• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<html>
2<head>
3<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
4<title>Catmull-Rom Splines</title>
5<link rel="stylesheet" href="../math.css" type="text/css">
6<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
7<link rel="home" href="../index.html" title="Math Toolkit 2.12.0">
8<link rel="up" href="../interpolation.html" title="Chapter 12. Interpolation">
9<link rel="prev" href="vector_barycentric.html" title="Vector-valued Barycentric Rational Interpolation">
10<link rel="next" href="cardinal_trigonometric.html" title="Cardinal Trigonometric interpolation">
11</head>
12<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
13<table cellpadding="2" width="100%"><tr>
14<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../boost.png"></td>
15<td align="center"><a href="../../../../../index.html">Home</a></td>
16<td align="center"><a href="../../../../../libs/libraries.htm">Libraries</a></td>
17<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
18<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
19<td align="center"><a href="../../../../../more/index.htm">More</a></td>
20</tr></table>
21<hr>
22<div class="spirit-nav">
23<a accesskey="p" href="vector_barycentric.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../interpolation.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="cardinal_trigonometric.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
24</div>
25<div class="section">
26<div class="titlepage"><div><div><h2 class="title" style="clear: both">
27<a name="math_toolkit.catmull_rom"></a><a class="link" href="catmull_rom.html" title="Catmull-Rom Splines">Catmull-Rom Splines</a>
28</h2></div></div></div>
29<h4>
30<a name="math_toolkit.catmull_rom.h0"></a>
31      <span class="phrase"><a name="math_toolkit.catmull_rom.synopsis"></a></span><a class="link" href="catmull_rom.html#math_toolkit.catmull_rom.synopsis">Synopsis</a>
32    </h4>
33<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">interpolators</span><span class="special">/</span><span class="identifier">catmull_rom</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
34
35<span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span><span class="special">{</span>
36
37    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">Point</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">RandomAccessContainer</span> <span class="special">=</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="identifier">Point</span><span class="special">&gt;</span> <span class="special">&gt;</span>
38    <span class="keyword">class</span> <span class="identifier">catmull_rom</span>
39    <span class="special">{</span>
40    <span class="keyword">public</span><span class="special">:</span>
41
42        <span class="identifier">catmull_rom</span><span class="special">(</span><span class="identifier">RandomAccessContainer</span><span class="special">&amp;&amp;</span> <span class="identifier">points</span><span class="special">,</span> <span class="keyword">bool</span> <span class="identifier">closed</span> <span class="special">=</span> <span class="keyword">false</span><span class="special">,</span> <span class="identifier">Real</span> <span class="identifier">alpha</span> <span class="special">=</span> <span class="special">(</span><span class="identifier">Real</span><span class="special">)</span> <span class="number">1</span><span class="special">/</span> <span class="special">(</span><span class="identifier">Real</span><span class="special">)</span> <span class="number">2</span><span class="special">)</span>
43
44        <span class="identifier">catmull_rom</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">initializer_list</span><span class="special">&lt;</span><span class="identifier">Point</span><span class="special">&gt;</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">bool</span> <span class="identifier">closed</span> <span class="special">=</span> <span class="keyword">false</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Point</span><span class="special">::</span><span class="identifier">value_type</span> <span class="identifier">alpha</span> <span class="special">=</span> <span class="special">(</span><span class="keyword">typename</span> <span class="identifier">Point</span><span class="special">::</span><span class="identifier">value_type</span><span class="special">)</span> <span class="number">1</span><span class="special">/</span> <span class="special">(</span><span class="keyword">typename</span> <span class="identifier">Point</span><span class="special">::</span><span class="identifier">value_type</span><span class="special">)</span> <span class="number">2</span><span class="special">);</span>
45
46        <span class="identifier">Real</span> <span class="keyword">operator</span><span class="special">()(</span><span class="identifier">Real</span> <span class="identifier">s</span><span class="special">)</span> <span class="keyword">const</span><span class="special">;</span>
47
48        <span class="identifier">Real</span> <span class="identifier">max_parameter</span><span class="special">()</span> <span class="keyword">const</span><span class="special">;</span>
49
50        <span class="identifier">Real</span> <span class="identifier">parameter_at_point</span><span class="special">(</span><span class="identifier">size_t</span> <span class="identifier">i</span><span class="special">)</span> <span class="keyword">const</span><span class="special">;</span>
51
52        <span class="identifier">Point</span> <span class="identifier">prime</span><span class="special">(</span><span class="identifier">Real</span> <span class="identifier">s</span><span class="special">)</span> <span class="keyword">const</span><span class="special">;</span>
53    <span class="special">};</span>
54
55<span class="special">}}</span>
56</pre>
57<h4>
58<a name="math_toolkit.catmull_rom.h1"></a>
59      <span class="phrase"><a name="math_toolkit.catmull_rom.description"></a></span><a class="link" href="catmull_rom.html#math_toolkit.catmull_rom.description">Description</a>
60    </h4>
61<p>
62      Catmull-Rom splines are a family of interpolating curves which are commonly
63      used in computer graphics and animation. Catmull-Rom splines enjoy the following
64      properties:
65    </p>
66<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
67<li class="listitem">
68          Affine invariance: The interpolant commutes with affine transformations.
69        </li>
70<li class="listitem">
71          Local support of the basis functions: This gives stability and fast evaluation.
72        </li>
73<li class="listitem">
74          <span class="emphasis"><em>C</em></span><sup>2</sup>-smoothness
75        </li>
76<li class="listitem">
77          Interpolation of control points-this means the curve passes through the
78          control points. Many curves (such as Bézier) are <span class="emphasis"><em>approximating</em></span>
79          - they do not pass through their control points. This makes them more difficult
80          to use than interpolating splines.
81        </li>
82</ul></div>
83<p>
84      The <code class="computeroutput"><span class="identifier">catmull_rom</span></code> class provided
85      by Boost.Math creates a cubic Catmull-Rom spline from an array of points in
86      any dimension. Since there are numerous ways to represent a point in <span class="emphasis"><em>n</em></span>-dimensional
87      space, the class attempts to be flexible by templating on the point type. The
88      requirements on the point type are discussing in more detail below, but roughly,
89      it must have a dereference operator defined (e.g., <code class="computeroutput"><span class="identifier">p</span><span class="special">[</span><span class="number">0</span><span class="special">]</span></code>
90      is not a syntax error), it must be able to be dereferenced up to <code class="computeroutput"><span class="identifier">dimension</span> <span class="special">-</span><span class="number">1</span></code>, and <code class="computeroutput"><span class="identifier">p</span><span class="special">[</span><span class="identifier">i</span><span class="special">]</span></code>
91      is of type <code class="computeroutput"><span class="identifier">Real</span></code>, define <code class="computeroutput"><span class="identifier">value_type</span></code>, and the free function <code class="computeroutput"><span class="identifier">size</span><span class="special">()</span></code>. These
92      requirements are met by <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span></code>
93      and <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">array</span></code>. The basic usage is shown here:
94    </p>
95<pre class="programlisting"><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">array</span><span class="special">&lt;</span><span class="identifier">Real</span><span class="special">,</span> <span class="number">3</span><span class="special">&gt;&gt;</span> <span class="identifier">points</span><span class="special">(</span><span class="number">4</span><span class="special">);</span>
96<span class="identifier">points</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">=</span> <span class="special">{</span><span class="number">0</span><span class="special">,</span><span class="number">0</span><span class="special">,</span><span class="number">0</span><span class="special">};</span>
97<span class="identifier">points</span><span class="special">[</span><span class="number">1</span><span class="special">]</span> <span class="special">=</span> <span class="special">{</span><span class="number">1</span><span class="special">,</span><span class="number">0</span><span class="special">,</span><span class="number">0</span><span class="special">};</span>
98<span class="identifier">points</span><span class="special">[</span><span class="number">2</span><span class="special">]</span> <span class="special">=</span> <span class="special">{</span><span class="number">0</span><span class="special">,</span><span class="number">1</span><span class="special">,</span><span class="number">0</span><span class="special">};</span>
99<span class="identifier">points</span><span class="special">[</span><span class="number">3</span><span class="special">]</span> <span class="special">=</span> <span class="special">{</span><span class="number">0</span><span class="special">,</span><span class="number">0</span><span class="special">,</span><span class="number">1</span><span class="special">};</span>
100<span class="identifier">catmull_rom</span><span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">array</span><span class="special">&lt;</span><span class="identifier">Real</span><span class="special">,</span> <span class="number">3</span><span class="special">&gt;&gt;</span> <span class="identifier">cr</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">move</span><span class="special">(</span><span class="identifier">points</span><span class="special">));</span>
101<span class="comment">// Interpolate at s = 0.1:</span>
102<span class="keyword">auto</span> <span class="identifier">point</span> <span class="special">=</span> <span class="identifier">cr</span><span class="special">(</span><span class="number">0.1</span><span class="special">);</span>
103</pre>
104<p>
105      The spline can be either open or <span class="emphasis"><em>closed</em></span>, closed meaning
106      that there is some <span class="emphasis"><em>s &gt; 0</em></span> such that <span class="emphasis"><em>P(s) =
107      P(0)</em></span>. The default is open, but this can be easily changed:
108    </p>
109<pre class="programlisting"><span class="comment">// closed = true</span>
110<span class="identifier">catmull_rom</span><span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">array</span><span class="special">&lt;</span><span class="identifier">Real</span><span class="special">,</span> <span class="number">3</span><span class="special">&gt;&gt;</span> <span class="identifier">cr</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">move</span><span class="special">(</span><span class="identifier">points</span><span class="special">),</span> <span class="keyword">true</span><span class="special">);</span>
111</pre>
112<p>
113      In either case, evaluating the interpolator at <span class="emphasis"><em>s=0</em></span> returns
114      the first point in the list.
115    </p>
116<p>
117      If the curve is open, then the first and last segments may have strange behavior.
118      The traditional solution is to prepend a carefully selected control point to
119      the data so that the first data segment (second interpolator segment) has reasonable
120      tangent vectors, and simply ignore the first interpolator segment. A control
121      point is appended to the data using similar criteria. However, we recommend
122      not going through this effort until it proves to be necessary: For most use-cases,
123      the curve is good enough without prepending and appending control points, and
124      responsible selection of non-data control points is difficult.
125    </p>
126<p>
127      Inside <code class="computeroutput"><span class="identifier">catmull_rom</span></code>, the curve
128      is represented as closed. This is because an open Catmull-Rom curve is <span class="emphasis"><em>implicitly
129      closed</em></span>, but the closing point is the zero vector. There is no reason
130      to suppose that the zero vector is a better closing point than the endpoint
131      (or any other point, for that matter), so traditionally Catmull-Rom splines
132      leave the segment between the first and second point undefined, as well as
133      the segment between the second-to-last and last point. We find this property
134      of the traditional implementation of Catmull-Rom splines annoying and confusing
135      to the user. Hence internally, we close the curve so that the first and last
136      segments are defined. Of course, this causes the <span class="emphasis"><em>tangent</em></span>
137      vectors to the first and last points to be bizarre. This is a "pick your
138      poison" design decision-either the curve cannot interpolate in its first
139      and last segments, or the tangents along the first and last segments are meaningless.
140      In the vast majority of cases, this will be no problem to the user. However,
141      if it becomes a problem, then the user should add one extra point in a position
142      they believe is reasonable and close the curve.
143    </p>
144<p>
145      Since the routine internally represents the curve as closed, a question arises:
146      Why does the user have to specify if the curve is open or closed? The answer
147      is that the parameterization is chosen by the routine, so it is of interest
148      to the user to understand the values where a meaningful result is returned.
149    </p>
150<pre class="programlisting"><span class="identifier">Real</span> <span class="identifier">max_s</span> <span class="special">=</span> <span class="identifier">cr</span><span class="special">.</span><span class="identifier">max_parameter</span><span class="special">();</span>
151</pre>
152<p>
153      If you attempt to interpolate for <code class="computeroutput"><span class="identifier">s</span>
154      <span class="special">&gt;</span> <span class="identifier">max_s</span></code>,
155      an exception is thrown. If the curve is closed, then <code class="computeroutput"><span class="identifier">cr</span><span class="special">(</span><span class="identifier">max_s</span><span class="special">)</span>
156      <span class="special">=</span> <span class="identifier">p0</span></code>,
157      where <code class="computeroutput"><span class="identifier">p0</span></code> is the first point
158      on the curve. If the curve is open, then <code class="computeroutput"><span class="identifier">cr</span><span class="special">(</span><span class="identifier">max_s</span><span class="special">)</span>
159      <span class="special">=</span> <span class="identifier">pf</span></code>,
160      where <code class="computeroutput"><span class="identifier">pf</span></code> is the final point
161      on the curve.
162    </p>
163<p>
164      The Catmull-Rom curve admits an infinite number of parameterizations. The default
165      parameterization of the <code class="computeroutput"><span class="identifier">catmull_rom</span></code>
166      class is the so-called <span class="emphasis"><em>centripedal</em></span> parameterization. This
167      parameterization has been shown to be the only parameterization that does not
168      form cusps or self-intersections within segments. However, for advanced users,
169      other parameterizations can be chosen using the <span class="emphasis"><em>alpha</em></span>
170      parameter:
171    </p>
172<pre class="programlisting"><span class="comment">// alpha = 1 is the "chordal" parameterization.</span>
173<span class="identifier">catmull_rom</span><span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">array</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">,</span> <span class="number">3</span><span class="special">&gt;&gt;</span> <span class="identifier">cr</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">move</span><span class="special">(</span><span class="identifier">points</span><span class="special">),</span> <span class="keyword">false</span><span class="special">,</span> <span class="number">1.0</span><span class="special">);</span>
174</pre>
175<p>
176      The alpha parameter must always be in the range <code class="computeroutput"><span class="special">[</span><span class="number">0</span><span class="special">,</span><span class="number">1</span><span class="special">]</span></code>.
177    </p>
178<p>
179      Finally, the tangent vector to any point of the curve can be computed via
180    </p>
181<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">s</span> <span class="special">=</span> <span class="number">0.1</span><span class="special">;</span>
182<span class="identifier">Point</span> <span class="identifier">tangent</span> <span class="special">=</span> <span class="identifier">cr</span><span class="special">.</span><span class="identifier">prime</span><span class="special">(</span><span class="identifier">s</span><span class="special">);</span>
183</pre>
184<p>
185      Since the magnitude of the tangent vector is dependent on the parameterization,
186      it is not meaningful (unless the user chooses the chordal parameterization
187      <span class="emphasis"><em>alpha = 1</em></span> which parameterizes by Euclidean distance between
188      points.) However, its direction is meaningful no matter the parameterization,
189      so the user may wish to normalize this result.
190    </p>
191<h4>
192<a name="math_toolkit.catmull_rom.h2"></a>
193      <span class="phrase"><a name="math_toolkit.catmull_rom.examples"></a></span><a class="link" href="catmull_rom.html#math_toolkit.catmull_rom.examples">Examples</a>
194    </h4>
195<h4>
196<a name="math_toolkit.catmull_rom.h3"></a>
197      <span class="phrase"><a name="math_toolkit.catmull_rom.performance"></a></span><a class="link" href="catmull_rom.html#math_toolkit.catmull_rom.performance">Performance</a>
198    </h4>
199<p>
200      The following performance numbers were generated for a call to the Catmull-Rom
201      interpolation method. The number that follows the slash is the number of points
202      passed to the interpolant. We see that evaluation of the interpolant is ��(<span class="emphasis"><em>log</em></span>(<span class="emphasis"><em>N</em></span>)).
203    </p>
204<pre class="programlisting"><span class="identifier">Run</span> <span class="identifier">on</span> <span class="number">2700</span> <span class="identifier">MHz</span> <span class="identifier">CPU</span>
205<span class="identifier">CPU</span> <span class="identifier">Caches</span><span class="special">:</span>
206  <span class="identifier">L1</span> <span class="identifier">Data</span> <span class="number">32</span><span class="identifier">K</span> <span class="special">(</span><span class="identifier">x2</span><span class="special">)</span>
207  <span class="identifier">L1</span> <span class="identifier">Instruction</span> <span class="number">32</span><span class="identifier">K</span> <span class="special">(</span><span class="identifier">x2</span><span class="special">)</span>
208  <span class="identifier">L2</span> <span class="identifier">Unified</span> <span class="number">262</span><span class="identifier">K</span> <span class="special">(</span><span class="identifier">x2</span><span class="special">)</span>
209  <span class="identifier">L3</span> <span class="identifier">Unified</span> <span class="number">3145</span><span class="identifier">K</span> <span class="special">(</span><span class="identifier">x1</span><span class="special">)</span>
210<span class="special">---------------------------------------------------------</span>
211<span class="identifier">Benchmark</span>                              <span class="identifier">Time</span>           <span class="identifier">CPU</span>
212<span class="special">---------------------------------------------------------</span>
213<span class="identifier">BM_CatmullRom</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">4</span>               <span class="number">20</span> <span class="identifier">ns</span>         <span class="number">20</span> <span class="identifier">ns</span>
214<span class="identifier">BM_CatmullRom</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">8</span>               <span class="number">21</span> <span class="identifier">ns</span>         <span class="number">21</span> <span class="identifier">ns</span>
215<span class="identifier">BM_CatmullRom</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">16</span>              <span class="number">23</span> <span class="identifier">ns</span>         <span class="number">23</span> <span class="identifier">ns</span>
216<span class="identifier">BM_CatmullRom</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">32</span>              <span class="number">24</span> <span class="identifier">ns</span>         <span class="number">24</span> <span class="identifier">ns</span>
217<span class="identifier">BM_CatmullRom</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">64</span>              <span class="number">27</span> <span class="identifier">ns</span>         <span class="number">27</span> <span class="identifier">ns</span>
218<span class="identifier">BM_CatmullRom</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">128</span>             <span class="number">27</span> <span class="identifier">ns</span>         <span class="number">27</span> <span class="identifier">ns</span>
219<span class="identifier">BM_CatmullRom</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">256</span>             <span class="number">30</span> <span class="identifier">ns</span>         <span class="number">30</span> <span class="identifier">ns</span>
220<span class="identifier">BM_CatmullRom</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">512</span>             <span class="number">32</span> <span class="identifier">ns</span>         <span class="number">31</span> <span class="identifier">ns</span>
221<span class="identifier">BM_CatmullRom</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">1024</span>            <span class="number">33</span> <span class="identifier">ns</span>         <span class="number">33</span> <span class="identifier">ns</span>
222<span class="identifier">BM_CatmullRom</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">2048</span>            <span class="number">34</span> <span class="identifier">ns</span>         <span class="number">34</span> <span class="identifier">ns</span>
223<span class="identifier">BM_CatmullRom</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">4096</span>            <span class="number">36</span> <span class="identifier">ns</span>         <span class="number">36</span> <span class="identifier">ns</span>
224<span class="identifier">BM_CatmullRom</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">8192</span>            <span class="number">38</span> <span class="identifier">ns</span>         <span class="number">38</span> <span class="identifier">ns</span>
225<span class="identifier">BM_CatmullRom</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">16384</span>           <span class="number">39</span> <span class="identifier">ns</span>         <span class="number">39</span> <span class="identifier">ns</span>
226<span class="identifier">BM_CatmullRom</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">32768</span>           <span class="number">40</span> <span class="identifier">ns</span>         <span class="number">40</span> <span class="identifier">ns</span>
227<span class="identifier">BM_CatmullRom</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">65536</span>           <span class="number">45</span> <span class="identifier">ns</span>         <span class="number">44</span> <span class="identifier">ns</span>
228<span class="identifier">BM_CatmullRom</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">131072</span>          <span class="number">46</span> <span class="identifier">ns</span>         <span class="number">46</span> <span class="identifier">ns</span>
229<span class="identifier">BM_CatmullRom</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">262144</span>          <span class="number">50</span> <span class="identifier">ns</span>         <span class="number">50</span> <span class="identifier">ns</span>
230<span class="identifier">BM_CatmullRom</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">524288</span>          <span class="number">53</span> <span class="identifier">ns</span>         <span class="number">52</span> <span class="identifier">ns</span>
231<span class="identifier">BM_CatmullRom</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">1048576</span>         <span class="number">58</span> <span class="identifier">ns</span>         <span class="number">57</span> <span class="identifier">ns</span>
232<span class="identifier">BM_CatmullRom</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;</span><span class="identifier">_BigO</span>          <span class="number">2.97</span> <span class="identifier">lgN</span>       <span class="number">2.97</span> <span class="identifier">lgN</span>
233<span class="identifier">BM_CatmullRom</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;</span><span class="identifier">_RMS</span>             <span class="number">19</span> <span class="special">%</span>         <span class="number">19</span> <span class="special">%</span>
234</pre>
235<h4>
236<a name="math_toolkit.catmull_rom.h4"></a>
237      <span class="phrase"><a name="math_toolkit.catmull_rom.point_types"></a></span><a class="link" href="catmull_rom.html#math_toolkit.catmull_rom.point_types">Point
238      types</a>
239    </h4>
240<p>
241      We have already discussed that certain conditions on the <code class="computeroutput"><span class="identifier">Point</span></code>
242      type template argument must be obeyed. The following shows a custom point type
243      in 3D which can be used as a template argument to Catmull-Rom:
244    </p>
245<pre class="programlisting"><span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">Real</span><span class="special">&gt;</span>
246<span class="keyword">class</span> <span class="identifier">mypoint3d</span>
247<span class="special">{</span>
248<span class="keyword">public</span><span class="special">:</span>
249    <span class="comment">// Must define a value_type:</span>
250    <span class="keyword">typedef</span> <span class="identifier">Real</span> <span class="identifier">value_type</span><span class="special">;</span>
251
252    <span class="comment">// Regular constructor--need not be of this form.</span>
253    <span class="identifier">mypoint3d</span><span class="special">(</span><span class="identifier">Real</span> <span class="identifier">x</span><span class="special">,</span> <span class="identifier">Real</span> <span class="identifier">y</span><span class="special">,</span> <span class="identifier">Real</span> <span class="identifier">z</span><span class="special">)</span> <span class="special">{</span><span class="identifier">m_vec</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">x</span><span class="special">;</span> <span class="identifier">m_vec</span><span class="special">[</span><span class="number">1</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">y</span><span class="special">;</span> <span class="identifier">m_vec</span><span class="special">[</span><span class="number">2</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">z</span><span class="special">;</span> <span class="special">}</span>
254
255    <span class="comment">// Must define a default constructor:</span>
256    <span class="identifier">mypoint3d</span><span class="special">()</span> <span class="special">{}</span>
257
258    <span class="comment">// Must define array access:</span>
259    <span class="identifier">Real</span> <span class="keyword">operator</span><span class="special">[](</span><span class="identifier">size_t</span> <span class="identifier">i</span><span class="special">)</span> <span class="keyword">const</span>
260    <span class="special">{</span>
261        <span class="keyword">return</span> <span class="identifier">m_vec</span><span class="special">[</span><span class="identifier">i</span><span class="special">];</span>
262    <span class="special">}</span>
263
264    <span class="comment">// Must define array element assignment:</span>
265    <span class="identifier">Real</span><span class="special">&amp;</span> <span class="keyword">operator</span><span class="special">[](</span><span class="identifier">size_t</span> <span class="identifier">i</span><span class="special">)</span>
266    <span class="special">{</span>
267        <span class="keyword">return</span> <span class="identifier">m_vec</span><span class="special">[</span><span class="identifier">i</span><span class="special">];</span>
268    <span class="special">}</span>
269
270<span class="keyword">private</span><span class="special">:</span>
271    <span class="identifier">std</span><span class="special">::</span><span class="identifier">array</span><span class="special">&lt;</span><span class="identifier">Real</span><span class="special">,</span> <span class="number">3</span><span class="special">&gt;</span> <span class="identifier">m_vec</span><span class="special">;</span>
272<span class="special">};</span>
273
274
275<span class="comment">// Must define the free function "size()":</span>
276<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">Real</span><span class="special">&gt;</span>
277<span class="keyword">constexpr</span> <span class="identifier">size_t</span> <span class="identifier">size</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">mypoint3d</span><span class="special">&lt;</span><span class="identifier">Real</span><span class="special">&gt;&amp;</span> <span class="identifier">c</span><span class="special">)</span>
278<span class="special">{</span>
279    <span class="keyword">return</span> <span class="number">3</span><span class="special">;</span>
280<span class="special">}</span>
281</pre>
282<p>
283      These conditions are satisfied by both <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">array</span></code> and
284      <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span></code>, but it may nonetheless be useful
285      to define your own point class so that (say) you can define geometric distance
286      between them.
287    </p>
288<h4>
289<a name="math_toolkit.catmull_rom.h5"></a>
290      <span class="phrase"><a name="math_toolkit.catmull_rom.caveats"></a></span><a class="link" href="catmull_rom.html#math_toolkit.catmull_rom.caveats">Caveats</a>
291    </h4>
292<p>
293      The Catmull-Rom interpolator requires memory for three more points than is
294      provided by the user. This causes the class to call a <code class="computeroutput"><span class="identifier">resize</span><span class="special">()</span></code> on the input vector. If <code class="computeroutput"><span class="identifier">v</span><span class="special">.</span><span class="identifier">capacity</span><span class="special">()</span> <span class="special">&gt;=</span> <span class="identifier">v</span><span class="special">.</span><span class="identifier">size</span><span class="special">()</span>
295      <span class="special">+</span> <span class="number">3</span></code>,
296      then no problems arise; there are no reallocs, and in practice this condition
297      is almost always satisfied. However, if <code class="computeroutput"><span class="identifier">v</span><span class="special">.</span><span class="identifier">capacity</span><span class="special">()</span> <span class="special">&lt;</span> <span class="identifier">v</span><span class="special">.</span><span class="identifier">size</span><span class="special">()</span>
298      <span class="special">+</span> <span class="number">3</span></code>,
299      the <code class="computeroutput"><span class="identifier">realloc</span></code> causes a performance
300      penalty of roughly 20%.
301    </p>
302<h4>
303<a name="math_toolkit.catmull_rom.h6"></a>
304      <span class="phrase"><a name="math_toolkit.catmull_rom.generic_containers"></a></span><a class="link" href="catmull_rom.html#math_toolkit.catmull_rom.generic_containers">Generic
305      Containers</a>
306    </h4>
307<p>
308      The <code class="computeroutput"><span class="identifier">Point</span></code> type may be stored
309      in a different container than <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span></code>.
310      For example, here is how to store the points in a Boost.uBLAS vector:
311    </p>
312<pre class="programlisting"><span class="identifier">mypoint3d</span><span class="special">&lt;</span><span class="identifier">Real</span><span class="special">&gt;</span> <span class="identifier">p0</span><span class="special">(</span><span class="number">0.1</span><span class="special">,</span> <span class="number">0.2</span><span class="special">,</span> <span class="number">0.3</span><span class="special">);</span>
313<span class="identifier">mypoint3d</span><span class="special">&lt;</span><span class="identifier">Real</span><span class="special">&gt;</span> <span class="identifier">p1</span><span class="special">(</span><span class="number">0.2</span><span class="special">,</span> <span class="number">0.3</span><span class="special">,</span> <span class="number">0.4</span><span class="special">);</span>
314<span class="identifier">mypoint3d</span><span class="special">&lt;</span><span class="identifier">Real</span><span class="special">&gt;</span> <span class="identifier">p2</span><span class="special">(</span><span class="number">0.3</span><span class="special">,</span> <span class="number">0.4</span><span class="special">,</span> <span class="number">0.5</span><span class="special">);</span>
315<span class="identifier">mypoint3d</span><span class="special">&lt;</span><span class="identifier">Real</span><span class="special">&gt;</span> <span class="identifier">p3</span><span class="special">(</span><span class="number">0.4</span><span class="special">,</span> <span class="number">0.5</span><span class="special">,</span> <span class="number">0.6</span><span class="special">);</span>
316<span class="identifier">mypoint3d</span><span class="special">&lt;</span><span class="identifier">Real</span><span class="special">&gt;</span> <span class="identifier">p4</span><span class="special">(</span><span class="number">0.5</span><span class="special">,</span> <span class="number">0.6</span><span class="special">,</span> <span class="number">0.7</span><span class="special">);</span>
317<span class="identifier">mypoint3d</span><span class="special">&lt;</span><span class="identifier">Real</span><span class="special">&gt;</span> <span class="identifier">p5</span><span class="special">(</span><span class="number">0.6</span><span class="special">,</span> <span class="number">0.7</span><span class="special">,</span> <span class="number">0.8</span><span class="special">);</span>
318
319<span class="identifier">boost</span><span class="special">::</span><span class="identifier">numeric</span><span class="special">::</span><span class="identifier">ublas</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="identifier">mypoint3d</span><span class="special">&lt;</span><span class="identifier">Real</span><span class="special">&gt;&gt;</span> <span class="identifier">u</span><span class="special">(</span><span class="number">6</span><span class="special">);</span>
320<span class="identifier">u</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">p0</span><span class="special">;</span>
321<span class="identifier">u</span><span class="special">[</span><span class="number">1</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">p1</span><span class="special">;</span>
322<span class="identifier">u</span><span class="special">[</span><span class="number">2</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">p2</span><span class="special">;</span>
323<span class="identifier">u</span><span class="special">[</span><span class="number">3</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">p3</span><span class="special">;</span>
324<span class="identifier">u</span><span class="special">[</span><span class="number">4</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">p4</span><span class="special">;</span>
325<span class="identifier">u</span><span class="special">[</span><span class="number">5</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">p5</span><span class="special">;</span>
326
327<span class="comment">// Tests initializer_list:</span>
328<span class="identifier">catmull_rom</span><span class="special">&lt;</span><span class="identifier">mypoint3d</span><span class="special">&lt;</span><span class="identifier">Real</span><span class="special">&gt;,</span> <span class="keyword">decltype</span><span class="special">(</span><span class="identifier">u</span><span class="special">)&gt;</span> <span class="identifier">cat</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">move</span><span class="special">(</span><span class="identifier">u</span><span class="special">));</span>
329</pre>
330<h4>
331<a name="math_toolkit.catmull_rom.h7"></a>
332      <span class="phrase"><a name="math_toolkit.catmull_rom.references"></a></span><a class="link" href="catmull_rom.html#math_toolkit.catmull_rom.references">References</a>
333    </h4>
334<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
335<li class="listitem">
336          Cem Yuksel, Scott Schaefer, and John Keyser, <span class="emphasis"><em>Parameterization
337          and applications of Catmull–Rom curves</em></span>, Computer-Aided Design
338          43 (2011) 747–755.
339        </li>
340<li class="listitem">
341          Phillip J. Barry and Ronald N. Goldman, <span class="emphasis"><em>A Recursive Evaluation
342          Algorithm for a Class of Catmull-Rom Splines</em></span>, Computer Graphics,
343          Volume 22, Number 4, August 1988
344        </li>
345</ul></div>
346</div>
347<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
348<td align="left"></td>
349<td align="right"><div class="copyright-footer">Copyright © 2006-2019 Nikhar
350      Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
351      Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Matthew Pulver, Johan
352      Råde, Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg,
353      Daryle Walker and Xiaogang Zhang<p>
354        Distributed under the Boost Software License, Version 1.0. (See accompanying
355        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
356      </p>
357</div></td>
358</tr></table>
359<hr>
360<div class="spirit-nav">
361<a accesskey="p" href="vector_barycentric.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../interpolation.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="cardinal_trigonometric.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
362</div>
363</body>
364</html>
365