• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<html>
2<head>
3<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
4<title>Continued Fraction Evaluation</title>
5<link rel="stylesheet" href="../../math.css" type="text/css">
6<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
7<link rel="home" href="../../index.html" title="Math Toolkit 2.12.0">
8<link rel="up" href="../internals.html" title="Internal tools">
9<link rel="prev" href="series_evaluation.html" title="Series Evaluation">
10<link rel="next" href="recurrence.html" title="Tools For 3-Term Recurrence Relations">
11</head>
12<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
13<table cellpadding="2" width="100%"><tr>
14<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../boost.png"></td>
15<td align="center"><a href="../../../../../../index.html">Home</a></td>
16<td align="center"><a href="../../../../../../libs/libraries.htm">Libraries</a></td>
17<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
18<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
19<td align="center"><a href="../../../../../../more/index.htm">More</a></td>
20</tr></table>
21<hr>
22<div class="spirit-nav">
23<a accesskey="p" href="series_evaluation.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../internals.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="recurrence.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
24</div>
25<div class="section">
26<div class="titlepage"><div><div><h3 class="title">
27<a name="math_toolkit.internals.cf"></a><a class="link" href="cf.html" title="Continued Fraction Evaluation">Continued Fraction Evaluation</a>
28</h3></div></div></div>
29<h5>
30<a name="math_toolkit.internals.cf.h0"></a>
31        <span class="phrase"><a name="math_toolkit.internals.cf.synopsis"></a></span><a class="link" href="cf.html#math_toolkit.internals.cf.synopsis">Synopsis</a>
32      </h5>
33<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">tools</span><span class="special">/</span><span class="identifier">fraction</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
34</pre>
35<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span><span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">tools</span><span class="special">{</span>
36
37<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">Gen</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">U</span><span class="special">&gt;</span>
38<span class="keyword">typename</span> <span class="identifier">detail</span><span class="special">::</span><span class="identifier">fraction_traits</span><span class="special">&lt;</span><span class="identifier">Gen</span><span class="special">&gt;::</span><span class="identifier">result_type</span>
39   <span class="identifier">continued_fraction_b</span><span class="special">(</span><span class="identifier">Gen</span><span class="special">&amp;</span> <span class="identifier">g</span><span class="special">,</span> <span class="keyword">const</span> <span class="identifier">U</span><span class="special">&amp;</span> <span class="identifier">tolerance</span><span class="special">,</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">uintmax_t</span><span class="special">&amp;</span> <span class="identifier">max_terms</span><span class="special">)</span>
40
41<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">Gen</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">U</span><span class="special">&gt;</span>
42<span class="keyword">typename</span> <span class="identifier">detail</span><span class="special">::</span><span class="identifier">fraction_traits</span><span class="special">&lt;</span><span class="identifier">Gen</span><span class="special">&gt;::</span><span class="identifier">result_type</span>
43   <span class="identifier">continued_fraction_b</span><span class="special">(</span><span class="identifier">Gen</span><span class="special">&amp;</span> <span class="identifier">g</span><span class="special">,</span> <span class="keyword">const</span> <span class="identifier">U</span><span class="special">&amp;</span> <span class="identifier">tolerance</span><span class="special">)</span>
44
45<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">Gen</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">U</span><span class="special">&gt;</span>
46<span class="keyword">typename</span> <span class="identifier">detail</span><span class="special">::</span><span class="identifier">fraction_traits</span><span class="special">&lt;</span><span class="identifier">Gen</span><span class="special">&gt;::</span><span class="identifier">result_type</span>
47   <span class="identifier">continued_fraction_a</span><span class="special">(</span><span class="identifier">Gen</span><span class="special">&amp;</span> <span class="identifier">g</span><span class="special">,</span> <span class="keyword">const</span> <span class="identifier">U</span><span class="special">&amp;</span> <span class="identifier">tolerance</span><span class="special">,</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">uintmax_t</span><span class="special">&amp;</span> <span class="identifier">max_terms</span><span class="special">)</span>
48
49<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">Gen</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">U</span><span class="special">&gt;</span>
50<span class="keyword">typename</span> <span class="identifier">detail</span><span class="special">::</span><span class="identifier">fraction_traits</span><span class="special">&lt;</span><span class="identifier">Gen</span><span class="special">&gt;::</span><span class="identifier">result_type</span>
51   <span class="identifier">continued_fraction_a</span><span class="special">(</span><span class="identifier">Gen</span><span class="special">&amp;</span> <span class="identifier">g</span><span class="special">,</span> <span class="keyword">const</span> <span class="identifier">U</span><span class="special">&amp;</span> <span class="identifier">tolerance</span><span class="special">)</span>
52
53<span class="comment">//</span>
54<span class="comment">// These interfaces are present for legacy reasons, and are now deprecated:</span>
55<span class="comment">//</span>
56<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">Gen</span><span class="special">&gt;</span>
57<span class="keyword">typename</span> <span class="identifier">detail</span><span class="special">::</span><span class="identifier">fraction_traits</span><span class="special">&lt;</span><span class="identifier">Gen</span><span class="special">&gt;::</span><span class="identifier">result_type</span>
58   <span class="identifier">continued_fraction_b</span><span class="special">(</span><span class="identifier">Gen</span><span class="special">&amp;</span> <span class="identifier">g</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">bits</span><span class="special">);</span>
59
60<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">Gen</span><span class="special">&gt;</span>
61<span class="keyword">typename</span> <span class="identifier">detail</span><span class="special">::</span><span class="identifier">fraction_traits</span><span class="special">&lt;</span><span class="identifier">Gen</span><span class="special">&gt;::</span><span class="identifier">result_type</span>
62   <span class="identifier">continued_fraction_b</span><span class="special">(</span><span class="identifier">Gen</span><span class="special">&amp;</span> <span class="identifier">g</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">bits</span><span class="special">,</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">uintmax_t</span><span class="special">&amp;</span> <span class="identifier">max_terms</span><span class="special">);</span>
63
64<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">Gen</span><span class="special">&gt;</span>
65<span class="keyword">typename</span> <span class="identifier">detail</span><span class="special">::</span><span class="identifier">fraction_traits</span><span class="special">&lt;</span><span class="identifier">Gen</span><span class="special">&gt;::</span><span class="identifier">result_type</span>
66   <span class="identifier">continued_fraction_a</span><span class="special">(</span><span class="identifier">Gen</span><span class="special">&amp;</span> <span class="identifier">g</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">bits</span><span class="special">);</span>
67
68<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">Gen</span><span class="special">&gt;</span>
69<span class="keyword">typename</span> <span class="identifier">detail</span><span class="special">::</span><span class="identifier">fraction_traits</span><span class="special">&lt;</span><span class="identifier">Gen</span><span class="special">&gt;::</span><span class="identifier">result_type</span>
70   <span class="identifier">continued_fraction_a</span><span class="special">(</span><span class="identifier">Gen</span><span class="special">&amp;</span> <span class="identifier">g</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">bits</span><span class="special">,</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">uintmax_t</span><span class="special">&amp;</span> <span class="identifier">max_terms</span><span class="special">);</span>
71
72<span class="special">}}}</span> <span class="comment">// namespaces</span>
73</pre>
74<h5>
75<a name="math_toolkit.internals.cf.h1"></a>
76        <span class="phrase"><a name="math_toolkit.internals.cf.description"></a></span><a class="link" href="cf.html#math_toolkit.internals.cf.description">Description</a>
77      </h5>
78<p>
79        <a href="http://en.wikipedia.org/wiki/Continued_fraction" target="_top">Continued fractions
80        are a common method of approximation. </a> These functions all evaluate
81        the continued fraction described by the <span class="emphasis"><em>generator</em></span> type
82        argument. The functions with an "_a" suffix evaluate the fraction:
83      </p>
84<div class="blockquote"><blockquote class="blockquote"><p>
85          <span class="inlinemediaobject"><img src="../../../equations/fraction2.svg"></span>
86
87        </p></blockquote></div>
88<p>
89        and those with a "_b" suffix evaluate the fraction:
90      </p>
91<div class="blockquote"><blockquote class="blockquote"><p>
92          <span class="inlinemediaobject"><img src="../../../equations/fraction1.svg"></span>
93
94        </p></blockquote></div>
95<p>
96        This latter form is somewhat more natural in that it corresponds with the
97        usual definition of a continued fraction, but note that the first <span class="emphasis"><em>a</em></span>
98        value returned by the generator is discarded. Further, often the first <span class="emphasis"><em>a</em></span>
99        and <span class="emphasis"><em>b</em></span> values in a continued fraction have different
100        defining equations to the remaining terms, which may make the "_a"
101        suffixed form more appropriate.
102      </p>
103<p>
104        The generator type should be a function object which supports the following
105        operations:
106      </p>
107<div class="informaltable"><table class="table">
108<colgroup>
109<col>
110<col>
111</colgroup>
112<thead><tr>
113<th>
114                <p>
115                  Expression
116                </p>
117              </th>
118<th>
119                <p>
120                  Description
121                </p>
122              </th>
123</tr></thead>
124<tbody>
125<tr>
126<td>
127                <p>
128                  Gen::result_type
129                </p>
130              </td>
131<td>
132                <p>
133                  The type that is the result of invoking operator(). This can be
134                  either an arithmetic or complex type, or a std::pair&lt;&gt; of
135                  arithmetic or complex types.
136                </p>
137              </td>
138</tr>
139<tr>
140<td>
141                <p>
142                  g()
143                </p>
144              </td>
145<td>
146                <p>
147                  Returns an object of type Gen::result_type.
148                </p>
149                <p>
150                  Each time this operator is called then the next pair of <span class="emphasis"><em>a</em></span>
151                  and <span class="emphasis"><em>b</em></span> values is returned. Or, if result_type
152                  is an arithmetic type, then the next <span class="emphasis"><em>b</em></span> value
153                  is returned and all the <span class="emphasis"><em>a</em></span> values are assumed
154                  to 1.
155                </p>
156              </td>
157</tr>
158</tbody>
159</table></div>
160<p>
161        In all the continued fraction evaluation functions the <span class="emphasis"><em>tolerance</em></span>
162        parameter is the precision desired in the result, evaluation of the fraction
163        will continue until the last term evaluated leaves the relative error in
164        the result less than <span class="emphasis"><em>tolerance</em></span>. The deprecated interfaces
165        take a number of digits precision here, internally they just convert this
166        to a tolerance and forward call.
167      </p>
168<p>
169        If the optional <span class="emphasis"><em>max_terms</em></span> parameter is specified then
170        no more than <span class="emphasis"><em>max_terms</em></span> calls to the generator will be
171        made, and on output, <span class="emphasis"><em>max_terms</em></span> will be set to actual
172        number of calls made. This facility is particularly useful when profiling
173        a continued fraction for convergence.
174      </p>
175<h5>
176<a name="math_toolkit.internals.cf.h2"></a>
177        <span class="phrase"><a name="math_toolkit.internals.cf.implementation"></a></span><a class="link" href="cf.html#math_toolkit.internals.cf.implementation">Implementation</a>
178      </h5>
179<p>
180        Internally these algorithms all use the modified Lentz algorithm: refer to
181        Numeric Recipes in C++, W. H. Press et all, chapter 5, (especially 5.2 Evaluation
182        of continued fractions, p 175 - 179) for more information, also Lentz, W.J.
183        1976, Applied Optics, vol. 15, pp. 668-671.
184      </p>
185<h5>
186<a name="math_toolkit.internals.cf.h3"></a>
187        <span class="phrase"><a name="math_toolkit.internals.cf.examples"></a></span><a class="link" href="cf.html#math_toolkit.internals.cf.examples">Examples</a>
188      </h5>
189<p>
190        All of these examples are in <a href="../../../../example/continued_fractions.cpp" target="_top">continued_fractions.cpp</a>.
191      </p>
192<p>
193        The <a href="http://en.wikipedia.org/wiki/Golden_ratio" target="_top">golden ratio phi
194        = 1.618033989...</a> can be computed from the simplest continued fraction
195        of all:
196      </p>
197<div class="blockquote"><blockquote class="blockquote"><p>
198          <span class="inlinemediaobject"><img src="../../../equations/fraction3.svg"></span>
199
200        </p></blockquote></div>
201<p>
202        We begin by defining a generator function:
203      </p>
204<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
205<span class="keyword">struct</span> <span class="identifier">golden_ratio_fraction</span>
206<span class="special">{</span>
207   <span class="keyword">typedef</span> <span class="identifier">T</span> <span class="identifier">result_type</span><span class="special">;</span>
208
209   <span class="identifier">result_type</span> <span class="keyword">operator</span><span class="special">()()</span>
210   <span class="special">{</span>
211      <span class="keyword">return</span> <span class="number">1</span><span class="special">;</span>
212   <span class="special">}</span>
213<span class="special">};</span>
214</pre>
215<p>
216        The golden ratio can then be computed to double precision using:
217      </p>
218<pre class="programlisting"><span class="identifier">golden_ratio_fraction</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;</span> <span class="identifier">func</span><span class="special">;</span>
219<span class="keyword">double</span> <span class="identifier">gr</span> <span class="special">=</span> <span class="identifier">continued_fraction_a</span><span class="special">(</span>
220   <span class="identifier">func</span><span class="special">,</span>
221   <span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;::</span><span class="identifier">epsilon</span><span class="special">());</span>
222<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"The golden ratio is: "</span> <span class="special">&lt;&lt;</span> <span class="identifier">gr</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
223</pre>
224<p>
225        It's more usual though to have to define both the <span class="emphasis"><em>a</em></span>'s
226        and the <span class="emphasis"><em>b</em></span>'s when evaluating special functions by continued
227        fractions, for example the tan function is defined by:
228      </p>
229<div class="blockquote"><blockquote class="blockquote"><p>
230          <span class="inlinemediaobject"><img src="../../../equations/fraction4.svg"></span>
231
232        </p></blockquote></div>
233<p>
234        So its generator object would look like:
235      </p>
236<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
237<span class="keyword">struct</span> <span class="identifier">tan_fraction</span>
238<span class="special">{</span>
239<span class="keyword">private</span><span class="special">:</span>
240   <span class="identifier">T</span> <span class="identifier">a</span><span class="special">,</span> <span class="identifier">b</span><span class="special">;</span>
241<span class="keyword">public</span><span class="special">:</span>
242   <span class="identifier">tan_fraction</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">v</span><span class="special">)</span>
243      <span class="special">:</span> <span class="identifier">a</span><span class="special">(-</span><span class="identifier">v</span> <span class="special">*</span> <span class="identifier">v</span><span class="special">),</span> <span class="identifier">b</span><span class="special">(-</span><span class="number">1</span><span class="special">)</span>
244   <span class="special">{}</span>
245
246   <span class="keyword">typedef</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">T</span><span class="special">&gt;</span> <span class="identifier">result_type</span><span class="special">;</span>
247
248   <span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">T</span><span class="special">&gt;</span> <span class="keyword">operator</span><span class="special">()()</span>
249   <span class="special">{</span>
250      <span class="identifier">b</span> <span class="special">+=</span> <span class="number">2</span><span class="special">;</span>
251      <span class="keyword">return</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">make_pair</span><span class="special">(</span><span class="identifier">a</span><span class="special">,</span> <span class="identifier">b</span><span class="special">);</span>
252   <span class="special">}</span>
253<span class="special">};</span>
254</pre>
255<p>
256        Notice that if the continuant is subtracted from the <span class="emphasis"><em>b</em></span>
257        terms, as is the case here, then all the <span class="emphasis"><em>a</em></span> terms returned
258        by the generator will be negative. The tangent function can now be evaluated
259        using:
260      </p>
261<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
262<span class="identifier">T</span> <span class="identifier">tan</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">a</span><span class="special">)</span>
263<span class="special">{</span>
264   <span class="identifier">tan_fraction</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="identifier">fract</span><span class="special">(</span><span class="identifier">a</span><span class="special">);</span>
265   <span class="keyword">return</span> <span class="identifier">a</span> <span class="special">/</span> <span class="identifier">continued_fraction_b</span><span class="special">(</span><span class="identifier">fract</span><span class="special">,</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;::</span><span class="identifier">epsilon</span><span class="special">());</span>
266<span class="special">}</span>
267</pre>
268<p>
269        Notice that this time we're using the "_b" suffixed version to
270        evaluate the fraction: we're removing the leading <span class="emphasis"><em>a</em></span>
271        term during fraction evaluation as it's different from all the others.
272      </p>
273<p>
274        Now we'll look at a couple of complex number examples, starting with the
275        exponential integral which can be calculated via:
276      </p>
277<div class="blockquote"><blockquote class="blockquote"><p>
278          <span class="inlinemediaobject"><img src="../../../equations/expint_n_3.svg"></span>
279
280        </p></blockquote></div>
281<p>
282        So our functor looks like this:
283      </p>
284<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
285<span class="keyword">struct</span> <span class="identifier">expint_fraction</span>
286<span class="special">{</span>
287   <span class="keyword">typedef</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">T</span><span class="special">&gt;</span> <span class="identifier">result_type</span><span class="special">;</span>
288   <span class="identifier">expint_fraction</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n_</span><span class="special">,</span> <span class="identifier">T</span> <span class="identifier">z_</span><span class="special">)</span> <span class="special">:</span> <span class="identifier">b</span><span class="special">(</span><span class="identifier">z_</span> <span class="special">+</span> <span class="identifier">T</span><span class="special">(</span><span class="identifier">n_</span><span class="special">)),</span> <span class="identifier">i</span><span class="special">(-</span><span class="number">1</span><span class="special">),</span> <span class="identifier">n</span><span class="special">(</span><span class="identifier">n_</span><span class="special">)</span> <span class="special">{}</span>
289   <span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">T</span><span class="special">&gt;</span> <span class="keyword">operator</span><span class="special">()()</span>
290   <span class="special">{</span>
291      <span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">T</span><span class="special">&gt;</span> <span class="identifier">result</span> <span class="special">=</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">make_pair</span><span class="special">(-</span><span class="keyword">static_cast</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;((</span><span class="identifier">i</span> <span class="special">+</span> <span class="number">1</span><span class="special">)</span> <span class="special">*</span> <span class="special">(</span><span class="identifier">n</span> <span class="special">+</span> <span class="identifier">i</span><span class="special">)),</span> <span class="identifier">b</span><span class="special">);</span>
292      <span class="identifier">b</span> <span class="special">+=</span> <span class="number">2</span><span class="special">;</span>
293      <span class="special">++</span><span class="identifier">i</span><span class="special">;</span>
294      <span class="keyword">return</span> <span class="identifier">result</span><span class="special">;</span>
295   <span class="special">}</span>
296<span class="keyword">private</span><span class="special">:</span>
297   <span class="identifier">T</span> <span class="identifier">b</span><span class="special">;</span>
298   <span class="keyword">int</span> <span class="identifier">i</span><span class="special">;</span>
299   <span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">;</span>
300<span class="special">};</span>
301</pre>
302<p>
303        We can finish the example by wrapping everything up in a function:
304      </p>
305<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
306<span class="keyword">inline</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="identifier">expint_as_fraction</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">z</span><span class="special">)</span>
307<span class="special">{</span>
308   <span class="identifier">boost</span><span class="special">::</span><span class="identifier">uintmax_t</span> <span class="identifier">max_iter</span> <span class="special">=</span> <span class="number">1000</span><span class="special">;</span>
309   <span class="identifier">expint_fraction</span><span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="special">&gt;</span> <span class="identifier">f</span><span class="special">(</span><span class="identifier">n</span><span class="special">,</span> <span class="identifier">z</span><span class="special">);</span>
310   <span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="identifier">result</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">tools</span><span class="special">::</span><span class="identifier">continued_fraction_b</span><span class="special">(</span>
311      <span class="identifier">f</span><span class="special">,</span>
312      <span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;::</span><span class="identifier">epsilon</span><span class="special">()),</span>
313      <span class="identifier">max_iter</span><span class="special">);</span>
314   <span class="identifier">result</span> <span class="special">=</span> <span class="identifier">exp</span><span class="special">(-</span><span class="identifier">z</span><span class="special">)</span> <span class="special">/</span> <span class="identifier">result</span><span class="special">;</span>
315   <span class="keyword">return</span> <span class="identifier">result</span><span class="special">;</span>
316<span class="special">}</span>
317</pre>
318<p>
319        Notice how the termination condition is still expressed as a complex number,
320        albeit one with zero imaginary part.
321      </p>
322<p>
323        Our final example will use <code class="literal">continued_fraction_a</code>, in fact
324        there is only one special function in our code which uses that variant, and
325        it's the upper incomplete gamma function (Q), which can be calculated via:
326      </p>
327<div class="blockquote"><blockquote class="blockquote"><p>
328          <span class="inlinemediaobject"><img src="../../../equations/igamma9.svg"></span>
329
330        </p></blockquote></div>
331<p>
332        In this case the first couple of terms are different from the rest, so our
333        fraction will start with the first "regular" a term:
334      </p>
335<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
336<span class="keyword">struct</span> <span class="identifier">upper_incomplete_gamma_fract</span>
337<span class="special">{</span>
338<span class="keyword">private</span><span class="special">:</span>
339   <span class="keyword">typedef</span> <span class="keyword">typename</span> <span class="identifier">T</span><span class="special">::</span><span class="identifier">value_type</span> <span class="identifier">scalar_type</span><span class="special">;</span>
340   <span class="identifier">T</span> <span class="identifier">z</span><span class="special">,</span> <span class="identifier">a</span><span class="special">;</span>
341   <span class="keyword">int</span> <span class="identifier">k</span><span class="special">;</span>
342<span class="keyword">public</span><span class="special">:</span>
343   <span class="keyword">typedef</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">T</span><span class="special">&gt;</span> <span class="identifier">result_type</span><span class="special">;</span>
344
345   <span class="identifier">upper_incomplete_gamma_fract</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">a1</span><span class="special">,</span> <span class="identifier">T</span> <span class="identifier">z1</span><span class="special">)</span>
346      <span class="special">:</span> <span class="identifier">z</span><span class="special">(</span><span class="identifier">z1</span> <span class="special">-</span> <span class="identifier">a1</span> <span class="special">+</span> <span class="identifier">scalar_type</span><span class="special">(</span><span class="number">1</span><span class="special">)),</span> <span class="identifier">a</span><span class="special">(</span><span class="identifier">a1</span><span class="special">),</span> <span class="identifier">k</span><span class="special">(</span><span class="number">0</span><span class="special">)</span>
347   <span class="special">{</span>
348   <span class="special">}</span>
349
350   <span class="identifier">result_type</span> <span class="keyword">operator</span><span class="special">()()</span>
351   <span class="special">{</span>
352      <span class="special">++</span><span class="identifier">k</span><span class="special">;</span>
353      <span class="identifier">z</span> <span class="special">+=</span> <span class="identifier">scalar_type</span><span class="special">(</span><span class="number">2</span><span class="special">);</span>
354      <span class="keyword">return</span> <span class="identifier">result_type</span><span class="special">(</span><span class="identifier">scalar_type</span><span class="special">(</span><span class="identifier">k</span><span class="special">)</span> <span class="special">*</span> <span class="special">(</span><span class="identifier">a</span> <span class="special">-</span> <span class="identifier">scalar_type</span><span class="special">(</span><span class="identifier">k</span><span class="special">)),</span> <span class="identifier">z</span><span class="special">);</span>
355   <span class="special">}</span>
356<span class="special">};</span>
357</pre>
358<p>
359        So now we can implement Q, this time using <code class="literal">continued_fraction_a</code>:
360      </p>
361<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
362<span class="keyword">inline</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="identifier">gamma_Q_as_fraction</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;&amp;</span> <span class="identifier">a</span><span class="special">,</span> <span class="keyword">const</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;&amp;</span> <span class="identifier">z</span><span class="special">)</span>
363<span class="special">{</span>
364   <span class="identifier">upper_incomplete_gamma_fract</span><span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="special">&gt;</span> <span class="identifier">f</span><span class="special">(</span><span class="identifier">a</span><span class="special">,</span> <span class="identifier">z</span><span class="special">);</span>
365   <span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="identifier">eps</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;::</span><span class="identifier">epsilon</span><span class="special">());</span>
366   <span class="keyword">return</span> <span class="identifier">pow</span><span class="special">(</span><span class="identifier">z</span><span class="special">,</span> <span class="identifier">a</span><span class="special">)</span> <span class="special">/</span> <span class="special">(</span><span class="identifier">exp</span><span class="special">(</span><span class="identifier">z</span><span class="special">)</span> <span class="special">*(</span><span class="identifier">z</span> <span class="special">-</span> <span class="identifier">a</span> <span class="special">+</span> <span class="identifier">T</span><span class="special">(</span><span class="number">1</span><span class="special">)</span> <span class="special">+</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">tools</span><span class="special">::</span><span class="identifier">continued_fraction_a</span><span class="special">(</span><span class="identifier">f</span><span class="special">,</span> <span class="identifier">eps</span><span class="special">)));</span>
367<span class="special">}</span>
368</pre>
369</div>
370<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
371<td align="left"></td>
372<td align="right"><div class="copyright-footer">Copyright © 2006-2019 Nikhar
373      Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
374      Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Matthew Pulver, Johan
375      Råde, Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg,
376      Daryle Walker and Xiaogang Zhang<p>
377        Distributed under the Boost Software License, Version 1.0. (See accompanying
378        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
379      </p>
380</div></td>
381</tr></table>
382<hr>
383<div class="spirit-nav">
384<a accesskey="p" href="series_evaluation.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../internals.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="recurrence.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
385</div>
386</body>
387</html>
388