• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<html>
2<head>
3<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
4<title>Rayleigh Distribution</title>
5<link rel="stylesheet" href="../../../math.css" type="text/css">
6<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
7<link rel="home" href="../../../index.html" title="Math Toolkit 2.12.0">
8<link rel="up" href="../dists.html" title="Distributions">
9<link rel="prev" href="poisson_dist.html" title="Poisson Distribution">
10<link rel="next" href="skew_normal_dist.html" title="Skew Normal Distribution">
11</head>
12<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
13<table cellpadding="2" width="100%"><tr>
14<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../../boost.png"></td>
15<td align="center"><a href="../../../../../../../index.html">Home</a></td>
16<td align="center"><a href="../../../../../../../libs/libraries.htm">Libraries</a></td>
17<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
18<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
19<td align="center"><a href="../../../../../../../more/index.htm">More</a></td>
20</tr></table>
21<hr>
22<div class="spirit-nav">
23<a accesskey="p" href="poisson_dist.html"><img src="../../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../dists.html"><img src="../../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../../index.html"><img src="../../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="skew_normal_dist.html"><img src="../../../../../../../doc/src/images/next.png" alt="Next"></a>
24</div>
25<div class="section">
26<div class="titlepage"><div><div><h4 class="title">
27<a name="math_toolkit.dist_ref.dists.rayleigh"></a><a class="link" href="rayleigh.html" title="Rayleigh Distribution">Rayleigh Distribution</a>
28</h4></div></div></div>
29<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">distributions</span><span class="special">/</span><span class="identifier">rayleigh</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span></pre>
30<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span><span class="special">{</span>
31
32<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">RealType</span> <span class="special">=</span> <span class="keyword">double</span><span class="special">,</span>
33          <span class="keyword">class</span> <a class="link" href="../../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a>   <span class="special">=</span> <a class="link" href="../../pol_ref/pol_ref_ref.html" title="Policy Class Reference">policies::policy&lt;&gt;</a> <span class="special">&gt;</span>
34<span class="keyword">class</span> <span class="identifier">rayleigh_distribution</span><span class="special">;</span>
35
36<span class="keyword">typedef</span> <span class="identifier">rayleigh_distribution</span><span class="special">&lt;&gt;</span> <span class="identifier">rayleigh</span><span class="special">;</span>
37
38<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">RealType</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
39<span class="keyword">class</span> <span class="identifier">rayleigh_distribution</span>
40<span class="special">{</span>
41<span class="keyword">public</span><span class="special">:</span>
42   <span class="keyword">typedef</span> <span class="identifier">RealType</span> <span class="identifier">value_type</span><span class="special">;</span>
43   <span class="keyword">typedef</span> <span class="identifier">Policy</span>   <span class="identifier">policy_type</span><span class="special">;</span>
44   <span class="comment">// Construct:</span>
45   <span class="identifier">rayleigh_distribution</span><span class="special">(</span><span class="identifier">RealType</span> <span class="identifier">sigma</span> <span class="special">=</span> <span class="number">1</span><span class="special">)</span>
46   <span class="comment">// Accessors:</span>
47   <span class="identifier">RealType</span> <span class="identifier">sigma</span><span class="special">()</span><span class="keyword">const</span><span class="special">;</span>
48<span class="special">};</span>
49
50<span class="special">}}</span> <span class="comment">// namespaces</span>
51</pre>
52<p>
53          The <a href="http://en.wikipedia.org/wiki/Rayleigh_distribution" target="_top">Rayleigh
54          distribution</a> is a continuous distribution with the <a href="http://en.wikipedia.org/wiki/Probability_density_function" target="_top">probability
55          density function</a>:
56        </p>
57<div class="blockquote"><blockquote class="blockquote"><p>
58            <span class="serif_italic">f(x; sigma) = x * exp(-x<sup>2</sup>/2 σ<sup>2</sup>) / σ<sup>2</sup></span>
59          </p></blockquote></div>
60<p>
61          For sigma parameter <span class="emphasis"><em>σ</em></span> &gt; 0, and <span class="emphasis"><em>x</em></span>
62          &gt; 0.
63        </p>
64<p>
65          The Rayleigh distribution is often used where two orthogonal components
66          have an absolute value, for example, wind velocity and direction may be
67          combined to yield a wind speed, or real and imaginary components may have
68          absolute values that are Rayleigh distributed.
69        </p>
70<p>
71          The following graph illustrates how the Probability density Function(pdf)
72          varies with the shape parameter σ:
73        </p>
74<div class="blockquote"><blockquote class="blockquote"><p>
75            <span class="inlinemediaobject"><img src="../../../../graphs/rayleigh_pdf.svg" align="middle"></span>
76
77          </p></blockquote></div>
78<p>
79          and the Cumulative Distribution Function (cdf)
80        </p>
81<div class="blockquote"><blockquote class="blockquote"><p>
82            <span class="inlinemediaobject"><img src="../../../../graphs/rayleigh_cdf.svg" align="middle"></span>
83
84          </p></blockquote></div>
85<h5>
86<a name="math_toolkit.dist_ref.dists.rayleigh.h0"></a>
87          <span class="phrase"><a name="math_toolkit.dist_ref.dists.rayleigh.related_distributions"></a></span><a class="link" href="rayleigh.html#math_toolkit.dist_ref.dists.rayleigh.related_distributions">Related
88          distributions</a>
89        </h5>
90<p>
91          The absolute value of two independent normal distributions X and Y, √ (X<sup>2</sup> +
92          Y<sup>2</sup>) is a Rayleigh distribution.
93        </p>
94<p>
95          The <a href="http://en.wikipedia.org/wiki/Chi_distribution" target="_top">Chi</a>,
96          <a href="http://en.wikipedia.org/wiki/Rice_distribution" target="_top">Rice</a>
97          and <a href="http://en.wikipedia.org/wiki/Weibull_distribution" target="_top">Weibull</a>
98          distributions are generalizations of the <a href="http://en.wikipedia.org/wiki/Rayleigh_distribution" target="_top">Rayleigh
99          distribution</a>.
100        </p>
101<h5>
102<a name="math_toolkit.dist_ref.dists.rayleigh.h1"></a>
103          <span class="phrase"><a name="math_toolkit.dist_ref.dists.rayleigh.member_functions"></a></span><a class="link" href="rayleigh.html#math_toolkit.dist_ref.dists.rayleigh.member_functions">Member
104          Functions</a>
105        </h5>
106<pre class="programlisting"><span class="identifier">rayleigh_distribution</span><span class="special">(</span><span class="identifier">RealType</span> <span class="identifier">sigma</span> <span class="special">=</span> <span class="number">1</span><span class="special">);</span>
107</pre>
108<p>
109          Constructs a <a href="http://en.wikipedia.org/wiki/Rayleigh_distribution" target="_top">Rayleigh
110          distribution</a> with σ <span class="emphasis"><em>sigma</em></span>.
111        </p>
112<p>
113          Requires that the σ parameter is greater than zero, otherwise calls <a class="link" href="../../error_handling.html#math_toolkit.error_handling.domain_error">domain_error</a>.
114        </p>
115<pre class="programlisting"><span class="identifier">RealType</span> <span class="identifier">sigma</span><span class="special">()</span><span class="keyword">const</span><span class="special">;</span>
116</pre>
117<p>
118          Returns the <span class="emphasis"><em>sigma</em></span> parameter of this distribution.
119        </p>
120<h5>
121<a name="math_toolkit.dist_ref.dists.rayleigh.h2"></a>
122          <span class="phrase"><a name="math_toolkit.dist_ref.dists.rayleigh.non_member_accessors"></a></span><a class="link" href="rayleigh.html#math_toolkit.dist_ref.dists.rayleigh.non_member_accessors">Non-member
123          Accessors</a>
124        </h5>
125<p>
126          All the <a class="link" href="../nmp.html" title="Non-Member Properties">usual non-member accessor
127          functions</a> that are generic to all distributions are supported:
128          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.cdf">Cumulative Distribution Function</a>,
129          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.pdf">Probability Density Function</a>,
130          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.quantile">Quantile</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.hazard">Hazard Function</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.chf">Cumulative Hazard Function</a>,
131          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.mean">mean</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.median">median</a>,
132          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.mode">mode</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.variance">variance</a>,
133          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.sd">standard deviation</a>,
134          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.skewness">skewness</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.kurtosis">kurtosis</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.kurtosis_excess">kurtosis_excess</a>,
135          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.range">range</a> and <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.support">support</a>.
136        </p>
137<p>
138          The domain of the random variable is [0, max_value].
139        </p>
140<h5>
141<a name="math_toolkit.dist_ref.dists.rayleigh.h3"></a>
142          <span class="phrase"><a name="math_toolkit.dist_ref.dists.rayleigh.accuracy"></a></span><a class="link" href="rayleigh.html#math_toolkit.dist_ref.dists.rayleigh.accuracy">Accuracy</a>
143        </h5>
144<p>
145          The Rayleigh distribution is implemented in terms of the standard library
146          <code class="computeroutput"><span class="identifier">sqrt</span></code> and <code class="computeroutput"><span class="identifier">exp</span></code> and as such should have very low
147          error rates. Some constants such as skewness and kurtosis were calculated
148          using NTL RR type with 150-bit accuracy, about 50 decimal digits.
149        </p>
150<h5>
151<a name="math_toolkit.dist_ref.dists.rayleigh.h4"></a>
152          <span class="phrase"><a name="math_toolkit.dist_ref.dists.rayleigh.implementation"></a></span><a class="link" href="rayleigh.html#math_toolkit.dist_ref.dists.rayleigh.implementation">Implementation</a>
153        </h5>
154<p>
155          In the following table σ is the sigma parameter of the distribution, <span class="emphasis"><em>x</em></span>
156          is the random variate, <span class="emphasis"><em>p</em></span> is the probability and <span class="emphasis"><em>q
157          = 1-p</em></span>.
158        </p>
159<div class="informaltable"><table class="table">
160<colgroup>
161<col>
162<col>
163</colgroup>
164<thead><tr>
165<th>
166                  <p>
167                    Function
168                  </p>
169                </th>
170<th>
171                  <p>
172                    Implementation Notes
173                  </p>
174                </th>
175</tr></thead>
176<tbody>
177<tr>
178<td>
179                  <p>
180                    pdf
181                  </p>
182                </td>
183<td>
184                  <p>
185                    Using the relation: pdf = x * exp(-x<sup>2</sup>)/2 σ<sup>2</sup>
186                  </p>
187                </td>
188</tr>
189<tr>
190<td>
191                  <p>
192                    cdf
193                  </p>
194                </td>
195<td>
196                  <p>
197                    Using the relation: p = 1 - exp(-x<sup>2</sup>/2) σ<sup>2</sup>= -<a class="link" href="../../powers/expm1.html" title="expm1">expm1</a>(-x<sup>2</sup>/2)
198                    σ<sup>2</sup>
199                  </p>
200                </td>
201</tr>
202<tr>
203<td>
204                  <p>
205                    cdf complement
206                  </p>
207                </td>
208<td>
209                  <p>
210                    Using the relation: q = exp(-x<sup>2</sup>/ 2) * σ<sup>2</sup>
211                  </p>
212                </td>
213</tr>
214<tr>
215<td>
216                  <p>
217                    quantile
218                  </p>
219                </td>
220<td>
221                  <p>
222                    Using the relation: x = sqrt(-2 * σ <sup>2</sup>) * log(1 - p)) = sqrt(-2
223                    * σ <sup>2</sup>) * <a class="link" href="../../powers/log1p.html" title="log1p">log1p</a>(-p))
224                  </p>
225                </td>
226</tr>
227<tr>
228<td>
229                  <p>
230                    quantile from the complement
231                  </p>
232                </td>
233<td>
234                  <p>
235                    Using the relation: x = sqrt(-2 * σ <sup>2</sup>) * log(q))
236                  </p>
237                </td>
238</tr>
239<tr>
240<td>
241                  <p>
242                    mean
243                  </p>
244                </td>
245<td>
246                  <p>
247                    σ * sqrt(π/2)
248                  </p>
249                </td>
250</tr>
251<tr>
252<td>
253                  <p>
254                    variance
255                  </p>
256                </td>
257<td>
258                  <p>
259                    σ<sup>2</sup> * (4 - π/2)
260                  </p>
261                </td>
262</tr>
263<tr>
264<td>
265                  <p>
266                    mode
267                  </p>
268                </td>
269<td>
270                  <p>
271                    σ
272                  </p>
273                </td>
274</tr>
275<tr>
276<td>
277                  <p>
278                    skewness
279                  </p>
280                </td>
281<td>
282                  <p>
283                    Constant from <a href="http://mathworld.wolfram.com/RayleighDistribution.html" target="_top">Weisstein,
284                    Eric W. "Weibull Distribution." From MathWorld--A Wolfram
285                    Web Resource.</a>
286                  </p>
287                </td>
288</tr>
289<tr>
290<td>
291                  <p>
292                    kurtosis
293                  </p>
294                </td>
295<td>
296                  <p>
297                    Constant from <a href="http://mathworld.wolfram.com/RayleighDistribution.html" target="_top">Weisstein,
298                    Eric W. "Weibull Distribution." From MathWorld--A Wolfram
299                    Web Resource.</a>
300                  </p>
301                </td>
302</tr>
303<tr>
304<td>
305                  <p>
306                    kurtosis excess
307                  </p>
308                </td>
309<td>
310                  <p>
311                    Constant from <a href="http://mathworld.wolfram.com/RayleighDistribution.html" target="_top">Weisstein,
312                    Eric W. "Weibull Distribution." From MathWorld--A Wolfram
313                    Web Resource.</a>
314                  </p>
315                </td>
316</tr>
317</tbody>
318</table></div>
319<h5>
320<a name="math_toolkit.dist_ref.dists.rayleigh.h5"></a>
321          <span class="phrase"><a name="math_toolkit.dist_ref.dists.rayleigh.references"></a></span><a class="link" href="rayleigh.html#math_toolkit.dist_ref.dists.rayleigh.references">References</a>
322        </h5>
323<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
324<li class="listitem">
325              <a href="http://en.wikipedia.org/wiki/Rayleigh_distribution" target="_top">http://en.wikipedia.org/wiki/Rayleigh_distribution</a>
326            </li>
327<li class="listitem">
328              <a href="http://mathworld.wolfram.com/RayleighDistribution.html" target="_top">Weisstein,
329              Eric W. "Rayleigh Distribution." From MathWorld--A Wolfram
330              Web Resource.</a>
331            </li>
332</ul></div>
333</div>
334<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
335<td align="left"></td>
336<td align="right"><div class="copyright-footer">Copyright © 2006-2019 Nikhar
337      Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
338      Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Matthew Pulver, Johan
339      Råde, Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg,
340      Daryle Walker and Xiaogang Zhang<p>
341        Distributed under the Boost Software License, Version 1.0. (See accompanying
342        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
343      </p>
344</div></td>
345</tr></table>
346<hr>
347<div class="spirit-nav">
348<a accesskey="p" href="poisson_dist.html"><img src="../../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../dists.html"><img src="../../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../../index.html"><img src="../../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="skew_normal_dist.html"><img src="../../../../../../../doc/src/images/next.png" alt="Next"></a>
349</div>
350</body>
351</html>
352