• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<html>
2<head>
3<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
4<title>Inverse Gaussian (or Inverse Normal) Distribution</title>
5<link rel="stylesheet" href="../../../math.css" type="text/css">
6<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
7<link rel="home" href="../../../index.html" title="Math Toolkit 2.12.0">
8<link rel="up" href="../dists.html" title="Distributions">
9<link rel="prev" href="inverse_gamma_dist.html" title="Inverse Gamma Distribution">
10<link rel="next" href="laplace_dist.html" title="Laplace Distribution">
11</head>
12<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
13<table cellpadding="2" width="100%"><tr>
14<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../../boost.png"></td>
15<td align="center"><a href="../../../../../../../index.html">Home</a></td>
16<td align="center"><a href="../../../../../../../libs/libraries.htm">Libraries</a></td>
17<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
18<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
19<td align="center"><a href="../../../../../../../more/index.htm">More</a></td>
20</tr></table>
21<hr>
22<div class="spirit-nav">
23<a accesskey="p" href="inverse_gamma_dist.html"><img src="../../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../dists.html"><img src="../../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../../index.html"><img src="../../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="laplace_dist.html"><img src="../../../../../../../doc/src/images/next.png" alt="Next"></a>
24</div>
25<div class="section">
26<div class="titlepage"><div><div><h4 class="title">
27<a name="math_toolkit.dist_ref.dists.inverse_gaussian_dist"></a><a class="link" href="inverse_gaussian_dist.html" title="Inverse Gaussian (or Inverse Normal) Distribution">Inverse
28        Gaussian (or Inverse Normal) Distribution</a>
29</h4></div></div></div>
30<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">distributions</span><span class="special">/</span><span class="identifier">inverse_gaussian</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span></pre>
31<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span><span class="special">{</span>
32
33<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">RealType</span> <span class="special">=</span> <span class="keyword">double</span><span class="special">,</span>
34          <span class="keyword">class</span> <a class="link" href="../../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a>   <span class="special">=</span> <a class="link" href="../../pol_ref/pol_ref_ref.html" title="Policy Class Reference">policies::policy&lt;&gt;</a> <span class="special">&gt;</span>
35<span class="keyword">class</span> <span class="identifier">inverse_gaussian_distribution</span>
36<span class="special">{</span>
37<span class="keyword">public</span><span class="special">:</span>
38   <span class="keyword">typedef</span> <span class="identifier">RealType</span> <span class="identifier">value_type</span><span class="special">;</span>
39   <span class="keyword">typedef</span> <span class="identifier">Policy</span>   <span class="identifier">policy_type</span><span class="special">;</span>
40
41   <span class="identifier">inverse_gaussian_distribution</span><span class="special">(</span><span class="identifier">RealType</span> <span class="identifier">mean</span> <span class="special">=</span> <span class="number">1</span><span class="special">,</span> <span class="identifier">RealType</span> <span class="identifier">scale</span> <span class="special">=</span> <span class="number">1</span><span class="special">);</span>
42
43   <span class="identifier">RealType</span> <span class="identifier">mean</span><span class="special">()</span><span class="keyword">const</span><span class="special">;</span> <span class="comment">// mean default 1.</span>
44   <span class="identifier">RealType</span> <span class="identifier">scale</span><span class="special">()</span><span class="keyword">const</span><span class="special">;</span> <span class="comment">// Optional scale, default 1 (unscaled).</span>
45   <span class="identifier">RealType</span> <span class="identifier">shape</span><span class="special">()</span><span class="keyword">const</span><span class="special">;</span> <span class="comment">// Shape = scale/mean.</span>
46<span class="special">};</span>
47<span class="keyword">typedef</span> <span class="identifier">inverse_gaussian_distribution</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;</span> <span class="identifier">inverse_gaussian</span><span class="special">;</span>
48
49<span class="special">}}</span> <span class="comment">// namespace boost // namespace math</span>
50</pre>
51<p>
52          The Inverse Gaussian distribution distribution is a continuous probability
53          distribution.
54        </p>
55<p>
56          The distribution is also called 'normal-inverse Gaussian distribution',
57          and 'normal Inverse' distribution.
58        </p>
59<p>
60          It is also convenient to provide unity as default for both mean and scale.
61          This is the Standard form for all distributions. The Inverse Gaussian distribution
62          was first studied in relation to Brownian motion. In 1956 M.C.K. Tweedie
63          used the name Inverse Gaussian because there is an inverse relationship
64          between the time to cover a unit distance and distance covered in unit
65          time. The inverse Gaussian is one of family of distributions that have
66          been called the <a href="http://en.wikipedia.org/wiki/Tweedie_distributions" target="_top">Tweedie
67          distributions</a>.
68        </p>
69<p>
70          (So <span class="emphasis"><em>inverse</em></span> in the name may mislead: it does <span class="bold"><strong>not</strong></span> relate to the inverse of a distribution).
71        </p>
72<p>
73          The tails of the distribution decrease more slowly than the normal distribution.
74          It is therefore suitable to model phenomena where numerically large values
75          are more probable than is the case for the normal distribution. For stock
76          market returns and prices, a key characteristic is that it models that
77          extremely large variations from typical (crashes) can occur even when almost
78          all (normal) variations are small.
79        </p>
80<p>
81          Examples are returns from financial assets and turbulent wind speeds.
82        </p>
83<p>
84          The normal-inverse Gaussian distributions form a subclass of the generalised
85          hyperbolic distributions.
86        </p>
87<p>
88          See <a href="http://en.wikipedia.org/wiki/Normal-inverse_Gaussian_distribution" target="_top">distribution</a>.
89          <a href="http://mathworld.wolfram.com/InverseGaussianDistribution.html" target="_top">Weisstein,
90          Eric W. "Inverse Gaussian Distribution." From MathWorld--A Wolfram
91          Web Resource.</a>
92        </p>
93<p>
94          If you want a <code class="computeroutput"><span class="keyword">double</span></code> precision
95          inverse_gaussian distribution you can use
96        </p>
97<pre class="programlisting"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">inverse_gaussian_distribution</span><span class="special">&lt;&gt;</span></pre>
98<p>
99          or, more conveniently, you can write
100        </p>
101<pre class="programlisting"><span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">inverse_gaussian</span><span class="special">;</span>
102<span class="identifier">inverse_gaussian</span> <span class="identifier">my_ig</span><span class="special">(</span><span class="number">2</span><span class="special">,</span> <span class="number">3</span><span class="special">);</span>
103</pre>
104<p>
105          For mean parameters μ and scale (also called precision) parameter λ, and random
106          variate x, the inverse_gaussian distribution is defined by the probability
107          density function (PDF):
108        </p>
109<div class="blockquote"><blockquote class="blockquote"><p>
110            <span class="serif_italic">f(x;μ, λ) = √(λ/2πx<sup>3</sup>) e<sup>-λ(x-μ)²/2μ²x</sup> </span>
111          </p></blockquote></div>
112<p>
113          and Cumulative Density Function (CDF):
114        </p>
115<div class="blockquote"><blockquote class="blockquote"><p>
116            <span class="serif_italic">F(x;μ, λ) = Φ{√(λ<span class="emphasis"><em>x) (x</em></span>μ-1)}
117            + e<sup>2μ/λ</sup> Φ{-√(λ/μ) (1+x/μ)} </span>
118          </p></blockquote></div>
119<p>
120          where Φ is the standard normal distribution CDF.
121        </p>
122<p>
123          The following graphs illustrate how the PDF and CDF of the inverse_gaussian
124          distribution varies for a few values of parameters μ and λ:
125        </p>
126<div class="blockquote"><blockquote class="blockquote"><p>
127            <span class="inlinemediaobject"><img src="../../../../graphs/inverse_gaussian_pdf.svg" align="middle"></span>
128
129          </p></blockquote></div>
130<div class="blockquote"><blockquote class="blockquote"><p>
131            <span class="inlinemediaobject"><img src="../../../../graphs/inverse_gaussian_cdf.svg" align="middle"></span>
132
133          </p></blockquote></div>
134<p>
135          Tweedie also provided 3 other parameterisations where (μ and λ) are replaced
136          by their ratio φ = λ/μ and by 1/μ: these forms may be more suitable for Bayesian
137          applications. These can be found on Seshadri, page 2 and are also discussed
138          by Chhikara and Folks on page 105. Another related parameterisation, the
139          __wald_distrib (where mean μ is unity) is also provided.
140        </p>
141<h5>
142<a name="math_toolkit.dist_ref.dists.inverse_gaussian_dist.h0"></a>
143          <span class="phrase"><a name="math_toolkit.dist_ref.dists.inverse_gaussian_dist.member_functions"></a></span><a class="link" href="inverse_gaussian_dist.html#math_toolkit.dist_ref.dists.inverse_gaussian_dist.member_functions">Member
144          Functions</a>
145        </h5>
146<pre class="programlisting"><span class="identifier">inverse_gaussian_distribution</span><span class="special">(</span><span class="identifier">RealType</span> <span class="identifier">df</span> <span class="special">=</span> <span class="number">1</span><span class="special">,</span> <span class="identifier">RealType</span> <span class="identifier">scale</span> <span class="special">=</span> <span class="number">1</span><span class="special">);</span> <span class="comment">// optionally scaled.</span>
147</pre>
148<p>
149          Constructs an inverse_gaussian distribution with μ mean, and scale λ, with
150          both default values 1.
151        </p>
152<p>
153          Requires that both the mean μ parameter and scale λ are greater than zero,
154          otherwise calls <a class="link" href="../../error_handling.html#math_toolkit.error_handling.domain_error">domain_error</a>.
155        </p>
156<pre class="programlisting"><span class="identifier">RealType</span> <span class="identifier">mean</span><span class="special">()</span><span class="keyword">const</span><span class="special">;</span>
157</pre>
158<p>
159          Returns the mean μ parameter of this distribution.
160        </p>
161<pre class="programlisting"><span class="identifier">RealType</span> <span class="identifier">scale</span><span class="special">()</span><span class="keyword">const</span><span class="special">;</span>
162</pre>
163<p>
164          Returns the scale λ parameter of this distribution.
165        </p>
166<h5>
167<a name="math_toolkit.dist_ref.dists.inverse_gaussian_dist.h1"></a>
168          <span class="phrase"><a name="math_toolkit.dist_ref.dists.inverse_gaussian_dist.non_member_accessors"></a></span><a class="link" href="inverse_gaussian_dist.html#math_toolkit.dist_ref.dists.inverse_gaussian_dist.non_member_accessors">Non-member
169          Accessors</a>
170        </h5>
171<p>
172          All the <a class="link" href="../nmp.html" title="Non-Member Properties">usual non-member accessor
173          functions</a> that are generic to all distributions are supported:
174          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.cdf">Cumulative Distribution Function</a>,
175          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.pdf">Probability Density Function</a>,
176          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.quantile">Quantile</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.hazard">Hazard Function</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.chf">Cumulative Hazard Function</a>,
177          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.mean">mean</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.median">median</a>,
178          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.mode">mode</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.variance">variance</a>,
179          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.sd">standard deviation</a>,
180          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.skewness">skewness</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.kurtosis">kurtosis</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.kurtosis_excess">kurtosis_excess</a>,
181          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.range">range</a> and <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.support">support</a>.
182        </p>
183<p>
184          The domain of the random variate is [0,+∞).
185        </p>
186<div class="note"><table border="0" summary="Note">
187<tr>
188<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../../../../../doc/src/images/note.png"></td>
189<th align="left">Note</th>
190</tr>
191<tr><td align="left" valign="top"><p>
192            Unlike some definitions, this implementation supports a random variate
193            equal to zero as a special case, returning zero for both pdf and cdf.
194          </p></td></tr>
195</table></div>
196<h5>
197<a name="math_toolkit.dist_ref.dists.inverse_gaussian_dist.h2"></a>
198          <span class="phrase"><a name="math_toolkit.dist_ref.dists.inverse_gaussian_dist.accuracy"></a></span><a class="link" href="inverse_gaussian_dist.html#math_toolkit.dist_ref.dists.inverse_gaussian_dist.accuracy">Accuracy</a>
199        </h5>
200<p>
201          The inverse_gaussian distribution is implemented in terms of the exponential
202          function and standard normal distribution <span class="emphasis"><em>N</em></span>0,1 Φ : refer
203          to the accuracy data for those functions for more information. But in general,
204          gamma (and thus inverse gamma) results are often accurate to a few epsilon,
205          &gt;14 decimal digits accuracy for 64-bit double.
206        </p>
207<h5>
208<a name="math_toolkit.dist_ref.dists.inverse_gaussian_dist.h3"></a>
209          <span class="phrase"><a name="math_toolkit.dist_ref.dists.inverse_gaussian_dist.implementation"></a></span><a class="link" href="inverse_gaussian_dist.html#math_toolkit.dist_ref.dists.inverse_gaussian_dist.implementation">Implementation</a>
210        </h5>
211<p>
212          In the following table μ is the mean parameter and λ is the scale parameter
213          of the inverse_gaussian distribution, <span class="emphasis"><em>x</em></span> is the random
214          variate, <span class="emphasis"><em>p</em></span> is the probability and <span class="emphasis"><em>q = 1-p</em></span>
215          its complement. Parameters μ for shape and λ for scale are used for the inverse
216          gaussian function.
217        </p>
218<div class="informaltable"><table class="table">
219<colgroup>
220<col>
221<col>
222</colgroup>
223<thead><tr>
224<th>
225                  <p>
226                    Function
227                  </p>
228                </th>
229<th>
230                  <p>
231                    Implementation Notes
232                  </p>
233                </th>
234</tr></thead>
235<tbody>
236<tr>
237<td>
238                  <p>
239                    pdf
240                  </p>
241                </td>
242<td>
243                  <p>
244                    √(λ/ 2πx<sup>3</sup>) e<sup>-λ(x - μ)²/ 2μ²x</sup>
245                  </p>
246                </td>
247</tr>
248<tr>
249<td>
250                  <p>
251                    cdf
252                  </p>
253                </td>
254<td>
255                  <p>
256                    Φ{√(λ<span class="emphasis"><em>x) (x</em></span>μ-1)} + e<sup>2μ/λ</sup> Φ{-√(λ/μ) (1+x/μ)}
257                  </p>
258                </td>
259</tr>
260<tr>
261<td>
262                  <p>
263                    cdf complement
264                  </p>
265                </td>
266<td>
267                  <p>
268                    using complement of Φ above.
269                  </p>
270                </td>
271</tr>
272<tr>
273<td>
274                  <p>
275                    quantile
276                  </p>
277                </td>
278<td>
279                  <p>
280                    No closed form known. Estimated using a guess refined by Newton-Raphson
281                    iteration.
282                  </p>
283                </td>
284</tr>
285<tr>
286<td>
287                  <p>
288                    quantile from the complement
289                  </p>
290                </td>
291<td>
292                  <p>
293                    No closed form known. Estimated using a guess refined by Newton-Raphson
294                    iteration.
295                  </p>
296                </td>
297</tr>
298<tr>
299<td>
300                  <p>
301                    mode
302                  </p>
303                </td>
304<td>
305                  <p>
306                    μ {√(1+9μ²/4λ²)² - 3μ/2λ}
307                  </p>
308                </td>
309</tr>
310<tr>
311<td>
312                  <p>
313                    median
314                  </p>
315                </td>
316<td>
317                  <p>
318                    No closed form analytic equation is known, but is evaluated as
319                    quantile(0.5)
320                  </p>
321                </td>
322</tr>
323<tr>
324<td>
325                  <p>
326                    mean
327                  </p>
328                </td>
329<td>
330                  <p>
331                    μ
332                  </p>
333                </td>
334</tr>
335<tr>
336<td>
337                  <p>
338                    variance
339                  </p>
340                </td>
341<td>
342                  <p>
343                    μ³/λ
344                  </p>
345                </td>
346</tr>
347<tr>
348<td>
349                  <p>
350                    skewness
351                  </p>
352                </td>
353<td>
354                  <p>
355                    3 √ (μ/λ)
356                  </p>
357                </td>
358</tr>
359<tr>
360<td>
361                  <p>
362                    kurtosis_excess
363                  </p>
364                </td>
365<td>
366                  <p>
367                    15μ/λ
368                  </p>
369                </td>
370</tr>
371<tr>
372<td>
373                  <p>
374                    kurtosis
375                  </p>
376                </td>
377<td>
378                  <p>
379                    12μ/λ
380                  </p>
381                </td>
382</tr>
383</tbody>
384</table></div>
385<h5>
386<a name="math_toolkit.dist_ref.dists.inverse_gaussian_dist.h4"></a>
387          <span class="phrase"><a name="math_toolkit.dist_ref.dists.inverse_gaussian_dist.references"></a></span><a class="link" href="inverse_gaussian_dist.html#math_toolkit.dist_ref.dists.inverse_gaussian_dist.references">References</a>
388        </h5>
389<div class="orderedlist"><ol class="orderedlist" type="1">
390<li class="listitem">
391              Wald, A. (1947). Sequential analysis. Wiley, NY.
392            </li>
393<li class="listitem">
394              The Inverse Gaussian distribution : theory, methodology, and applications,
395              Raj S. Chhikara, J. Leroy Folks. ISBN 0824779975 (1989).
396            </li>
397<li class="listitem">
398              The Inverse Gaussian distribution : statistical theory and applications,
399              Seshadri, V , ISBN - 0387986189 (pbk) (Dewey 519.2) (1998).
400            </li>
401<li class="listitem">
402              <a href="http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.wald.html" target="_top">Numpy
403              and Scipy Documentation</a>.
404            </li>
405<li class="listitem">
406              <a href="http://bm2.genes.nig.ac.jp/RGM2/R_current/library/statmod/man/invgauss.html" target="_top">R
407              statmod invgauss functions</a>.
408            </li>
409<li class="listitem">
410              <a href="http://cran.r-project.org/web/packages/SuppDists/index.html" target="_top">R
411              SuppDists invGauss functions</a>. (Note that these R implementations
412              names differ in case).
413            </li>
414<li class="listitem">
415              <a href="http://www.statsci.org/s/invgauss.html" target="_top">StatSci.org invgauss
416              help</a>.
417            </li>
418<li class="listitem">
419              <a href="http://www.statsci.org/s/invgauss.statSci.org" target="_top">invgauss
420              R source</a>.
421            </li>
422<li class="listitem">
423              <a href="http://www.biostat.wustl.edu/archives/html/s-news/2001-12/msg00144.html" target="_top">pwald,
424              qwald</a>.
425            </li>
426<li class="listitem">
427              <a href="http://www.brighton-webs.co.uk/distributions/wald.asp" target="_top">Brighton
428              Webs wald</a>.
429            </li>
430</ol></div>
431</div>
432<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
433<td align="left"></td>
434<td align="right"><div class="copyright-footer">Copyright © 2006-2019 Nikhar
435      Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
436      Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Matthew Pulver, Johan
437      Råde, Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg,
438      Daryle Walker and Xiaogang Zhang<p>
439        Distributed under the Boost Software License, Version 1.0. (See accompanying
440        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
441      </p>
442</div></td>
443</tr></table>
444<hr>
445<div class="spirit-nav">
446<a accesskey="p" href="inverse_gamma_dist.html"><img src="../../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../dists.html"><img src="../../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../../index.html"><img src="../../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="laplace_dist.html"><img src="../../../../../../../doc/src/images/next.png" alt="Next"></a>
447</div>
448</body>
449</html>
450