1 /**
2 * Copyright 2021 Huawei Technologies Co., Ltd
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "ps/parameter_server.h"
18 #include <algorithm>
19 #include <thread>
20
21 namespace mindspore {
22 namespace ps {
23 static const uint32_t kMaxThreadNum = 16;
24 static const uint32_t kCPUCoreNum = std::thread::hardware_concurrency();
25
Run(const FuncGraphPtr & func_graph)26 void ParameterServer::Run(const FuncGraphPtr &func_graph) {
27 MS_EXCEPTION_IF_NULL(func_graph);
28 MS_LOG(INFO) << "PServer starts connecting to scheduler and workers...";
29 server_node_ = std::make_shared<core::ServerNode>();
30
31 MS_LOG(INFO) << "PServer connected successfully.";
32 if (!PSContext::instance()->is_server()) {
33 MS_LOG(INFO) << "This is not the Server node.";
34 return;
35 }
36 Init(func_graph);
37 server_node_->Start();
38 PSContext::instance()->SetPSRankId(server_node_->rank_id());
39 thread_->join();
40 SyncEmbeddingTables();
41 MS_LOG(INFO) << "PServer finished updating models, starts finalizing...";
42 server_node_->Finish();
43 if (!server_node_->Stop()) {
44 MS_LOG(WARNING) << "Parameter server stop failed.";
45 }
46 MS_LOG(INFO) << "PServer finalized successfully.";
47 }
48
Init(const FuncGraphPtr & func_graph)49 bool ParameterServer::Init(const FuncGraphPtr &func_graph) {
50 pserver_num_ = std::strtol(mindspore::common::GetEnv(kEnvPServerNum).c_str(), nullptr, kBase);
51 worker_num_ = std::strtol(mindspore::common::GetEnv(kEnvWorkerNum).c_str(), nullptr, kBase);
52 func_graph_ = func_graph;
53 handler_.reset(new ServerHandler(this));
54 handler_->Init();
55
56 InitOptimInfoBuilders();
57 server_node_->set_handler(*handler_);
58 server_node_->RegisterEventCallback(core::ClusterEvent::SCHEDULER_TIMEOUT, [this]() {
59 MS_LOG(ERROR) << "Trigger timeout event: SCHEDULER_TIMEOUT begin to exit the system!";
60 this->Finalize();
61 });
62 server_node_->RegisterEventCallback(core::ClusterEvent::NODE_TIMEOUT, [this]() {
63 MS_LOG(ERROR) << "Trigger timeout event: NODE_TIMEOUT begin to exit the system!";
64 this->Finalize();
65 });
66 thread_.reset(new std::thread(&ParameterServer::UpdateWeights, this));
67 GetEmbeddingTableParamPtr();
68 return true;
69 }
70
InitOptimInfoBuilders()71 void ParameterServer::InitOptimInfoBuilders() {
72 std::shared_ptr<OptimizerInfoBuilder> momentum_info_builder = std::make_shared<MomentumOptimInfoBuilder>(worker_num_);
73 std::shared_ptr<OptimizerInfoBuilder> sparse_adam_info_builder =
74 std::make_shared<SparseAdamOptimInfoBuilder>(worker_num_);
75 std::shared_ptr<OptimizerInfoBuilder> sparse_ftrl_info_builder =
76 std::make_shared<SparseFtrlOptimInfoBuilder>(worker_num_);
77 optim_info_builders_[kApplyMomentum] = momentum_info_builder;
78 optim_info_builders_[kSparseAdam] = sparse_adam_info_builder;
79 optim_info_builders_[kSparseFtrl] = sparse_ftrl_info_builder;
80 }
81
InitWeightKeyToOptims(const Key & key,const int64_t & optim_id)82 void ParameterServer::InitWeightKeyToOptims(const Key &key, const int64_t &optim_id) {
83 if (weight_key_to_optims_.count(key) > 0 || Util::optimizer_name(optim_id) == "") {
84 return;
85 }
86 weight_key_to_optims_[key] = Util::optimizer_name(optim_id);
87 weight_key_to_optim_op_[key] = Util::optimizer_node_name(optim_id);
88 MS_LOG(INFO) << "Initializing optimizer id for key:" << key << ", optimizer name:" << weight_key_to_optims_[key]
89 << ", optimizer op name:" << weight_key_to_optim_op_[key];
90 }
91
InitOptimInputsShape(const Keys & keys,const Values & values,const Lengths & lengths)92 void ParameterServer::InitOptimInputsShape(const Keys &keys, const Values &values, const Lengths &lengths) {
93 InputsShapePtr inputs_shape = std::make_shared<InputsShape>();
94 MS_EXCEPTION_IF_NULL(inputs_shape);
95 InputsShapePtr original_inputs_shape = std::make_shared<InputsShape>();
96 MS_EXCEPTION_IF_NULL(original_inputs_shape);
97 size_t val_idx = 0;
98 const Key &key = keys[0];
99 MS_LOG(INFO) << "Initializing optimizer inputs shape for key:" << key;
100 if (optim_inputs_shape_.count(key) == 0) {
101 original_optim_inputs_shape_[key] = original_inputs_shape;
102 optim_inputs_shape_[key] = inputs_shape;
103 }
104 for (size_t i = 0; i < keys.size(); i++) {
105 auto shape = std::make_shared<std::vector<size_t>>();
106 MS_EXCEPTION_IF_NULL(shape);
107 auto original_shape = std::make_shared<std::vector<size_t>>();
108 MS_EXCEPTION_IF_NULL(original_shape);
109 inputs_shape->push_back(shape);
110 original_inputs_shape->push_back(original_shape);
111
112 for (int64_t j = 0; j < lengths[i]; j++) {
113 shape->push_back(values[val_idx]);
114 original_shape->push_back(values[val_idx++]);
115 }
116 }
117 if (weight_key_to_optims_.count(key) > 0) {
118 const std::string &optim_name = weight_key_to_optims_[key];
119 const std::string &optim_op_name = weight_key_to_optim_op_[key];
120 if (optimizers_.count(key) == 0 && optim_inputs_shape_.count(key) > 0) {
121 const CNodePtr cnode = GetCNode(optim_op_name);
122 MS_EXCEPTION_IF_NULL(cnode);
123 if (optim_name == kSparseAdam) {
124 std::shared_ptr<PServerKernel> optimizer =
125 std::make_shared<kernel::ps::SparseApplyAdamPSKernel>(server_node_->rank_id(), pserver_num_, worker_num_);
126 optimizer->InitKernel(cnode, optim_inputs_shape_[key]);
127 optimizers_[key] = optimizer;
128 } else if (optim_name == kSparseLazyAdam) {
129 std::shared_ptr<PServerKernel> optimizer =
130 std::make_shared<kernel::ps::SparseApplyLazyAdamPSKernel>(server_node_->rank_id(), pserver_num_, worker_num_);
131 optimizer->InitKernel(cnode, optim_inputs_shape_[key]);
132 optimizers_[key] = optimizer;
133 } else if (optim_name == kApplyMomentum) {
134 std::shared_ptr<PServerKernel> optimizer =
135 std::make_shared<kernel::ps::ApplyMomentumPSKernel>(server_node_->rank_id(), pserver_num_, worker_num_);
136 optimizer->InitKernel(cnode, optim_inputs_shape_[key]);
137 optimizers_[key] = optimizer;
138 } else if (optim_name == kSparseFtrl) {
139 std::shared_ptr<PServerKernel> optimizer =
140 std::make_shared<kernel::ps::SparseApplyFtrlPSKernel>(server_node_->rank_id(), pserver_num_, worker_num_);
141 optimizer->InitKernel(cnode, optim_inputs_shape_[key]);
142 optimizers_[key] = optimizer;
143 }
144 }
145 }
146 }
147
InitWeight(const Key & key,const WeightPtr & weight)148 void ParameterServer::InitWeight(const Key &key, const WeightPtr &weight) {
149 MS_EXCEPTION_IF_NULL(weight);
150 if ((weights_.count(key) == 0) || (is_embedding_[key] && weights_.count(key) != 0)) {
151 MS_LOG(INFO) << "Initializing weight for key " << key << ", server rank " << server_node_->rank_id();
152 weights_[key] = weight;
153 tokens_[key] = 0;
154 is_embedding_[key] = false;
155 }
156 }
157
InitGrad(const Key & key,const GradPtr & grad)158 void ParameterServer::InitGrad(const Key &key, const GradPtr &grad) {
159 MS_EXCEPTION_IF_NULL(grad);
160 if (grads_.count(key) == 0) {
161 grads_[key] = grad;
162 grads_accum_counter_[key] = 0;
163 }
164 }
165
166 namespace {
167 // Initialize accumulation by multithreading parallelism.
InitAccumParallel(float init_value,size_t total_len,float * embedding_data)168 void InitAccumParallel(float init_value, size_t total_len, float *embedding_data) {
169 MS_EXCEPTION_IF_NULL(embedding_data);
170 auto init_task = [](float value, size_t task_len, float *data) {
171 for (size_t i = 0; i < task_len; i++) {
172 data[i] = value;
173 }
174 };
175
176 size_t thread_num = std::max(kMaxThreadNum, kCPUCoreNum);
177 if (total_len <= thread_num) {
178 thread_num = 1;
179 }
180
181 std::vector<std::thread> threads(thread_num);
182 size_t task_offset = 0;
183
184 for (size_t i = 0; i < thread_num; ++i) {
185 // The value of thread_num is >= 1.
186 size_t task_len = total_len / thread_num + (i < (total_len % thread_num) ? 1 : 0);
187 threads[i] = std::thread(init_task, init_value, task_len, embedding_data + task_offset);
188 task_offset += task_len;
189 }
190
191 for (size_t i = 0; i < thread_num; i++) {
192 threads[i].join();
193 }
194 }
195
CopyTensorData(void * dest_ptr,size_t tensor_size,const void * src_ptr)196 void CopyTensorData(void *dest_ptr, size_t tensor_size, const void *src_ptr) {
197 MS_EXCEPTION_IF_NULL(dest_ptr);
198 MS_EXCEPTION_IF_NULL(src_ptr);
199 char *dest = reinterpret_cast<char *>(dest_ptr);
200 const char *src = reinterpret_cast<const char *>(src_ptr);
201
202 // The security memcpy function 'memcpy_s' limits the value of the second parameter 'destMax' not to be greater than
203 // SECUREC_MEM_MAX_LEN. If tensor size(buffer length) is greater than SECUREC_MEM_MAX_LEN, the tensor should be cut
204 // into segments to copy.
205 for (size_t offset = 0; offset < tensor_size; offset += SECUREC_MEM_MAX_LEN) {
206 size_t copy_len = std::min(tensor_size - offset, SECUREC_MEM_MAX_LEN);
207 size_t dest_len = copy_len;
208 int ret = memcpy_s(dest + offset, dest_len, src + offset, copy_len);
209 if (ret != 0) {
210 MS_LOG(EXCEPTION) << "Failed to memcpy tensor, errorno(" << ret << ")";
211 }
212 }
213 }
214 } // namespace
215
InitEmbeddingTable(const Key & key,const std::shared_ptr<std::vector<std::shared_ptr<std::vector<size_t>>>> & shapes,const ParamInitInfo & param_init_info)216 void ParameterServer::InitEmbeddingTable(
217 const Key &key, const std::shared_ptr<std::vector<std::shared_ptr<std::vector<size_t>>>> &shapes,
218 const ParamInitInfo ¶m_init_info) {
219 MS_EXCEPTION_IF_NULL(shapes);
220 if (weights_.count(key) == 0) {
221 std::shared_ptr<PServerKernel> lookup =
222 std::make_shared<kernel::ps::EmbeddingLookUpPSKernel>(server_node_->rank_id(), pserver_num_, worker_num_);
223 lookup->InitKernel(shapes);
224 embedding_lookup_ops_[key] = lookup;
225
226 // Init embedding weight
227 const std::vector<size_t> &input_shapes = lookup->input_sizes();
228 size_t total_dims =
229 std::accumulate(input_shapes.begin(), input_shapes.end(), IntToSize(1), std::multiplies<size_t>());
230 WeightPtr embedding = std::make_shared<Weight>(total_dims, 0);
231 MS_EXCEPTION_IF_NULL(embedding);
232 float *embedding_data = embedding->data();
233 std::default_random_engine engine;
234 std::normal_distribution<float> random(0, kStdDev);
235 if (ps::PsDataPrefetch::GetInstance().cache_enable()) {
236 CacheEmbeddingTableParamPtr();
237 if (param_init_info.param_type_ == kWeight) {
238 const std::string ¶m_name = param_init_info.param_name_;
239 auto iter = embedding_parameter_tables_.find(param_name);
240 if (iter == embedding_parameter_tables_.end()) {
241 MS_LOG(EXCEPTION) << "Can not find parameter info for: " << param_name;
242 }
243 // Cache embedding table parameter by weight key to parameter node pointer.
244 (void)embedding_tables_.emplace(key, iter->second);
245
246 InitRandomNormal(0, kStdDev, input_shapes, param_init_info.global_seed_, param_init_info.op_seed_,
247 embedding_data);
248 } else if (param_init_info.param_type_ == kAccumulation) {
249 InitAccumParallel(param_init_info.init_val_, total_dims, embedding_data);
250 }
251 } else {
252 for (size_t i = 0; i < total_dims; i++) {
253 embedding_data[i] = random(engine);
254 }
255 }
256 weights_[key] = embedding;
257 MS_LOG(DEBUG) << "The key:" << key << " the embedding:" << *embedding;
258 tokens_[key] = 0;
259 is_embedding_[key] = true;
260
261 grads_accum_counter_[key] = 0;
262 }
263 }
264
HasWeight(const Key & key)265 bool ParameterServer::HasWeight(const Key &key) { return (weights_.count(key) > 0 && !is_embedding_.count(key)); }
266
Finalize()267 void ParameterServer::Finalize() {
268 running_ = false;
269 apply_grads_cv_.notify_one();
270 }
271
UpdateWeights()272 void ParameterServer::UpdateWeights() {
273 while (true) {
274 MS_LOG(INFO) << "The running is:" << running_ << " the ready is:" << this->ReadyForUpdateWeights();
275 std::unique_lock<std::mutex> lock(mutex_);
276 apply_grads_cv_.wait(lock, [this] { return this->ReadyForUpdateWeights() || !running_; });
277 if (!running_) {
278 break;
279 }
280
281 for (auto iter = weights_.begin(); iter != weights_.end(); iter++) {
282 Key key = iter->first;
283 WeightPtr weight_ptr = iter->second;
284
285 std::shared_ptr<PServerKernel> optimizer = nullptr;
286 if (weight_key_to_optims_.count(key) > 0) {
287 optimizer = optimizers_[key];
288 }
289 MS_EXCEPTION_IF_NULL(optimizer);
290
291 std::shared_ptr<OptimizerInfo> optim_info = optim_infos_[key];
292 if (optim_info != nullptr) {
293 const std::vector<kernel::AddressPtr> &inputs = optim_info->inputs();
294 const std::vector<kernel::AddressPtr> &workspaces = optim_info->workspaces();
295 const std::vector<kernel::AddressPtr> &outputs = optim_info->outputs();
296
297 std::vector<std::vector<size_t>> shapes = {};
298 std::vector<size_t> indices_shape = {};
299 indices_shape.emplace_back(optim_info->indice_size());
300 shapes.push_back(indices_shape);
301
302 if (original_optim_inputs_shape_.count(key) != 0) {
303 std::transform((*(original_optim_inputs_shape_[key])).begin(), (*(original_optim_inputs_shape_[key])).end(),
304 std::back_inserter(shapes),
305 [](const std::shared_ptr<std::vector<size_t>> &input_shapes) -> std::vector<size_t> {
306 return *input_shapes;
307 });
308 }
309 optimizer->ReInit(shapes);
310 optim_info->ComputeMean(shapes, worker_num_, pserver_num_, server_node_->rank_id());
311 optimizer->Execute(inputs, workspaces, outputs);
312 optim_info->Reset();
313 }
314 if (!is_embedding_[key]) {
315 tokens_[key] = worker_num_;
316 }
317 }
318 ResetGradAccumCount();
319 }
320 }
321
AccumGrad(const Keys & keys,const Values & values,const Lengths & lengths)322 void ParameterServer::AccumGrad(const Keys &keys, const Values &values, const Lengths &lengths) {
323 std::unique_lock<std::mutex> lock(mutex_);
324 const Key &key = keys[0];
325 bool no_sparse_grad = values.size() == 1 && values[0] == kGradValue;
326 if (!no_sparse_grad) {
327 std::shared_ptr<OptimizerInfo> optim_info = optim_infos_[key];
328
329 // Create or update the optimizer info
330 if (optim_info == nullptr) {
331 const std::shared_ptr<OptimizerInfoBuilder> &builder = optim_info_builders_[weight_key_to_optims_[key]];
332 std::shared_ptr<kernel::ps::PServerKernel> pserver_kernel = optimizers_[key];
333 if (pserver_kernel == nullptr) {
334 MS_LOG(EXCEPTION) << "no optimizer found for key " << key << " optim name " << weight_key_to_optims_[key];
335 }
336 MS_EXCEPTION_IF_NULL(pserver_kernel);
337 OptimizerInfo *optim = builder->Build(pserver_kernel, weights_[key], keys, values, lengths,
338 optim_inputs_shape_[key], worker_num_, is_embedding_[key]);
339 optim_info.reset(optim);
340 optim_infos_[key] = optim_info;
341 } else {
342 optim_info->Update(values, lengths);
343 optim_info->Accumulate(values, lengths);
344 }
345 }
346
347 grads_accum_counter_[key] += 1;
348 if (grads_accum_counter_[key] == worker_num_) {
349 grad_accum_count_++;
350 }
351 if (ReadyForUpdateWeights()) {
352 apply_grads_cv_.notify_one();
353 }
354 }
355
weight(const Key & key)356 WeightPtr ParameterServer::weight(const Key &key) {
357 std::unique_lock<std::mutex> lock(mutex_);
358 if (weights_.count(key) == 0) {
359 MS_LOG(EXCEPTION) << "Invalid weight key " << key;
360 }
361 WeightPtr weight_ptr = weights_[key];
362 MS_EXCEPTION_IF_NULL(weight_ptr);
363 WeightPtr copy_weight_ptr = std::make_shared<std::vector<float>>(weight_ptr->size(), 0);
364 MS_EXCEPTION_IF_NULL(copy_weight_ptr);
365 copy_weight_ptr = weight_ptr;
366 tokens_[key] -= 1;
367 return copy_weight_ptr;
368 }
369
DoEmbeddingLookup(Key key,const LookupIds & lookup_ids,KVMessage * res)370 void ParameterServer::DoEmbeddingLookup(Key key, const LookupIds &lookup_ids, KVMessage *res) {
371 std::unique_lock<std::mutex> lock(mutex_);
372 MS_EXCEPTION_IF_NULL(res);
373 if (weights_.count(key) == 0) {
374 MS_LOG(ERROR) << "Invalid embedding table key " << key;
375 return;
376 }
377 if (embedding_lookup_ops_.count(key) == 0) {
378 MS_LOG(ERROR) << "Invalid embedding lookup op key " << key;
379 return;
380 }
381 WeightPtr table_ptr = weights_[key];
382 MS_EXCEPTION_IF_NULL(table_ptr);
383 std::shared_ptr<PServerKernel> table_lookup_op = embedding_lookup_ops_[key];
384 MS_EXCEPTION_IF_NULL(table_lookup_op);
385
386 // Update shapes of lookup operator
387 std::vector<std::vector<size_t>> shapes = {};
388 std::vector<size_t> indices_shape = {};
389 indices_shape.emplace_back(lookup_ids.size());
390 shapes.push_back(indices_shape);
391 table_lookup_op->ReInit(shapes);
392
393 const std::vector<size_t> output_shapes = table_lookup_op->output_sizes();
394 std::vector<kernel::AddressPtr> inputs;
395 AddressPtr embedding_table = std::make_shared<kernel::Address>();
396 MS_EXCEPTION_IF_NULL(embedding_table);
397 AddressPtr indices = std::make_shared<kernel::Address>();
398 MS_EXCEPTION_IF_NULL(indices);
399 inputs.push_back(embedding_table);
400 inputs.push_back(indices);
401 embedding_table->addr = table_ptr->data();
402 embedding_table->size = table_ptr->size() * sizeof(float);
403
404 std::unique_ptr<int[]> tmp_ids = std::make_unique<int[]>(lookup_ids.size());
405 MS_EXCEPTION_IF_NULL(tmp_ids);
406 for (size_t i = 0; i < lookup_ids.size(); i++) {
407 tmp_ids[i] = static_cast<int>(lookup_ids[i]);
408 }
409 indices->addr = tmp_ids.get();
410 indices->size = lookup_ids.size() * sizeof(int);
411
412 std::vector<kernel::AddressPtr> workspaces;
413 std::vector<kernel::AddressPtr> outputs;
414 AddressPtr output = std::make_shared<kernel::Address>();
415 MS_EXCEPTION_IF_NULL(output);
416 std::shared_ptr<Values> addr = std::make_shared<Values>(output_shapes[0] / sizeof(float), 0);
417 MS_EXCEPTION_IF_NULL(addr);
418
419 output->addr = addr->data();
420 output->size = output_shapes[0];
421 outputs.push_back(output);
422
423 table_lookup_op->Execute(inputs, workspaces, outputs);
424 *res->mutable_values() = {addr->begin(), addr->end()};
425 res->add_len(res->values_size());
426 }
427
UpdateEmbeddings(const Key & key,const LookupIds & lookup_ids,const Values & vals)428 void ParameterServer::UpdateEmbeddings(const Key &key, const LookupIds &lookup_ids, const Values &vals) {
429 if (weights_.count(key) == 0) {
430 MS_LOG(ERROR) << "Invalid embedding table key " << key;
431 return;
432 }
433 if (embedding_lookup_ops_.count(key) == 0) {
434 MS_LOG(ERROR) << "Invalid embedding lookup op key " << key;
435 return;
436 }
437 WeightPtr table_ptr = weights_[key];
438 MS_EXCEPTION_IF_NULL(table_ptr);
439 std::shared_ptr<PServerKernel> table_lookup_op = embedding_lookup_ops_[key];
440 MS_EXCEPTION_IF_NULL(table_lookup_op);
441 table_lookup_op->UpdateEmbeddings(table_ptr->data(), lookup_ids.data(), vals.data(), lookup_ids.size());
442 }
443
ReadyForUpdateWeights() const444 inline bool ParameterServer::ReadyForUpdateWeights() const {
445 return grads_accum_counter_.size() > 0 && grad_accum_count_ == grads_accum_counter_.size();
446 }
447
ReadyForPush(const Key & key)448 inline bool ParameterServer::ReadyForPush(const Key &key) {
449 std::unique_lock<std::mutex> lock(mutex_);
450 if (weights_.empty()) {
451 MS_LOG(EXCEPTION) << "The weights in server is empty. Many reasons could cause this: 1.The Worker didn't send "
452 "kInitWeightsCmd command. 2.The Server failed to initialize weights.";
453 }
454 return grad_accum_count_ < weights_.size() && tokens_[key] == 0;
455 }
456
ReadyForPull(const Key & key)457 inline bool ParameterServer::ReadyForPull(const Key &key) {
458 std::unique_lock<std::mutex> lock(mutex_);
459 if (tokens_.count(key) == 0 || weights_[key] == 0) {
460 MS_LOG(EXCEPTION) << "Invalid weight key " << key;
461 }
462 MS_LOG(INFO) << "ReadyForPull: " << (tokens_[key] > 0);
463 return tokens_[key] > 0;
464 }
465
ResetGradAccumCount()466 inline void ParameterServer::ResetGradAccumCount() {
467 grad_accum_count_ = 0;
468 for (auto iter = grads_accum_counter_.begin(); iter != grads_accum_counter_.end(); iter++) {
469 grads_accum_counter_[iter->first] = 0;
470 }
471 }
472
GetCNode(const std::string & name) const473 const CNodePtr ParameterServer::GetCNode(const std::string &name) const {
474 std::list<CNodePtr> cnodes = func_graph_->GetOrderedCnodes();
475 for (CNodePtr cnode : cnodes) {
476 MS_EXCEPTION_IF_NULL(cnode);
477 std::string fullname = cnode->fullname_with_scope();
478 if (fullname.find(name) != std::string::npos && fullname.find("Push") != std::string::npos) {
479 return cnode;
480 }
481 }
482 return nullptr;
483 }
484
mutex()485 inline std::mutex &ParameterServer::mutex() { return mutex_; }
486
GetEmbeddingTableParamPtr()487 void ParameterServer::GetEmbeddingTableParamPtr() {
488 if (ps::PsDataPrefetch::GetInstance().cache_enable()) {
489 return;
490 }
491
492 MS_EXCEPTION_IF_NULL(func_graph_);
493 auto cnodes = func_graph_->GetOrderedCnodes();
494 Key count = 0;
495 for (auto cnode : cnodes) {
496 MS_EXCEPTION_IF_NULL(cnode);
497 std::string cnode_name = AnfAlgo::GetCNodeName(cnode);
498 if (cnode_name == kEmbeddingLookupOpName || cnode_name == kGatherV2OpName || cnode_name == kSparseGatherV2OpName) {
499 auto embedding_table = AnfAlgo::GetInputNode(cnode, 0);
500 if (IsPrimitiveCNode(embedding_table, prim::kPrimLoad)) {
501 auto embedding_cnode = embedding_table->cast<CNodePtr>();
502 embedding_table = AnfAlgo::GetInputNode(embedding_cnode, 0);
503 }
504 MS_EXCEPTION_IF_NULL(embedding_table);
505 if (embedding_table->isa<Parameter>()) {
506 MS_LOG(INFO) << "Embedding table name is " << embedding_table->fullname_with_scope() << ", key is " << count;
507 embedding_tables_.insert(std::make_pair(count, embedding_table->cast<ParameterPtr>()));
508 count++;
509 }
510 }
511 }
512 }
513
CacheEmbeddingTableParamPtr()514 void ParameterServer::CacheEmbeddingTableParamPtr() {
515 if (embedding_param_ptr_cached_) {
516 return;
517 }
518
519 MS_EXCEPTION_IF_NULL(func_graph_);
520 auto cnodes = func_graph_->GetOrderedCnodes();
521 for (auto cnode : cnodes) {
522 MS_EXCEPTION_IF_NULL(cnode);
523 std::string cnode_name = AnfAlgo::GetCNodeName(cnode);
524 if (cnode_name != kGatherV2OpName && cnode_name != kSparseGatherV2OpName) {
525 continue;
526 }
527
528 auto embedding_table = AnfAlgo::GetInputNode(cnode, 0);
529 if (IsPrimitiveCNode(embedding_table, prim::kPrimLoad)) {
530 auto embedding_cnode = embedding_table->cast<CNodePtr>();
531 embedding_table = AnfAlgo::GetInputNode(embedding_cnode, 0);
532 }
533
534 MS_EXCEPTION_IF_NULL(embedding_table);
535 if (embedding_table->isa<Parameter>()) {
536 (void)embedding_parameter_tables_.emplace(embedding_table->fullname_with_scope(),
537 embedding_table->cast<ParameterPtr>());
538 }
539 }
540
541 embedding_param_ptr_cached_ = true;
542 }
543
SyncEmbeddingTables()544 void ParameterServer::SyncEmbeddingTables() {
545 for (auto embedding_table : embedding_tables_) {
546 Key key = embedding_table.first;
547 if (embedding_lookup_ops_.count(key) == 0) {
548 MS_LOG(WARNING) << "Can't find look up PS kernel for key " << key;
549 continue;
550 }
551 auto lookup = embedding_lookup_ops_[key];
552 const std::vector<size_t> &input_shapes = lookup->input_sizes();
553 std::vector<int64_t> new_tensor_shape(input_shapes.begin(), input_shapes.end());
554
555 tensor::TensorPtr new_tensor = std::make_shared<tensor::Tensor>(kNumberTypeFloat32, new_tensor_shape);
556 MS_EXCEPTION_IF_NULL(new_tensor);
557 float *new_tensor_data_ptr = reinterpret_cast<float *>(new_tensor->data_c());
558 size_t new_tensor_size = static_cast<size_t>(new_tensor->data().nbytes());
559 size_t embedding_table_size = weights_[key]->size() * sizeof(float);
560 if (new_tensor_size != embedding_table_size) {
561 MS_LOG(EXCEPTION) << "Shape of embedding table can't match. New tensor size:" << new_tensor_size
562 << ", embedding_table size:" << embedding_table_size;
563 }
564 MS_EXCEPTION_IF_NULL(new_tensor_data_ptr);
565 MS_EXCEPTION_IF_NULL(weights_[key]->data());
566
567 CopyTensorData(new_tensor_data_ptr, new_tensor_size, weights_[key]->data());
568
569 auto paramter_tensor_ptr = embedding_table.second->default_param();
570 MS_EXCEPTION_IF_NULL(paramter_tensor_ptr);
571 paramter_tensor_ptr->cast<tensor::TensorPtr>()->AssignValue(*new_tensor);
572 }
573 }
574
Init()575 void ParameterServer::ServerHandler::Init() {
576 handlers_[kInitWeightsCmd] = &ServerHandler::HandleInitWeights;
577 handlers_[kInitWeightToOptimIdCmd] = &ServerHandler::HandleInitWeightToOptimId;
578 handlers_[kInitOptimInputsShapeCmd] = &ServerHandler::HandleInitInputsShape;
579 handlers_[kInitEmbeddingsCmd] = &ServerHandler::HandleInitEmbeddings;
580 handlers_[kCheckReadyForPushCmd] = &ServerHandler::HandleCheckReadyForPush;
581 handlers_[kCheckReadyForPullCmd] = &ServerHandler::HandleCheckReadyForPull;
582 handlers_[kEmbeddingLookupCmd] = &ServerHandler::HandleEmbeddingLookup;
583 handlers_[kUpdateEmbeddingsCmd] = &ServerHandler::HandleUpdateEmbeddings;
584 handlers_[kFinalizeCmd] = &ServerHandler::HandleFinalize;
585 handlers_[kPushCmd] = &ServerHandler::HandlePushReq;
586 handlers_[kPullCmd] = &ServerHandler::HandlePullReq;
587 commands_[kInitWeightsCmd] = "kInitWeightsCmd";
588 commands_[kInitWeightToOptimIdCmd] = "kInitWeightToOptimIdCmd";
589 commands_[kInitOptimInputsShapeCmd] = "kInitOptimInputsShapeCmd";
590 commands_[kInitEmbeddingsCmd] = "kInitEmbeddingsCmd";
591 commands_[kCheckReadyForPushCmd] = "kCheckReadyForPushCmd";
592 commands_[kCheckReadyForPullCmd] = "kCheckReadyForPullCmd";
593 commands_[kEmbeddingLookupCmd] = "kEmbeddingLookupCmd";
594 commands_[kUpdateEmbeddingsCmd] = "kUpdateEmbeddingsCmd";
595 commands_[kFinalizeCmd] = "kFinalizeCmd";
596 commands_[kPushCmd] = "kPushCmd";
597 commands_[kPullCmd] = "kPullCmd";
598 }
599
operator ()(const std::shared_ptr<core::TcpConnection> & conn,const std::shared_ptr<core::MessageMeta> & meta,const DataPtr & data,size_t size)600 void ParameterServer::ServerHandler::operator()(const std::shared_ptr<core::TcpConnection> &conn,
601 const std::shared_ptr<core::MessageMeta> &meta, const DataPtr &data,
602 size_t size) {
603 auto output = std::make_shared<std::vector<unsigned char>>();
604 if (commands_.count(meta->user_cmd()) == 0) {
605 MS_LOG(EXCEPTION) << "The command:" << meta->user_cmd() << " is not supported!";
606 }
607 MS_LOG(INFO) << "The command is:" << commands_[meta->user_cmd()];
608
609 auto &handler_ptr = handlers_[meta->user_cmd()];
610 (this->*handler_ptr)(data, size, output);
611 MS_LOG(DEBUG) << "The output size is:" << output->size();
612
613 if (output->size() > 0) {
614 ps_->server_node_->Response(conn, meta, output->data(), output->size());
615 } else {
616 // If the size of the output is 0, then constructed an empty string, Because the Response function is a synchronous,
617 // the res variable will be automatically recycled after calling the Response function
618 std::string res;
619 ps_->server_node_->Response(conn, meta, res.data(), res.length());
620 }
621 MS_LOG(DEBUG) << "The request id is:" << meta->request_id() << " the current time is:"
622 << std::chrono::time_point_cast<std::chrono::microseconds>(std::chrono::high_resolution_clock::now())
623 .time_since_epoch()
624 .count();
625 }
626
HandlePushReq(const DataPtr & data,size_t size,const VectorPtr & res)627 void ParameterServer::ServerHandler::HandlePushReq(const DataPtr &data, size_t size, const VectorPtr &res) {
628 MS_EXCEPTION_IF_NULL(res);
629 KVMessage input;
630 CHECK_RETURN_TYPE(input.ParseFromArray(data.get(), SizeToInt(size)));
631 Keys keys = {input.keys().begin(), input.keys().end()};
632 Values values = {input.values().begin(), input.values().end()};
633 Lengths lens = {input.len().begin(), input.len().end()};
634 MS_LOG(DEBUG) << "The keys:" << keys << " the values:" << values << " the len:" << lens;
635 ps_->AccumGrad(keys, values, lens);
636 }
637
HandlePullReq(const DataPtr & data,size_t size,const VectorPtr & res)638 void ParameterServer::ServerHandler::HandlePullReq(const DataPtr &data, size_t size, const VectorPtr &res) {
639 MS_EXCEPTION_IF_NULL(res);
640 KVMessage input;
641 CHECK_RETURN_TYPE(input.ParseFromArray(data.get(), SizeToInt(size)));
642 KVMessage res_data;
643 *res_data.mutable_keys() = input.keys();
644 Key key = input.keys()[0];
645 auto weight = ps_->weight(key);
646 *res_data.mutable_values() = {weight->begin(), weight->end()};
647 res->resize(res_data.ByteSizeLong());
648 size_t dest_size = res_data.ByteSizeLong();
649 size_t src_size = res_data.ByteSizeLong();
650 int ret = memcpy_s(res->data(), dest_size, res_data.SerializeAsString().data(), src_size);
651 if (ret != 0) {
652 MS_LOG(EXCEPTION) << "The memcpy_s error, errorno(" << ret << ")";
653 }
654 }
655
HandleInitWeights(const DataPtr & data,size_t size,const VectorPtr & res)656 void ParameterServer::ServerHandler::HandleInitWeights(const DataPtr &data, size_t size, const VectorPtr &res) {
657 std::unique_lock<std::mutex> lock(ps_->mutex());
658 MS_EXCEPTION_IF_NULL(res);
659 KVMessage input;
660 CHECK_RETURN_TYPE(input.ParseFromArray(data.get(), SizeToInt(size)));
661 int key_num = input.keys_size();
662 const float *data_ptr = input.values().data();
663 size_t pos = 0;
664 for (int i = 0; i < key_num; i++) {
665 Key key = input.keys()[i];
666 size_t data_len = input.len_size() != key_num ? input.values_size() / key_num : input.len()[i];
667
668 if (!ps_->HasWeight(key)) {
669 WeightPtr weight_ptr = std::make_shared<std::vector<float>>(data_ptr + pos, data_ptr + (pos + data_len));
670 MS_EXCEPTION_IF_NULL(weight_ptr);
671 ps_->InitWeight(key, weight_ptr);
672
673 GradPtr grad_ptr = std::make_shared<std::vector<float>>(data_len, 0);
674 MS_EXCEPTION_IF_NULL(grad_ptr);
675 ps_->InitGrad(key, grad_ptr);
676 }
677 pos += data_len;
678 }
679 }
680
HandleInitWeightToOptimId(const DataPtr & data,size_t size,const VectorPtr & res)681 void ParameterServer::ServerHandler::HandleInitWeightToOptimId(const DataPtr &data, size_t size, const VectorPtr &res) {
682 std::unique_lock<std::mutex> lock(ps_->mutex());
683 MS_EXCEPTION_IF_NULL(res);
684 KVMessage input;
685 CHECK_RETURN_TYPE(input.ParseFromArray(data.get(), SizeToInt(size)));
686 int key_num = input.keys_size();
687 for (int i = 0; i < key_num; i++) {
688 Key key = input.keys()[i];
689 float val = input.values()[i];
690 if (init_weight_to_optim_[key]) {
691 continue;
692 } else {
693 init_weight_to_optim_[key] = true;
694 }
695 ps_->InitWeightKeyToOptims(key, static_cast<int64_t>(val));
696 }
697 }
698
HandleInitInputsShape(const DataPtr & data,size_t size,const VectorPtr & res)699 void ParameterServer::ServerHandler::HandleInitInputsShape(const DataPtr &data, size_t size, const VectorPtr &res) {
700 std::unique_lock<std::mutex> lock(ps_->mutex());
701 MS_EXCEPTION_IF_NULL(res);
702 KVMessage input;
703 CHECK_RETURN_TYPE(input.ParseFromArray(data.get(), SizeToInt(size)));
704 const Key &key = input.keys()[0];
705 if (init_optim_info_[key]) {
706 return;
707 } else {
708 init_optim_info_[key] = true;
709 }
710 Keys keys = {input.keys().begin(), input.keys().end()};
711 Values values = {input.values().begin(), input.values().end()};
712 Lengths lens = {input.len().begin(), input.len().end()};
713 ps_->InitOptimInputsShape(keys, values, lens);
714 }
715
HandleInitEmbeddings(const DataPtr & data,size_t size,const VectorPtr &)716 void ParameterServer::ServerHandler::HandleInitEmbeddings(const DataPtr &data, size_t size, const VectorPtr &) {
717 std::unique_lock<std::mutex> lock(ps_->mutex());
718 EmbeddingTableMeta embedding_table_meta;
719 CHECK_RETURN_TYPE(embedding_table_meta.ParseFromArray(data.get(), SizeToInt(size)));
720 const Key &key = embedding_table_meta.key();
721 MS_LOG(INFO) << "Initializing embedding table for key:" << key;
722 std::shared_ptr<std::vector<std::shared_ptr<std::vector<size_t>>>> shapes =
723 std::make_shared<std::vector<std::shared_ptr<std::vector<size_t>>>>();
724 MS_EXCEPTION_IF_NULL(shapes);
725 std::shared_ptr<std::vector<size_t>> input_shape = std::make_shared<std::vector<size_t>>(
726 embedding_table_meta.input_shape().begin(), embedding_table_meta.input_shape().end());
727 MS_EXCEPTION_IF_NULL(input_shape);
728 std::shared_ptr<std::vector<size_t>> indices_shape = std::make_shared<std::vector<size_t>>(
729 embedding_table_meta.indices_shape().begin(), embedding_table_meta.indices_shape().end());
730 MS_EXCEPTION_IF_NULL(indices_shape);
731 std::shared_ptr<std::vector<size_t>> output_shape = std::make_shared<std::vector<size_t>>(
732 embedding_table_meta.output_shape().begin(), embedding_table_meta.output_shape().end());
733 MS_EXCEPTION_IF_NULL(output_shape);
734 shapes->push_back(input_shape);
735 shapes->push_back(indices_shape);
736 shapes->push_back(output_shape);
737
738 const ParamInitInfoMessage &info = embedding_table_meta.info();
739 ParamInitInfo param_init_info;
740 if (ps::PsDataPrefetch::GetInstance().cache_enable()) {
741 param_init_info.param_name_ = info.param_name();
742 param_init_info.param_type_ = static_cast<ParamType>(info.param_type());
743 if (param_init_info.param_type_ == kWeight) {
744 param_init_info.global_seed_ = info.global_seed();
745 param_init_info.op_seed_ = info.op_seed();
746 } else if (param_init_info.param_type_ == kAccumulation) {
747 param_init_info.init_val_ = info.init_val();
748 }
749 }
750 ps_->InitEmbeddingTable(key, shapes, param_init_info);
751 }
752
HandleCheckReadyForPush(const DataPtr & data,size_t size,const VectorPtr & res)753 void ParameterServer::ServerHandler::HandleCheckReadyForPush(const DataPtr &data, size_t size, const VectorPtr &res) {
754 MS_EXCEPTION_IF_NULL(res);
755 KVMessage input;
756 CHECK_RETURN_TYPE(input.ParseFromArray(data.get(), SizeToInt(size)));
757 const Key &key = input.keys()[0];
758 bool ready = ps_->ReadyForPush(key);
759 MS_LOG(INFO) << "The ready is:" << ready;
760 KVMessage res_data;
761 res_data.add_keys(key);
762 res_data.add_values(ready);
763 res->resize(res_data.ByteSizeLong());
764 size_t dest_size = res_data.ByteSizeLong();
765 size_t src_size = res_data.ByteSizeLong();
766 int ret = memcpy_s(res->data(), dest_size, res_data.SerializeAsString().data(), src_size);
767 if (ret != 0) {
768 MS_LOG(EXCEPTION) << "The memcpy_s error, errorno(" << ret << ")";
769 }
770 }
771
HandleCheckReadyForPull(const DataPtr & data,size_t size,const VectorPtr & res)772 void ParameterServer::ServerHandler::HandleCheckReadyForPull(const DataPtr &data, size_t size, const VectorPtr &res) {
773 MS_EXCEPTION_IF_NULL(res);
774 KVMessage input;
775 CHECK_RETURN_TYPE(input.ParseFromArray(data.get(), SizeToInt(size)));
776 const Key &key = input.keys()[0];
777 bool ready = ps_->ReadyForPull(key);
778 KVMessage res_data;
779 res_data.add_keys(key);
780 res_data.add_values(ready);
781 res->resize(res_data.ByteSizeLong());
782 size_t dest_size = res_data.ByteSizeLong();
783 size_t src_size = res_data.ByteSizeLong();
784 int ret = memcpy_s(res->data(), dest_size, res_data.SerializeAsString().data(), src_size);
785 if (ret != 0) {
786 MS_LOG(EXCEPTION) << "The memcpy_s error, errorno(" << ret << ")";
787 }
788 }
789
HandleEmbeddingLookup(const DataPtr & data,size_t size,const VectorPtr & res)790 void ParameterServer::ServerHandler::HandleEmbeddingLookup(const DataPtr &data, size_t size, const VectorPtr &res) {
791 MS_EXCEPTION_IF_NULL(res);
792 EmbeddingTableLookup input;
793 CHECK_RETURN_TYPE(input.ParseFromArray(data.get(), SizeToInt(size)));
794 const Key &key = input.key();
795
796 KVMessage res_data;
797 std::vector<Key> keys = {input.keys().begin(), input.keys().end()};
798 *res_data.mutable_keys() = {input.keys().begin(), input.keys().end()};
799
800 ps_->DoEmbeddingLookup(key, keys, &res_data);
801
802 res->resize(res_data.ByteSizeLong());
803 size_t dest_size = res_data.ByteSizeLong();
804 size_t src_size = res_data.ByteSizeLong();
805 int ret = memcpy_s(res->data(), dest_size, res_data.SerializeAsString().data(), src_size);
806 if (ret != 0) {
807 MS_LOG(EXCEPTION) << "The memcpy_s error, errorno(" << ret << ")";
808 }
809 }
810
HandleUpdateEmbeddings(const DataPtr & data,size_t size,const VectorPtr & res)811 void ParameterServer::ServerHandler::HandleUpdateEmbeddings(const DataPtr &data, size_t size, const VectorPtr &res) {
812 std::unique_lock<std::mutex> lock(ps_->mutex());
813 MS_EXCEPTION_IF_NULL(res);
814 KVMessage input;
815 CHECK_RETURN_TYPE(input.ParseFromArray(data.get(), SizeToInt(size)));
816 const Key &key = input.keys()[0];
817 const LookupIds &lookup_ids = {input.keys().begin() + 1, input.keys().end()};
818 const Values &update_vals = {input.values().begin(), input.values().end()};
819 ps_->UpdateEmbeddings(key, lookup_ids, update_vals);
820 }
821
HandleFinalize(const DataPtr &,size_t,const VectorPtr & res)822 void ParameterServer::ServerHandler::HandleFinalize(const DataPtr &, size_t, const VectorPtr &res) {
823 MS_EXCEPTION_IF_NULL(res);
824 ps_->Finalize();
825 }
826 } // namespace ps
827 } // namespace mindspore
828