess.
43 
44 template <class T>
cbrt_2deriv(T x)45 T cbrt_2deriv(T x)
46 { // return cube root of x using 1st and 2nd derivatives and Halley.
47   using namespace std;  // Help ADL of std functions.
48   using namespace boost::math::tools; // For halley_iterate.
49 
50   // If T is not a binary floating-point type, for example, cpp_dec_float_50
51   // then frexp may not be defined,
52   // so it may be necessary to compute the guess using a built-in type,
53   // probably quickest using double, but perhaps with float or long double.
54   // Note that the range of exponent may be restricted by a built-in-type for guess.
55 
56   typedef long double guess_type;
57 
58 #ifdef BUILTIN_POW_GUESS
59   guess_type pow_guess = std::pow(static_cast<guess_type>(x), static_cast<guess_type>(1) / 3);
60   T guess = pow_guess;
61   T min = pow_guess /2;
62   T max = pow_guess * 2;
63 #else
64   int exponent;
65   frexp(static_cast<guess_type>(x), &exponent); // Get exponent of z (ignore mantissa).
66   T guess = ldexp(static_cast<guess_type>(1.), exponent / 3); // Rough guess is to divide the exponent by three.
67   T min = ldexp(static_cast<guess_type>(1.) / 2, exponent / 3); // Minimum possible value is half our guess.
68   T max = ldexp(static_cast<guess_type>(2.), exponent / 3); // Maximum possible value is twice our guess.
69 #endif
70 
71   int digits = std::numeric_limits<T>::digits / 2; // Half maximum possible binary digits accuracy for type T.
72   const boost::uintmax_t maxit = 20;
73   boost::uintmax_t it = maxit;
74   T result = halley_iterate(cbrt_functor_2deriv<T>(x), guess, min, max, digits, it);
75   // Can show how many iterations (updated by halley_iterate).
76   // std::cout << "Iterations " << it << " (from max of "<< maxit << ")." << std::endl;
77   return result;
78 } // cbrt_2deriv(x)
79 
80 
81 template <class T>
82 struct cbrt_functor_2deriv
83 { // Functor returning both 1st and 2nd derivatives.
cbrt_functor_2derivcbrt_functor_2deriv84   cbrt_functor_2deriv(T const& to_find_root_of) : a(to_find_root_of)
85   { // Constructor stores value to find root of, for example:
86   }
87 
88   // using boost::math::tuple; // to return three values.
operator ()cbrt_functor_2deriv89   std::tuple<T, T, T> operator()(T const& x)
90   {
91     // Return both f(x) and f'(x) and f''(x).
92     T fx = x*x*x - a;                     // Difference (estimate x^3 - value).
93     // std::cout << "x = " << x << "\nfx = " << fx << std::endl;
94     T dx = 3 * x*x;                       // 1st derivative = 3x^2.
95     T d2x = 6 * x;                        // 2nd derivative = 6x.
96     return std::make_tuple(fx, dx, d2x);  // 'return' fx, dx and d2x.
97   }
98 private:
99   T a;                                    // to be 'cube_rooted'.
100 }; // struct cbrt_functor_2deriv
101 
102 template <int n, class T>
103 struct nth_functor_2deriv
104 { // Functor returning both 1st and 2nd derivatives.
105 
nth_functor_2derivnth_functor_2deriv106   nth_functor_2deriv(T const& to_find_root_of) : value(to_find_root_of)
107   { /* Constructor stores value to find root of, for example: */ }
108 
109   // using std::tuple; // to return three values.
operator ()nth_functor_2deriv110   std::tuple<T, T, T> operator()(T const& x)
111   {
112     // Return both f(x) and f'(x) and f''(x).
113     using boost::math::pow;
114     T fx = pow<n>(x) - value;              // Difference (estimate x^3 - value).
115     T dx = n * pow<n - 1>(x);              // 1st derivative = 5x^4.
116     T d2x = n * (n - 1) * pow<n - 2 >(x);  // 2nd derivative = 20 x^3
117     return std::make_tuple(fx, dx, d2x);   // 'return' fx, dx and d2x.
118   }
119 private:
120   T value;                                 // to be 'nth_rooted'.
121 }; // struct nth_functor_2deriv
122 
123 
124 template <int n, class T>
nth_2deriv(T x)125 T nth_2deriv(T x)
126 {
127   // return nth root of x using 1st and 2nd derivatives and Halley.
128   using namespace std;  // Help ADL of std functions.
129   using namespace boost::math; // For halley_iterate.
130 
131   int exponent;
132   frexp(x, &exponent);                                 // Get exponent of z (ignore mantissa).
133   T guess = ldexp(static_cast<T>(1.), exponent / n);   // Rough guess is to divide the exponent by three.
134   T min = ldexp(static_cast<T>(0.5), exponent / n);    // Minimum possible value is half our guess.
135   T max = ldexp(static_cast<T>(2.), exponent / n);     // Maximum possible value is twice our guess.
136 
137   int digits = std::numeric_limits<T>::digits / 2;     // Half maximum possible binary digits accuracy for type T.
138   const boost::uintmax_t maxit = 50;
139   boost::uintmax_t it = maxit;
140   T result = halley_iterate(nth_functor_2deriv<n, T>(x), guess, min, max, digits, it);
141   // Can show how many iterations (updated by halley_iterate).
142   std::cout << it << " iterations (from max of " << maxit << ")" << std::endl;
143 
144   return result;
145 } // nth_2deriv(x)
146 
147 //[root_finding_multiprecision_show_1
148 
149 template <typename T>
show_cube_root(T value)150 T show_cube_root(T value)
151 { // Demonstrate by printing the root using all definitely significant digits.
152   std::cout.precision(std::numeric_limits<T>::digits10);
153   T r = cbrt_2deriv(value);
154   std::cout << "value = " << value << ", cube root =" << r << std::endl;
155   return r;
156 }
157 
158 //] [/root_finding_multiprecision_show_1]
159 
main()160 int main()
161 {
162   std::cout << "Multiprecision Root finding Example." << std::endl;
163   // Show all possibly significant decimal digits.
164   std::cout.precision(std::numeric_limits<double>::digits10);
165   // or use   cout.precision(max_digits10 = 2 + std::numeric_limits<double>::digits * 3010/10000);
166   //[root_finding_multiprecision_example_1
167   using boost::multiprecision::cpp_dec_float_50; // decimal.
168   using boost::multiprecision::cpp_bin_float_50; // binary.
169 #ifndef _MSC_VER  // Not supported by Microsoft compiler.
170   using boost::multiprecision::float128;
171 #endif
172   //] [/root_finding_multiprecision_example_1
173 
174   try
175   { // Always use try'n'catch blocks with Boost.Math to get any error messages.
176     // Increase the precision to 50 decimal digits using Boost.Multiprecision
177 //[root_finding_multiprecision_example_2
178 
179       std::cout.precision(std::numeric_limits<cpp_dec_float_50>::digits10);
180 
181       cpp_dec_float_50 two = 2; //
182       cpp_dec_float_50  r = cbrt_2deriv(two);
183       std::cout << "cbrt(" << two << ") = " << r << std::endl;
184 
185       r = cbrt_2deriv(2.); // Passing a double, so ADL will compute a double precision result.
186       std::cout << "cbrt(" << two << ") = " << r << std::endl;
187       // cbrt(2) = 1.2599210498948731906665443602832965552806854248047 'wrong' from digits 17 onwards!
188       r = cbrt_2deriv(static_cast<cpp_dec_float_50>(2.)); // Passing a cpp_dec_float_50,
189       // so will compute a cpp_dec_float_50 precision result.
190       std::cout << "cbrt(" << two << ") = " << r << std::endl;
191       r = cbrt_2deriv<cpp_dec_float_50>(2.); // Explicitly a cpp_dec_float_50, so will compute a cpp_dec_float_50 precision result.
192       std::cout << "cbrt(" << two << ") = " << r << std::endl;
193       // cpp_dec_float_50 1.2599210498948731647672106072782283505702514647015
194 //] [/root_finding_multiprecision_example_2
195      //  N[2^(1/3), 50]  1.2599210498948731647672106072782283505702514647015
196 
197       //show_cube_root(2); // Integer parameter - Errors!
198       //show_cube_root(2.F); // Float parameter - Warnings!
199 //[root_finding_multiprecision_example_3
200       show_cube_root(2.);
201       show_cube_root(2.L);
202       show_cube_root(two);
203 
204 //] [/root_finding_multiprecision_example_3
205 
206   }
207   catch (const std::exception& e)
208   { // Always useful to include try&catch blocks because default policies
209     // are to throw exceptions on arguments that cause errors like underflow & overflow.
210     // Lacking try&catch blocks, the program will abort without a message below,
211     // which may give some helpful clues as to the cause of the exception.
212     std::cout <<
213       "\n""Message from thrown exception was:\n   " << e.what() << std::endl;
214   }
215   return 0;
216 } // int main()
217 
218 
219 /*
220 
221 Description: Autorun "J:\Cpp\MathToolkit\test\Math_test\Release\root_finding_multiprecision.exe"
222 Multiprecision Root finding Example.
223 cbrt(2) = 1.2599210498948731647672106072782283505702514647015
224 cbrt(2) = 1.2599210498948731906665443602832965552806854248047
225 cbrt(2) = 1.2599210498948731647672106072782283505702514647015
226 cbrt(2) = 1.2599210498948731647672106072782283505702514647015
227 value = 2, cube root =1.25992104989487
228 value = 2, cube root =1.25992104989487
229 value = 2, cube root =1.2599210498948731647672106072782283505702514647015
230 
231 
232 */
233