• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<html>
2<head>
3<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
4<title>Cauchy-Lorentz Distribution</title>
5<link rel="stylesheet" href="../../../math.css" type="text/css">
6<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
7<link rel="home" href="../../../index.html" title="Math Toolkit 2.12.0">
8<link rel="up" href="../dists.html" title="Distributions">
9<link rel="prev" href="binomial_dist.html" title="Binomial Distribution">
10<link rel="next" href="chi_squared_dist.html" title="Chi Squared Distribution">
11</head>
12<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
13<table cellpadding="2" width="100%"><tr>
14<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../../boost.png"></td>
15<td align="center"><a href="../../../../../../../index.html">Home</a></td>
16<td align="center"><a href="../../../../../../../libs/libraries.htm">Libraries</a></td>
17<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
18<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
19<td align="center"><a href="../../../../../../../more/index.htm">More</a></td>
20</tr></table>
21<hr>
22<div class="spirit-nav">
23<a accesskey="p" href="binomial_dist.html"><img src="../../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../dists.html"><img src="../../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../../index.html"><img src="../../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="chi_squared_dist.html"><img src="../../../../../../../doc/src/images/next.png" alt="Next"></a>
24</div>
25<div class="section">
26<div class="titlepage"><div><div><h4 class="title">
27<a name="math_toolkit.dist_ref.dists.cauchy_dist"></a><a class="link" href="cauchy_dist.html" title="Cauchy-Lorentz Distribution">Cauchy-Lorentz
28        Distribution</a>
29</h4></div></div></div>
30<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">distributions</span><span class="special">/</span><span class="identifier">cauchy</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span></pre>
31<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">RealType</span> <span class="special">=</span> <span class="keyword">double</span><span class="special">,</span>
32          <span class="keyword">class</span> <a class="link" href="../../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a>   <span class="special">=</span> <a class="link" href="../../pol_ref/pol_ref_ref.html" title="Policy Class Reference">policies::policy&lt;&gt;</a> <span class="special">&gt;</span>
33<span class="keyword">class</span> <span class="identifier">cauchy_distribution</span><span class="special">;</span>
34
35<span class="keyword">typedef</span> <span class="identifier">cauchy_distribution</span><span class="special">&lt;&gt;</span> <span class="identifier">cauchy</span><span class="special">;</span>
36
37<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">RealType</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
38<span class="keyword">class</span> <span class="identifier">cauchy_distribution</span>
39<span class="special">{</span>
40<span class="keyword">public</span><span class="special">:</span>
41   <span class="keyword">typedef</span> <span class="identifier">RealType</span>  <span class="identifier">value_type</span><span class="special">;</span>
42   <span class="keyword">typedef</span> <span class="identifier">Policy</span>    <span class="identifier">policy_type</span><span class="special">;</span>
43
44   <span class="identifier">cauchy_distribution</span><span class="special">(</span><span class="identifier">RealType</span> <span class="identifier">location</span> <span class="special">=</span> <span class="number">0</span><span class="special">,</span> <span class="identifier">RealType</span> <span class="identifier">scale</span> <span class="special">=</span> <span class="number">1</span><span class="special">);</span>
45
46   <span class="identifier">RealType</span> <span class="identifier">location</span><span class="special">()</span><span class="keyword">const</span><span class="special">;</span>
47   <span class="identifier">RealType</span> <span class="identifier">scale</span><span class="special">()</span><span class="keyword">const</span><span class="special">;</span>
48<span class="special">};</span>
49</pre>
50<p>
51          The <a href="http://en.wikipedia.org/wiki/Cauchy_distribution" target="_top">Cauchy-Lorentz
52          distribution</a> is named after Augustin Cauchy and Hendrik Lorentz.
53          It is a <a href="http://en.wikipedia.org/wiki/Probability_distribution" target="_top">continuous
54          probability distribution</a> with <a href="http://en.wikipedia.org/wiki/Probability_distribution" target="_top">probability
55          distribution function PDF</a> given by:
56        </p>
57<div class="blockquote"><blockquote class="blockquote"><p>
58            <span class="inlinemediaobject"><img src="../../../../equations/cauchy_ref1.svg"></span>
59
60          </p></blockquote></div>
61<p>
62          The location parameter <span class="emphasis"><em>x<sub>0</sub></em></span> is the location of the peak
63          of the distribution (the mode of the distribution), while the scale parameter
64          γ specifies half the width of the PDF at half the maximum height. If the
65          location is zero, and the scale 1, then the result is a standard Cauchy
66          distribution.
67        </p>
68<p>
69          The distribution is important in physics as it is the solution to the differential
70          equation describing forced resonance, while in spectroscopy it is the description
71          of the line shape of spectral lines.
72        </p>
73<p>
74          The following graph shows how the distributions moves as the location parameter
75          changes:
76        </p>
77<div class="blockquote"><blockquote class="blockquote"><p>
78            <span class="inlinemediaobject"><img src="../../../../graphs/cauchy_pdf1.svg" align="middle"></span>
79
80          </p></blockquote></div>
81<p>
82          While the following graph shows how the shape (scale) parameter alters
83          the distribution:
84        </p>
85<div class="blockquote"><blockquote class="blockquote"><p>
86            <span class="inlinemediaobject"><img src="../../../../graphs/cauchy_pdf2.svg" align="middle"></span>
87
88          </p></blockquote></div>
89<h5>
90<a name="math_toolkit.dist_ref.dists.cauchy_dist.h0"></a>
91          <span class="phrase"><a name="math_toolkit.dist_ref.dists.cauchy_dist.member_functions"></a></span><a class="link" href="cauchy_dist.html#math_toolkit.dist_ref.dists.cauchy_dist.member_functions">Member
92          Functions</a>
93        </h5>
94<pre class="programlisting"><span class="identifier">cauchy_distribution</span><span class="special">(</span><span class="identifier">RealType</span> <span class="identifier">location</span> <span class="special">=</span> <span class="number">0</span><span class="special">,</span> <span class="identifier">RealType</span> <span class="identifier">scale</span> <span class="special">=</span> <span class="number">1</span><span class="special">);</span>
95</pre>
96<p>
97          Constructs a Cauchy distribution, with location parameter <span class="emphasis"><em>location</em></span>
98          and scale parameter <span class="emphasis"><em>scale</em></span>. When these parameters take
99          their default values (location = 0, scale = 1) then the result is a Standard
100          Cauchy Distribution.
101        </p>
102<p>
103          Requires scale &gt; 0, otherwise calls <a class="link" href="../../error_handling.html#math_toolkit.error_handling.domain_error">domain_error</a>.
104        </p>
105<pre class="programlisting"><span class="identifier">RealType</span> <span class="identifier">location</span><span class="special">()</span><span class="keyword">const</span><span class="special">;</span>
106</pre>
107<p>
108          Returns the location parameter of the distribution.
109        </p>
110<pre class="programlisting"><span class="identifier">RealType</span> <span class="identifier">scale</span><span class="special">()</span><span class="keyword">const</span><span class="special">;</span>
111</pre>
112<p>
113          Returns the scale parameter of the distribution.
114        </p>
115<h5>
116<a name="math_toolkit.dist_ref.dists.cauchy_dist.h1"></a>
117          <span class="phrase"><a name="math_toolkit.dist_ref.dists.cauchy_dist.non_member_accessors"></a></span><a class="link" href="cauchy_dist.html#math_toolkit.dist_ref.dists.cauchy_dist.non_member_accessors">Non-member
118          Accessors</a>
119        </h5>
120<p>
121          All the <a class="link" href="../nmp.html" title="Non-Member Properties">usual non-member accessor
122          functions</a> that are generic to all distributions are supported:
123          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.cdf">Cumulative Distribution Function</a>,
124          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.pdf">Probability Density Function</a>,
125          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.quantile">Quantile</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.hazard">Hazard Function</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.chf">Cumulative Hazard Function</a>,
126          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.mean">mean</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.median">median</a>,
127          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.mode">mode</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.variance">variance</a>,
128          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.sd">standard deviation</a>,
129          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.skewness">skewness</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.kurtosis">kurtosis</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.kurtosis_excess">kurtosis_excess</a>,
130          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.range">range</a> and <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.support">support</a>.
131        </p>
132<p>
133          Note however that the Cauchy distribution does not have a mean, standard
134          deviation, etc. See <a class="link" href="../../pol_ref/assert_undefined.html" title="Mathematically Undefined Function Policies">mathematically
135          undefined function</a> to control whether these should fail to compile
136          with a BOOST_STATIC_ASSERTION_FAILURE, which is the default.
137        </p>
138<p>
139          Alternately, the functions <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.mean">mean</a>,
140          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.sd">standard deviation</a>,
141          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.variance">variance</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.skewness">skewness</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.kurtosis">kurtosis</a>
142          and <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.kurtosis_excess">kurtosis_excess</a>
143          will all return a <a class="link" href="../../error_handling.html#math_toolkit.error_handling.domain_error">domain_error</a>
144          if called.
145        </p>
146<p>
147          The domain of the random variable is [-[max_value], +[min_value]].
148        </p>
149<h5>
150<a name="math_toolkit.dist_ref.dists.cauchy_dist.h2"></a>
151          <span class="phrase"><a name="math_toolkit.dist_ref.dists.cauchy_dist.accuracy"></a></span><a class="link" href="cauchy_dist.html#math_toolkit.dist_ref.dists.cauchy_dist.accuracy">Accuracy</a>
152        </h5>
153<p>
154          The Cauchy distribution is implemented in terms of the standard library
155          <code class="computeroutput"><span class="identifier">tan</span></code> and <code class="computeroutput"><span class="identifier">atan</span></code>
156          functions, and as such should have very low error rates.
157        </p>
158<h5>
159<a name="math_toolkit.dist_ref.dists.cauchy_dist.h3"></a>
160          <span class="phrase"><a name="math_toolkit.dist_ref.dists.cauchy_dist.implementation"></a></span><a class="link" href="cauchy_dist.html#math_toolkit.dist_ref.dists.cauchy_dist.implementation">Implementation</a>
161        </h5>
162<p>
163          In the following table x<sub>0 </sub> is the location parameter of the distribution,
164          γ is its scale parameter, <span class="emphasis"><em>x</em></span> is the random variate,
165          <span class="emphasis"><em>p</em></span> is the probability and <span class="emphasis"><em>q = 1-p</em></span>.
166        </p>
167<div class="informaltable"><table class="table">
168<colgroup>
169<col>
170<col>
171</colgroup>
172<thead><tr>
173<th>
174                  <p>
175                    Function
176                  </p>
177                </th>
178<th>
179                  <p>
180                    Implementation Notes
181                  </p>
182                </th>
183</tr></thead>
184<tbody>
185<tr>
186<td>
187                  <p>
188                    pdf
189                  </p>
190                </td>
191<td>
192                  <p>
193                    Using the relation: <span class="emphasis"><em>pdf = 1 / (π * γ * (1 + ((x - x<sub>0 </sub>)
194                    / γ)<sup>2</sup>) </em></span>
195                  </p>
196                </td>
197</tr>
198<tr>
199<td>
200                  <p>
201                    cdf and its complement
202                  </p>
203                </td>
204<td>
205                  <p>
206                    The cdf is normally given by:
207                  </p>
208                  <div class="blockquote"><blockquote class="blockquote"><p>
209                      <span class="serif_italic">p = 0.5 + atan(x)/π</span>
210                    </p></blockquote></div>
211                  <p>
212                    But that suffers from cancellation error as x -&gt; -∞. So recall
213                    that for <code class="computeroutput"><span class="identifier">x</span> <span class="special">&lt;</span>
214                    <span class="number">0</span></code>:
215                  </p>
216                  <div class="blockquote"><blockquote class="blockquote"><p>
217                      <span class="serif_italic">atan(x) = -π/2 - atan(1/x)</span>
218                    </p></blockquote></div>
219                  <p>
220                    Substituting into the above we get:
221                  </p>
222                  <div class="blockquote"><blockquote class="blockquote"><p>
223                      <span class="serif_italic">p = -atan(1/x) ; x &lt; 0</span>
224                    </p></blockquote></div>
225                  <p>
226                    So the procedure is to calculate the cdf for -fabs(x) using the
227                    above formula. Note that to factor in the location and scale
228                    parameters you must substitute (x - x<sub>0 </sub>) / γ for x in the above.
229                  </p>
230                  <p>
231                    This procedure yields the smaller of <span class="emphasis"><em>p</em></span> and
232                    <span class="emphasis"><em>q</em></span>, so the result may need subtracting from
233                    1 depending on whether we want the complement or not, and whether
234                    <span class="emphasis"><em>x</em></span> is less than x<sub>0 </sub> or not.
235                  </p>
236                </td>
237</tr>
238<tr>
239<td>
240                  <p>
241                    quantile
242                  </p>
243                </td>
244<td>
245                  <p>
246                    The same procedure is used irrespective of whether we're starting
247                    from the probability or its complement. First the argument <span class="emphasis"><em>p</em></span>
248                    is reduced to the range [-0.5, 0.5], then the relation
249                  </p>
250                  <div class="blockquote"><blockquote class="blockquote"><p>
251                      <span class="serif_italic">x = x<sub>0 </sub> ± γ / tan(π * p)</span>
252                    </p></blockquote></div>
253                  <p>
254                    is used to obtain the result. Whether we're adding or subtracting
255                    from x<sub>0 </sub> is determined by whether we're starting from the complement
256                    or not.
257                  </p>
258                </td>
259</tr>
260<tr>
261<td>
262                  <p>
263                    mode
264                  </p>
265                </td>
266<td>
267                  <p>
268                    The location parameter.
269                  </p>
270                </td>
271</tr>
272</tbody>
273</table></div>
274<h5>
275<a name="math_toolkit.dist_ref.dists.cauchy_dist.h4"></a>
276          <span class="phrase"><a name="math_toolkit.dist_ref.dists.cauchy_dist.references"></a></span><a class="link" href="cauchy_dist.html#math_toolkit.dist_ref.dists.cauchy_dist.references">References</a>
277        </h5>
278<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
279<li class="listitem">
280              <a href="http://en.wikipedia.org/wiki/Cauchy_distribution" target="_top">Cauchy-Lorentz
281              distribution</a>
282            </li>
283<li class="listitem">
284              <a href="http://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm" target="_top">NIST
285              Exploratory Data Analysis</a>
286            </li>
287<li class="listitem">
288              <a href="http://mathworld.wolfram.com/CauchyDistribution.html" target="_top">Weisstein,
289              Eric W. "Cauchy Distribution." From MathWorld--A Wolfram
290              Web Resource.</a>
291            </li>
292</ul></div>
293</div>
294<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
295<td align="left"></td>
296<td align="right"><div class="copyright-footer">Copyright © 2006-2019 Nikhar
297      Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
298      Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Matthew Pulver, Johan
299      Råde, Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg,
300      Daryle Walker and Xiaogang Zhang<p>
301        Distributed under the Boost Software License, Version 1.0. (See accompanying
302        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
303      </p>
304</div></td>
305</tr></table>
306<hr>
307<div class="spirit-nav">
308<a accesskey="p" href="binomial_dist.html"><img src="../../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../dists.html"><img src="../../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../../index.html"><img src="../../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="chi_squared_dist.html"><img src="../../../../../../../doc/src/images/next.png" alt="Next"></a>
309</div>
310</body>
311</html>
312