• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<html>
2<head>
3<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
4<title>Noncentral T Distribution</title>
5<link rel="stylesheet" href="../../../math.css" type="text/css">
6<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
7<link rel="home" href="../../../index.html" title="Math Toolkit 2.12.0">
8<link rel="up" href="../dists.html" title="Distributions">
9<link rel="prev" href="nc_f_dist.html" title="Noncentral F Distribution">
10<link rel="next" href="normal_dist.html" title="Normal (Gaussian) Distribution">
11</head>
12<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
13<table cellpadding="2" width="100%"><tr>
14<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../../boost.png"></td>
15<td align="center"><a href="../../../../../../../index.html">Home</a></td>
16<td align="center"><a href="../../../../../../../libs/libraries.htm">Libraries</a></td>
17<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
18<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
19<td align="center"><a href="../../../../../../../more/index.htm">More</a></td>
20</tr></table>
21<hr>
22<div class="spirit-nav">
23<a accesskey="p" href="nc_f_dist.html"><img src="../../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../dists.html"><img src="../../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../../index.html"><img src="../../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="normal_dist.html"><img src="../../../../../../../doc/src/images/next.png" alt="Next"></a>
24</div>
25<div class="section">
26<div class="titlepage"><div><div><h4 class="title">
27<a name="math_toolkit.dist_ref.dists.nc_t_dist"></a><a class="link" href="nc_t_dist.html" title="Noncentral T Distribution">Noncentral T
28        Distribution</a>
29</h4></div></div></div>
30<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">distributions</span><span class="special">/</span><span class="identifier">non_central_t</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span></pre>
31<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span><span class="special">{</span>
32
33<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">RealType</span> <span class="special">=</span> <span class="keyword">double</span><span class="special">,</span>
34          <span class="keyword">class</span> <a class="link" href="../../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a>   <span class="special">=</span> <a class="link" href="../../pol_ref/pol_ref_ref.html" title="Policy Class Reference">policies::policy&lt;&gt;</a> <span class="special">&gt;</span>
35<span class="keyword">class</span> <span class="identifier">non_central_t_distribution</span><span class="special">;</span>
36
37<span class="keyword">typedef</span> <span class="identifier">non_central_t_distribution</span><span class="special">&lt;&gt;</span> <span class="identifier">non_central_t</span><span class="special">;</span>
38
39<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">RealType</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
40<span class="keyword">class</span> <span class="identifier">non_central_t_distribution</span>
41<span class="special">{</span>
42<span class="keyword">public</span><span class="special">:</span>
43   <span class="keyword">typedef</span> <span class="identifier">RealType</span>  <span class="identifier">value_type</span><span class="special">;</span>
44   <span class="keyword">typedef</span> <span class="identifier">Policy</span>    <span class="identifier">policy_type</span><span class="special">;</span>
45
46   <span class="comment">// Constructor:</span>
47   <span class="identifier">non_central_t_distribution</span><span class="special">(</span><span class="identifier">RealType</span> <span class="identifier">v</span><span class="special">,</span> <span class="identifier">RealType</span> <span class="identifier">delta</span><span class="special">);</span>
48
49   <span class="comment">// Accessor to degrees_of_freedom parameter v:</span>
50   <span class="identifier">RealType</span> <span class="identifier">degrees_of_freedom</span><span class="special">()</span><span class="keyword">const</span><span class="special">;</span>
51
52   <span class="comment">// Accessor to non-centrality parameter delta:</span>
53   <span class="identifier">RealType</span> <span class="identifier">non_centrality</span><span class="special">()</span><span class="keyword">const</span><span class="special">;</span>
54<span class="special">};</span>
55
56<span class="special">}}</span> <span class="comment">// namespaces</span>
57</pre>
58<p>
59          The noncentral T distribution is a generalization of the <a class="link" href="students_t_dist.html" title="Students t Distribution">Students
60          t Distribution</a>. Let X have a normal distribution with mean δ and variance
61          1, and let <span class="emphasis"><em>ν S<sup>2</sup></em></span> have a chi-squared distribution with
62          degrees of freedom ν. Assume that X and S<sup>2</sup> are independent. The distribution
63          of <span class="serif_italic">t<sub>ν</sub>(δ)=X/S</span> is called a noncentral
64          t distribution with degrees of freedom ν and noncentrality parameter δ.
65        </p>
66<p>
67          This gives the following PDF:
68        </p>
69<div class="blockquote"><blockquote class="blockquote"><p>
70            <span class="inlinemediaobject"><img src="../../../../equations/nc_t_ref1.svg"></span>
71
72          </p></blockquote></div>
73<p>
74          where <span class="serif_italic"><sub>1</sub>F<sub>1</sub>(a;b;x)</span> is a confluent hypergeometric
75          function.
76        </p>
77<p>
78          The following graph illustrates how the distribution changes for different
79          values of ν and δ:
80        </p>
81<div class="blockquote"><blockquote class="blockquote"><p>
82            <span class="inlinemediaobject"><img src="../../../../graphs/nc_t_pdf.svg" align="middle"></span>
83
84          </p></blockquote></div>
85<div class="blockquote"><blockquote class="blockquote"><p>
86            <span class="inlinemediaobject"><img src="../../../../graphs/nc_t_cdf.svg" align="middle"></span>
87
88          </p></blockquote></div>
89<h5>
90<a name="math_toolkit.dist_ref.dists.nc_t_dist.h0"></a>
91          <span class="phrase"><a name="math_toolkit.dist_ref.dists.nc_t_dist.member_functions"></a></span><a class="link" href="nc_t_dist.html#math_toolkit.dist_ref.dists.nc_t_dist.member_functions">Member
92          Functions</a>
93        </h5>
94<pre class="programlisting"><span class="identifier">non_central_t_distribution</span><span class="special">(</span><span class="identifier">RealType</span> <span class="identifier">v</span><span class="special">,</span> <span class="identifier">RealType</span> <span class="identifier">delta</span><span class="special">);</span>
95</pre>
96<p>
97          Constructs a non-central t distribution with degrees of freedom parameter
98          <span class="emphasis"><em>v</em></span> and non-centrality parameter <span class="emphasis"><em>delta</em></span>.
99        </p>
100<p>
101          Requires <span class="emphasis"><em>v</em></span> &gt; 0 (including positive infinity) and
102          finite <span class="emphasis"><em>delta</em></span>, otherwise calls <a class="link" href="../../error_handling.html#math_toolkit.error_handling.domain_error">domain_error</a>.
103        </p>
104<pre class="programlisting"><span class="identifier">RealType</span> <span class="identifier">degrees_of_freedom</span><span class="special">()</span><span class="keyword">const</span><span class="special">;</span>
105</pre>
106<p>
107          Returns the parameter <span class="emphasis"><em>v</em></span> from which this object was
108          constructed.
109        </p>
110<pre class="programlisting"><span class="identifier">RealType</span> <span class="identifier">non_centrality</span><span class="special">()</span><span class="keyword">const</span><span class="special">;</span>
111</pre>
112<p>
113          Returns the non-centrality parameter <span class="emphasis"><em>delta</em></span> from which
114          this object was constructed.
115        </p>
116<h5>
117<a name="math_toolkit.dist_ref.dists.nc_t_dist.h1"></a>
118          <span class="phrase"><a name="math_toolkit.dist_ref.dists.nc_t_dist.non_member_accessors"></a></span><a class="link" href="nc_t_dist.html#math_toolkit.dist_ref.dists.nc_t_dist.non_member_accessors">Non-member
119          Accessors</a>
120        </h5>
121<p>
122          All the <a class="link" href="../nmp.html" title="Non-Member Properties">usual non-member accessor
123          functions</a> that are generic to all distributions are supported:
124          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.cdf">Cumulative Distribution Function</a>,
125          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.pdf">Probability Density Function</a>,
126          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.quantile">Quantile</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.hazard">Hazard Function</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.chf">Cumulative Hazard Function</a>,
127          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.mean">mean</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.median">median</a>,
128          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.mode">mode</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.variance">variance</a>,
129          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.sd">standard deviation</a>,
130          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.skewness">skewness</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.kurtosis">kurtosis</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.kurtosis_excess">kurtosis_excess</a>,
131          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.range">range</a> and <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.support">support</a>.
132        </p>
133<p>
134          The domain of the random variable is [-∞, +∞].
135        </p>
136<h5>
137<a name="math_toolkit.dist_ref.dists.nc_t_dist.h2"></a>
138          <span class="phrase"><a name="math_toolkit.dist_ref.dists.nc_t_dist.accuracy"></a></span><a class="link" href="nc_t_dist.html#math_toolkit.dist_ref.dists.nc_t_dist.accuracy">Accuracy</a>
139        </h5>
140<p>
141          The following table shows the peak errors (in units of <a href="http://en.wikipedia.org/wiki/Machine_epsilon" target="_top">epsilon</a>)
142          found on various platforms with various floating-point types. Unless otherwise
143          specified, any floating-point type that is narrower than the one shown
144          will have <a class="link" href="../../relative_error.html#math_toolkit.relative_error.zero_error">effectively
145          zero error</a>.
146        </p>
147<div class="table">
148<a name="math_toolkit.dist_ref.dists.nc_t_dist.table_non_central_t_CDF"></a><p class="title"><b>Table 5.8. Error rates for non central t CDF</b></p>
149<div class="table-contents"><table class="table" summary="Error rates for non central t CDF">
150<colgroup>
151<col>
152<col>
153<col>
154<col>
155<col>
156</colgroup>
157<thead><tr>
158<th>
159                </th>
160<th>
161                  <p>
162                    GNU C++ version 7.1.0<br> linux<br> double
163                  </p>
164                </th>
165<th>
166                  <p>
167                    GNU C++ version 7.1.0<br> linux<br> long double
168                  </p>
169                </th>
170<th>
171                  <p>
172                    Sun compiler version 0x5150<br> Sun Solaris<br> long double
173                  </p>
174                </th>
175<th>
176                  <p>
177                    Microsoft Visual C++ version 14.1<br> Win32<br> double
178                  </p>
179                </th>
180</tr></thead>
181<tbody>
182<tr>
183<td>
184                  <p>
185                    Non Central T
186                  </p>
187                </td>
188<td>
189                  <p>
190                    <span class="blue">Max = 0.796ε (Mean = 0.0691ε)</span><br>
191                    <br> (<span class="emphasis"><em>Rmath 3.2.3:</em></span> <span class="red">Max
192                    = 5.28e+15ε (Mean = 8.49e+14ε) <a class="link" href="../../logs_and_tables/logs.html#errors_GNU_C_version_7_1_0_linux_double_non_central_t_CDF_Rmath_3_2_3_Non_Central_T">And
193                    other failures.</a>)</span>
194                  </p>
195                </td>
196<td>
197                  <p>
198                    <span class="blue">Max = 139ε (Mean = 31ε)</span>
199                  </p>
200                </td>
201<td>
202                  <p>
203                    <span class="blue">Max = 145ε (Mean = 30.9ε)</span>
204                  </p>
205                </td>
206<td>
207                  <p>
208                    <span class="blue">Max = 135ε (Mean = 32.1ε)</span>
209                  </p>
210                </td>
211</tr>
212<tr>
213<td>
214                  <p>
215                    Non Central T (small non-centrality)
216                  </p>
217                </td>
218<td>
219                  <p>
220                    <span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>Rmath
221                    3.2.3:</em></span> Max = 2.09e+03ε (Mean = 244ε))
222                  </p>
223                </td>
224<td>
225                  <p>
226                    <span class="blue">Max = 3.86ε (Mean = 1.4ε)</span>
227                  </p>
228                </td>
229<td>
230                  <p>
231                    <span class="blue">Max = 9.15ε (Mean = 2.13ε)</span>
232                  </p>
233                </td>
234<td>
235                  <p>
236                    <span class="blue">Max = 6.17ε (Mean = 1.45ε)</span>
237                  </p>
238                </td>
239</tr>
240<tr>
241<td>
242                  <p>
243                    Non Central T (large parameters)
244                  </p>
245                </td>
246<td>
247                  <p>
248                    <span class="blue">Max = 257ε (Mean = 72.1ε)</span><br> <br>
249                    (<span class="emphasis"><em>Rmath 3.2.3:</em></span> Max = 2.46ε (Mean = 0.657ε))
250                  </p>
251                </td>
252<td>
253                  <p>
254                    <span class="blue">Max = 5.26e+05ε (Mean = 1.48e+05ε)</span>
255                  </p>
256                </td>
257<td>
258                  <p>
259                    <span class="blue">Max = 5.24e+05ε (Mean = 1.47e+05ε)</span>
260                  </p>
261                </td>
262<td>
263                  <p>
264                    <span class="blue">Max = 286ε (Mean = 62.8ε)</span>
265                  </p>
266                </td>
267</tr>
268</tbody>
269</table></div>
270</div>
271<br class="table-break"><div class="table">
272<a name="math_toolkit.dist_ref.dists.nc_t_dist.table_non_central_t_CDF_complement"></a><p class="title"><b>Table 5.9. Error rates for non central t CDF complement</b></p>
273<div class="table-contents"><table class="table" summary="Error rates for non central t CDF complement">
274<colgroup>
275<col>
276<col>
277<col>
278<col>
279<col>
280</colgroup>
281<thead><tr>
282<th>
283                </th>
284<th>
285                  <p>
286                    GNU C++ version 7.1.0<br> linux<br> double
287                  </p>
288                </th>
289<th>
290                  <p>
291                    GNU C++ version 7.1.0<br> linux<br> long double
292                  </p>
293                </th>
294<th>
295                  <p>
296                    Sun compiler version 0x5150<br> Sun Solaris<br> long double
297                  </p>
298                </th>
299<th>
300                  <p>
301                    Microsoft Visual C++ version 14.1<br> Win32<br> double
302                  </p>
303                </th>
304</tr></thead>
305<tbody>
306<tr>
307<td>
308                  <p>
309                    Non Central T
310                  </p>
311                </td>
312<td>
313                  <p>
314                    <span class="blue">Max = 0.707ε (Mean = 0.0497ε)</span><br>
315                    <br> (<span class="emphasis"><em>Rmath 3.2.3:</em></span> <span class="red">Max
316                    = 6.19e+15ε (Mean = 6.72e+14ε) <a class="link" href="../../logs_and_tables/logs.html#errors_GNU_C_version_7_1_0_linux_double_non_central_t_CDF_complement_Rmath_3_2_3_Non_Central_T">And
317                    other failures.</a>)</span>
318                  </p>
319                </td>
320<td>
321                  <p>
322                    <span class="blue">Max = 201ε (Mean = 31.7ε)</span>
323                  </p>
324                </td>
325<td>
326                  <p>
327                    <span class="blue">Max = 340ε (Mean = 43.2ε)</span>
328                  </p>
329                </td>
330<td>
331                  <p>
332                    <span class="blue">Max = 154ε (Mean = 32.1ε)</span>
333                  </p>
334                </td>
335</tr>
336<tr>
337<td>
338                  <p>
339                    Non Central T (small non-centrality)
340                  </p>
341                </td>
342<td>
343                  <p>
344                    <span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>Rmath
345                    3.2.3:</em></span> Max = 1.87e+03ε (Mean = 263ε))
346                  </p>
347                </td>
348<td>
349                  <p>
350                    <span class="blue">Max = 10.5ε (Mean = 2.13ε)</span>
351                  </p>
352                </td>
353<td>
354                  <p>
355                    <span class="blue">Max = 10.5ε (Mean = 2.39ε)</span>
356                  </p>
357                </td>
358<td>
359                  <p>
360                    <span class="blue">Max = 4.6ε (Mean = 1.63ε)</span>
361                  </p>
362                </td>
363</tr>
364<tr>
365<td>
366                  <p>
367                    Non Central T (large parameters)
368                  </p>
369                </td>
370<td>
371                  <p>
372                    <span class="blue">Max = 478ε (Mean = 96.3ε)</span><br> <br>
373                    (<span class="emphasis"><em>Rmath 3.2.3:</em></span> Max = 2.24ε (Mean = 0.945ε))
374                  </p>
375                </td>
376<td>
377                  <p>
378                    <span class="blue">Max = 9.79e+05ε (Mean = 1.97e+05ε)</span>
379                  </p>
380                </td>
381<td>
382                  <p>
383                    <span class="blue">Max = 9.79e+05ε (Mean = 1.97e+05ε)</span>
384                  </p>
385                </td>
386<td>
387                  <p>
388                    <span class="blue">Max = 227ε (Mean = 50.4ε)</span>
389                  </p>
390                </td>
391</tr>
392</tbody>
393</table></div>
394</div>
395<br class="table-break"><div class="caution"><table border="0" summary="Caution">
396<tr>
397<td rowspan="2" align="center" valign="top" width="25"><img alt="[Caution]" src="../../../../../../../doc/src/images/caution.png"></td>
398<th align="left">Caution</th>
399</tr>
400<tr><td align="left" valign="top"><p>
401            The complexity of the current algorithm is dependent upon δ<sup>2</sup>: consequently
402            the time taken to evaluate the CDF increases rapidly for δ &gt; 500, likewise
403            the accuracy decreases rapidly for very large δ.
404          </p></td></tr>
405</table></div>
406<p>
407          Accuracy for the quantile and PDF functions should be broadly similar.
408          The <span class="emphasis"><em>mode</em></span> is determined numerically and cannot in principal
409          be more accurate than the square root of floating-point type FPT epsilon,
410          accessed using <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">tools</span><span class="special">::</span><span class="identifier">epsilon</span><span class="special">&lt;</span><span class="identifier">FPT</span><span class="special">&gt;()</span></code>.
411          For 64-bit <code class="computeroutput"><span class="keyword">double</span></code>, epsilon
412          is about 1e-16, so the fractional accuracy is limited to 1e-8.
413        </p>
414<h5>
415<a name="math_toolkit.dist_ref.dists.nc_t_dist.h3"></a>
416          <span class="phrase"><a name="math_toolkit.dist_ref.dists.nc_t_dist.tests"></a></span><a class="link" href="nc_t_dist.html#math_toolkit.dist_ref.dists.nc_t_dist.tests">Tests</a>
417        </h5>
418<p>
419          There are two sets of tests of this distribution:
420        </p>
421<p>
422          Basic sanity checks compare this implementation to the test values given
423          in "Computing discrete mixtures of continuous distributions: noncentral
424          chisquare, noncentral t and the distribution of the square of the sample
425          multiple correlation coefficient." Denise Benton, K. Krishnamoorthy,
426          Computational Statistics &amp; Data Analysis 43 (2003) 249-267.
427        </p>
428<p>
429          Accuracy checks use test data computed with this implementation and arbitrary
430          precision interval arithmetic: this test data is believed to be accurate
431          to at least 50 decimal places.
432        </p>
433<p>
434          The cases of large (or infinite) ν and/or large δ has received special treatment
435          to avoid catastrophic loss of accuracy. New tests have been added to confirm
436          the improvement achieved.
437        </p>
438<p>
439          From Boost 1.52, degrees of freedom ν can be +∞
440when the normal distribution
441          located at δ
442(equivalent to the central Student's t distribution) is used
443          in place for accuracy and speed.
444        </p>
445<h5>
446<a name="math_toolkit.dist_ref.dists.nc_t_dist.h4"></a>
447          <span class="phrase"><a name="math_toolkit.dist_ref.dists.nc_t_dist.implementation"></a></span><a class="link" href="nc_t_dist.html#math_toolkit.dist_ref.dists.nc_t_dist.implementation">Implementation</a>
448        </h5>
449<p>
450          The CDF is computed using a modification of the method described in "Computing
451          discrete mixtures of continuous distributions: noncentral chisquare, noncentral
452          t and the distribution of the square of the sample multiple correlation
453          coefficient." Denise Benton, K. Krishnamoorthy, Computational Statistics
454          &amp; Data Analysis 43 (2003) 249-267.
455        </p>
456<p>
457          This uses the following formula for the CDF:
458        </p>
459<div class="blockquote"><blockquote class="blockquote"><p>
460            <span class="inlinemediaobject"><img src="../../../../equations/nc_t_ref2.svg"></span>
461
462          </p></blockquote></div>
463<p>
464          Where I<sub>x</sub>(a,b) is the incomplete beta function, and Φ(x) is the normal CDF
465          at x.
466        </p>
467<p>
468          Iteration starts at the largest of the Poisson weighting terms (at i =
469          δ<sup>2</sup> / 2) and then proceeds in both directions as per Benton and Krishnamoorthy's
470          paper.
471        </p>
472<p>
473          Alternatively, by considering what happens when t = ∞, we have x = 1, and
474          therefore I<sub>x</sub>(a,b) = 1 and:
475        </p>
476<div class="blockquote"><blockquote class="blockquote"><p>
477            <span class="inlinemediaobject"><img src="../../../../equations/nc_t_ref3.svg"></span>
478
479          </p></blockquote></div>
480<p>
481          From this we can easily show that:
482        </p>
483<div class="blockquote"><blockquote class="blockquote"><p>
484            <span class="inlinemediaobject"><img src="../../../../equations/nc_t_ref4.svg"></span>
485
486          </p></blockquote></div>
487<p>
488          and therefore we have a means to compute either the probability or its
489          complement directly without the risk of cancellation error. The crossover
490          criterion for choosing whether to calculate the CDF or its complement is
491          the same as for the <a class="link" href="nc_beta_dist.html" title="Noncentral Beta Distribution">Noncentral
492          Beta Distribution</a>.
493        </p>
494<p>
495          The PDF can be computed by a very similar method using:
496        </p>
497<div class="blockquote"><blockquote class="blockquote"><p>
498            <span class="inlinemediaobject"><img src="../../../../equations/nc_t_ref5.svg"></span>
499
500          </p></blockquote></div>
501<p>
502          Where I<sub>x</sub><sup>'</sup>(a,b) is the derivative of the incomplete beta function.
503        </p>
504<p>
505          For both the PDF and CDF we switch to approximating the distribution by
506          a Student's t distribution centred on δ when ν is very large. The crossover
507          location appears to be when δ/(4ν) &lt; ε, this location was estimated by
508          inspection of equation 2.6 in "A Comparison of Approximations To Percentiles
509          of the Noncentral t-Distribution". H. Sahai and M. M. Ojeda, Revista
510          Investigacion Operacional Vol 21, No 2, 2000, page 123.
511        </p>
512<p>
513          Equation 2.6 is a Fisher-Cornish expansion by Eeden and Johnson. The second
514          term includes the ratio δ/(4ν), so when this term become negligible, this
515          and following terms can be ignored, leaving just Student's t distribution
516          centred on δ.
517        </p>
518<p>
519          This was also confirmed by experimental testing.
520        </p>
521<p>
522          See also
523        </p>
524<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
525<li class="listitem">
526              "Some Approximations to the Percentage Points of the Noncentral
527              t-Distribution". C. van Eeden. International Statistical Review,
528              29, 4-31.
529            </li>
530<li class="listitem">
531              "Continuous Univariate Distributions". N.L. Johnson, S. Kotz
532              and N. Balkrishnan. 1995. John Wiley and Sons New York.
533            </li>
534</ul></div>
535<p>
536          The quantile is calculated via the usual <a class="link" href="../../roots_noderiv.html" title="Root Finding Without Derivatives">root-finding
537          without derivatives</a> method with the initial guess taken as the quantile
538          of a normal approximation to the noncentral T.
539        </p>
540<p>
541          There is no closed form for the mode, so this is computed via functional
542          maximisation of the PDF.
543        </p>
544<p>
545          The remaining functions (mean, variance etc) are implemented using the
546          formulas given in Weisstein, Eric W. "Noncentral Student's t-Distribution."
547          From MathWorld--A Wolfram Web Resource. <a href="http://mathworld.wolfram.com/NoncentralStudentst-Distribution.html" target="_top">http://mathworld.wolfram.com/NoncentralStudentst-Distribution.html</a>
548          and in the <a href="http://reference.wolfram.com/mathematica/ref/NoncentralStudentTDistribution.html" target="_top">Mathematica
549          documentation</a>.
550        </p>
551<p>
552          Some analytic properties of noncentral distributions (particularly unimodality,
553          and monotonicity of their modes) are surveyed and summarized by:
554        </p>
555<p>
556          Andrea van Aubel &amp; Wolfgang Gawronski, Applied Mathematics and Computation,
557          141 (2003) 3-12.
558        </p>
559</div>
560<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
561<td align="left"></td>
562<td align="right"><div class="copyright-footer">Copyright © 2006-2019 Nikhar
563      Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
564      Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Matthew Pulver, Johan
565      Råde, Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg,
566      Daryle Walker and Xiaogang Zhang<p>
567        Distributed under the Boost Software License, Version 1.0. (See accompanying
568        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
569      </p>
570</div></td>
571</tr></table>
572<hr>
573<div class="spirit-nav">
574<a accesskey="p" href="nc_f_dist.html"><img src="../../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../dists.html"><img src="../../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../../index.html"><img src="../../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="normal_dist.html"><img src="../../../../../../../doc/src/images/next.png" alt="Next"></a>
575</div>
576</body>
577</html>
578