1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements some loop unrolling utilities. It does not define any
10 // actual pass or policy, but provides a single function to perform loop
11 // unrolling.
12 //
13 // The process of unrolling can produce extraneous basic blocks linked with
14 // unconditional branches. This will be corrected in the future.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AssumptionCache.h"
21 #include "llvm/Analysis/InstructionSimplify.h"
22 #include "llvm/Analysis/LoopIterator.h"
23 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
24 #include "llvm/Analysis/ScalarEvolution.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/DebugInfoMetadata.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/IntrinsicInst.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
35 #include "llvm/Transforms/Utils/Cloning.h"
36 #include "llvm/Transforms/Utils/Local.h"
37 #include "llvm/Transforms/Utils/LoopSimplify.h"
38 #include "llvm/Transforms/Utils/LoopUtils.h"
39 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
40 #include "llvm/Transforms/Utils/UnrollLoop.h"
41 using namespace llvm;
42
43 #define DEBUG_TYPE "loop-unroll"
44
45 // TODO: Should these be here or in LoopUnroll?
46 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
47 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
48 STATISTIC(NumUnrolledWithHeader, "Number of loops unrolled without a "
49 "conditional latch (completely or otherwise)");
50
51 static cl::opt<bool>
52 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden,
53 cl::desc("Allow runtime unrolled loops to be unrolled "
54 "with epilog instead of prolog."));
55
56 static cl::opt<bool>
57 UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden,
58 cl::desc("Verify domtree after unrolling"),
59 #ifdef EXPENSIVE_CHECKS
60 cl::init(true)
61 #else
62 cl::init(false)
63 #endif
64 );
65
66 /// Convert the instruction operands from referencing the current values into
67 /// those specified by VMap.
remapInstruction(Instruction * I,ValueToValueMapTy & VMap)68 void llvm::remapInstruction(Instruction *I, ValueToValueMapTy &VMap) {
69 for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
70 Value *Op = I->getOperand(op);
71
72 // Unwrap arguments of dbg.value intrinsics.
73 bool Wrapped = false;
74 if (auto *V = dyn_cast<MetadataAsValue>(Op))
75 if (auto *Unwrapped = dyn_cast<ValueAsMetadata>(V->getMetadata())) {
76 Op = Unwrapped->getValue();
77 Wrapped = true;
78 }
79
80 auto wrap = [&](Value *V) {
81 auto &C = I->getContext();
82 return Wrapped ? MetadataAsValue::get(C, ValueAsMetadata::get(V)) : V;
83 };
84
85 ValueToValueMapTy::iterator It = VMap.find(Op);
86 if (It != VMap.end())
87 I->setOperand(op, wrap(It->second));
88 }
89
90 if (PHINode *PN = dyn_cast<PHINode>(I)) {
91 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
92 ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i));
93 if (It != VMap.end())
94 PN->setIncomingBlock(i, cast<BasicBlock>(It->second));
95 }
96 }
97 }
98
99 /// Check if unrolling created a situation where we need to insert phi nodes to
100 /// preserve LCSSA form.
101 /// \param Blocks is a vector of basic blocks representing unrolled loop.
102 /// \param L is the outer loop.
103 /// It's possible that some of the blocks are in L, and some are not. In this
104 /// case, if there is a use is outside L, and definition is inside L, we need to
105 /// insert a phi-node, otherwise LCSSA will be broken.
106 /// The function is just a helper function for llvm::UnrollLoop that returns
107 /// true if this situation occurs, indicating that LCSSA needs to be fixed.
needToInsertPhisForLCSSA(Loop * L,std::vector<BasicBlock * > Blocks,LoopInfo * LI)108 static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks,
109 LoopInfo *LI) {
110 for (BasicBlock *BB : Blocks) {
111 if (LI->getLoopFor(BB) == L)
112 continue;
113 for (Instruction &I : *BB) {
114 for (Use &U : I.operands()) {
115 if (auto Def = dyn_cast<Instruction>(U)) {
116 Loop *DefLoop = LI->getLoopFor(Def->getParent());
117 if (!DefLoop)
118 continue;
119 if (DefLoop->contains(L))
120 return true;
121 }
122 }
123 }
124 }
125 return false;
126 }
127
128 /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary
129 /// and adds a mapping from the original loop to the new loop to NewLoops.
130 /// Returns nullptr if no new loop was created and a pointer to the
131 /// original loop OriginalBB was part of otherwise.
addClonedBlockToLoopInfo(BasicBlock * OriginalBB,BasicBlock * ClonedBB,LoopInfo * LI,NewLoopsMap & NewLoops)132 const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB,
133 BasicBlock *ClonedBB, LoopInfo *LI,
134 NewLoopsMap &NewLoops) {
135 // Figure out which loop New is in.
136 const Loop *OldLoop = LI->getLoopFor(OriginalBB);
137 assert(OldLoop && "Should (at least) be in the loop being unrolled!");
138
139 Loop *&NewLoop = NewLoops[OldLoop];
140 if (!NewLoop) {
141 // Found a new sub-loop.
142 assert(OriginalBB == OldLoop->getHeader() &&
143 "Header should be first in RPO");
144
145 NewLoop = LI->AllocateLoop();
146 Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
147
148 if (NewLoopParent)
149 NewLoopParent->addChildLoop(NewLoop);
150 else
151 LI->addTopLevelLoop(NewLoop);
152
153 NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
154 return OldLoop;
155 } else {
156 NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
157 return nullptr;
158 }
159 }
160
161 /// The function chooses which type of unroll (epilog or prolog) is more
162 /// profitabale.
163 /// Epilog unroll is more profitable when there is PHI that starts from
164 /// constant. In this case epilog will leave PHI start from constant,
165 /// but prolog will convert it to non-constant.
166 ///
167 /// loop:
168 /// PN = PHI [I, Latch], [CI, PreHeader]
169 /// I = foo(PN)
170 /// ...
171 ///
172 /// Epilog unroll case.
173 /// loop:
174 /// PN = PHI [I2, Latch], [CI, PreHeader]
175 /// I1 = foo(PN)
176 /// I2 = foo(I1)
177 /// ...
178 /// Prolog unroll case.
179 /// NewPN = PHI [PrologI, Prolog], [CI, PreHeader]
180 /// loop:
181 /// PN = PHI [I2, Latch], [NewPN, PreHeader]
182 /// I1 = foo(PN)
183 /// I2 = foo(I1)
184 /// ...
185 ///
isEpilogProfitable(Loop * L)186 static bool isEpilogProfitable(Loop *L) {
187 BasicBlock *PreHeader = L->getLoopPreheader();
188 BasicBlock *Header = L->getHeader();
189 assert(PreHeader && Header);
190 for (const PHINode &PN : Header->phis()) {
191 if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader)))
192 return true;
193 }
194 return false;
195 }
196
197 /// Perform some cleanup and simplifications on loops after unrolling. It is
198 /// useful to simplify the IV's in the new loop, as well as do a quick
199 /// simplify/dce pass of the instructions.
simplifyLoopAfterUnroll(Loop * L,bool SimplifyIVs,LoopInfo * LI,ScalarEvolution * SE,DominatorTree * DT,AssumptionCache * AC)200 void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI,
201 ScalarEvolution *SE, DominatorTree *DT,
202 AssumptionCache *AC) {
203 // Simplify any new induction variables in the partially unrolled loop.
204 if (SE && SimplifyIVs) {
205 SmallVector<WeakTrackingVH, 16> DeadInsts;
206 simplifyLoopIVs(L, SE, DT, LI, DeadInsts);
207
208 // Aggressively clean up dead instructions that simplifyLoopIVs already
209 // identified. Any remaining should be cleaned up below.
210 while (!DeadInsts.empty())
211 if (Instruction *Inst =
212 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
213 RecursivelyDeleteTriviallyDeadInstructions(Inst);
214 }
215
216 // At this point, the code is well formed. We now do a quick sweep over the
217 // inserted code, doing constant propagation and dead code elimination as we
218 // go.
219 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
220 for (BasicBlock *BB : L->getBlocks()) {
221 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
222 Instruction *Inst = &*I++;
223
224 if (Value *V = SimplifyInstruction(Inst, {DL, nullptr, DT, AC}))
225 if (LI->replacementPreservesLCSSAForm(Inst, V))
226 Inst->replaceAllUsesWith(V);
227 if (isInstructionTriviallyDead(Inst))
228 BB->getInstList().erase(Inst);
229 }
230 }
231
232 // TODO: after peeling or unrolling, previously loop variant conditions are
233 // likely to fold to constants, eagerly propagating those here will require
234 // fewer cleanup passes to be run. Alternatively, a LoopEarlyCSE might be
235 // appropriate.
236 }
237
238 /// Unroll the given loop by Count. The loop must be in LCSSA form. Unrolling
239 /// can only fail when the loop's latch block is not terminated by a conditional
240 /// branch instruction. However, if the trip count (and multiple) are not known,
241 /// loop unrolling will mostly produce more code that is no faster.
242 ///
243 /// TripCount is the upper bound of the iteration on which control exits
244 /// LatchBlock. Control may exit the loop prior to TripCount iterations either
245 /// via an early branch in other loop block or via LatchBlock terminator. This
246 /// is relaxed from the general definition of trip count which is the number of
247 /// times the loop header executes. Note that UnrollLoop assumes that the loop
248 /// counter test is in LatchBlock in order to remove unnecesssary instances of
249 /// the test. If control can exit the loop from the LatchBlock's terminator
250 /// prior to TripCount iterations, flag PreserveCondBr needs to be set.
251 ///
252 /// PreserveCondBr indicates whether the conditional branch of the LatchBlock
253 /// needs to be preserved. It is needed when we use trip count upper bound to
254 /// fully unroll the loop. If PreserveOnlyFirst is also set then only the first
255 /// conditional branch needs to be preserved.
256 ///
257 /// Similarly, TripMultiple divides the number of times that the LatchBlock may
258 /// execute without exiting the loop.
259 ///
260 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that
261 /// have a runtime (i.e. not compile time constant) trip count. Unrolling these
262 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count"
263 /// iterations before branching into the unrolled loop. UnrollLoop will not
264 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and
265 /// AllowExpensiveTripCount is false.
266 ///
267 /// If we want to perform PGO-based loop peeling, PeelCount is set to the
268 /// number of iterations we want to peel off.
269 ///
270 /// The LoopInfo Analysis that is passed will be kept consistent.
271 ///
272 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
273 /// DominatorTree if they are non-null.
274 ///
275 /// If RemainderLoop is non-null, it will receive the remainder loop (if
276 /// required and not fully unrolled).
UnrollLoop(Loop * L,UnrollLoopOptions ULO,LoopInfo * LI,ScalarEvolution * SE,DominatorTree * DT,AssumptionCache * AC,OptimizationRemarkEmitter * ORE,bool PreserveLCSSA,Loop ** RemainderLoop)277 LoopUnrollResult llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI,
278 ScalarEvolution *SE, DominatorTree *DT,
279 AssumptionCache *AC,
280 OptimizationRemarkEmitter *ORE,
281 bool PreserveLCSSA, Loop **RemainderLoop) {
282
283 BasicBlock *Preheader = L->getLoopPreheader();
284 if (!Preheader) {
285 LLVM_DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n");
286 return LoopUnrollResult::Unmodified;
287 }
288
289 BasicBlock *LatchBlock = L->getLoopLatch();
290 if (!LatchBlock) {
291 LLVM_DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n");
292 return LoopUnrollResult::Unmodified;
293 }
294
295 // Loops with indirectbr cannot be cloned.
296 if (!L->isSafeToClone()) {
297 LLVM_DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n");
298 return LoopUnrollResult::Unmodified;
299 }
300
301 // The current loop unroll pass can unroll loops with a single latch or header
302 // that's a conditional branch exiting the loop.
303 // FIXME: The implementation can be extended to work with more complicated
304 // cases, e.g. loops with multiple latches.
305 BasicBlock *Header = L->getHeader();
306 BranchInst *HeaderBI = dyn_cast<BranchInst>(Header->getTerminator());
307 BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
308
309 // FIXME: Support loops without conditional latch and multiple exiting blocks.
310 if (!BI ||
311 (BI->isUnconditional() && (!HeaderBI || HeaderBI->isUnconditional() ||
312 L->getExitingBlock() != Header))) {
313 LLVM_DEBUG(dbgs() << " Can't unroll; loop not terminated by a conditional "
314 "branch in the latch or header.\n");
315 return LoopUnrollResult::Unmodified;
316 }
317
318 auto CheckLatchSuccessors = [&](unsigned S1, unsigned S2) {
319 return BI->isConditional() && BI->getSuccessor(S1) == Header &&
320 !L->contains(BI->getSuccessor(S2));
321 };
322
323 // If we have a conditional latch, it must exit the loop.
324 if (BI && BI->isConditional() && !CheckLatchSuccessors(0, 1) &&
325 !CheckLatchSuccessors(1, 0)) {
326 LLVM_DEBUG(
327 dbgs() << "Can't unroll; a conditional latch must exit the loop");
328 return LoopUnrollResult::Unmodified;
329 }
330
331 auto CheckHeaderSuccessors = [&](unsigned S1, unsigned S2) {
332 return HeaderBI && HeaderBI->isConditional() &&
333 L->contains(HeaderBI->getSuccessor(S1)) &&
334 !L->contains(HeaderBI->getSuccessor(S2));
335 };
336
337 // If we do not have a conditional latch, the header must exit the loop.
338 if (BI && !BI->isConditional() && HeaderBI && HeaderBI->isConditional() &&
339 !CheckHeaderSuccessors(0, 1) && !CheckHeaderSuccessors(1, 0)) {
340 LLVM_DEBUG(dbgs() << "Can't unroll; conditional header must exit the loop");
341 return LoopUnrollResult::Unmodified;
342 }
343
344 if (Header->hasAddressTaken()) {
345 // The loop-rotate pass can be helpful to avoid this in many cases.
346 LLVM_DEBUG(
347 dbgs() << " Won't unroll loop: address of header block is taken.\n");
348 return LoopUnrollResult::Unmodified;
349 }
350
351 if (ULO.TripCount != 0)
352 LLVM_DEBUG(dbgs() << " Trip Count = " << ULO.TripCount << "\n");
353 if (ULO.TripMultiple != 1)
354 LLVM_DEBUG(dbgs() << " Trip Multiple = " << ULO.TripMultiple << "\n");
355
356 // Effectively "DCE" unrolled iterations that are beyond the tripcount
357 // and will never be executed.
358 if (ULO.TripCount != 0 && ULO.Count > ULO.TripCount)
359 ULO.Count = ULO.TripCount;
360
361 // Don't enter the unroll code if there is nothing to do.
362 if (ULO.TripCount == 0 && ULO.Count < 2 && ULO.PeelCount == 0) {
363 LLVM_DEBUG(dbgs() << "Won't unroll; almost nothing to do\n");
364 return LoopUnrollResult::Unmodified;
365 }
366
367 assert(ULO.Count > 0);
368 assert(ULO.TripMultiple > 0);
369 assert(ULO.TripCount == 0 || ULO.TripCount % ULO.TripMultiple == 0);
370
371 // Are we eliminating the loop control altogether?
372 bool CompletelyUnroll = ULO.Count == ULO.TripCount;
373 SmallVector<BasicBlock *, 4> ExitBlocks;
374 L->getExitBlocks(ExitBlocks);
375 std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks();
376
377 // Go through all exits of L and see if there are any phi-nodes there. We just
378 // conservatively assume that they're inserted to preserve LCSSA form, which
379 // means that complete unrolling might break this form. We need to either fix
380 // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
381 // now we just recompute LCSSA for the outer loop, but it should be possible
382 // to fix it in-place.
383 bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll &&
384 any_of(ExitBlocks, [](const BasicBlock *BB) {
385 return isa<PHINode>(BB->begin());
386 });
387
388 // We assume a run-time trip count if the compiler cannot
389 // figure out the loop trip count and the unroll-runtime
390 // flag is specified.
391 bool RuntimeTripCount =
392 (ULO.TripCount == 0 && ULO.Count > 0 && ULO.AllowRuntime);
393
394 assert((!RuntimeTripCount || !ULO.PeelCount) &&
395 "Did not expect runtime trip-count unrolling "
396 "and peeling for the same loop");
397
398 bool Peeled = false;
399 if (ULO.PeelCount) {
400 Peeled = peelLoop(L, ULO.PeelCount, LI, SE, DT, AC, PreserveLCSSA);
401
402 // Successful peeling may result in a change in the loop preheader/trip
403 // counts. If we later unroll the loop, we want these to be updated.
404 if (Peeled) {
405 // According to our guards and profitability checks the only
406 // meaningful exit should be latch block. Other exits go to deopt,
407 // so we do not worry about them.
408 BasicBlock *ExitingBlock = L->getLoopLatch();
409 assert(ExitingBlock && "Loop without exiting block?");
410 assert(L->isLoopExiting(ExitingBlock) && "Latch is not exiting?");
411 Preheader = L->getLoopPreheader();
412 ULO.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
413 ULO.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
414 }
415 }
416
417 // Loops containing convergent instructions must have a count that divides
418 // their TripMultiple.
419 LLVM_DEBUG(
420 {
421 bool HasConvergent = false;
422 for (auto &BB : L->blocks())
423 for (auto &I : *BB)
424 if (auto CS = CallSite(&I))
425 HasConvergent |= CS.isConvergent();
426 assert((!HasConvergent || ULO.TripMultiple % ULO.Count == 0) &&
427 "Unroll count must divide trip multiple if loop contains a "
428 "convergent operation.");
429 });
430
431 bool EpilogProfitability =
432 UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog
433 : isEpilogProfitable(L);
434
435 if (RuntimeTripCount && ULO.TripMultiple % ULO.Count != 0 &&
436 !UnrollRuntimeLoopRemainder(L, ULO.Count, ULO.AllowExpensiveTripCount,
437 EpilogProfitability, ULO.UnrollRemainder,
438 ULO.ForgetAllSCEV, LI, SE, DT, AC,
439 PreserveLCSSA, RemainderLoop)) {
440 if (ULO.Force)
441 RuntimeTripCount = false;
442 else {
443 LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be "
444 "generated when assuming runtime trip count\n");
445 return LoopUnrollResult::Unmodified;
446 }
447 }
448
449 // If we know the trip count, we know the multiple...
450 unsigned BreakoutTrip = 0;
451 if (ULO.TripCount != 0) {
452 BreakoutTrip = ULO.TripCount % ULO.Count;
453 ULO.TripMultiple = 0;
454 } else {
455 // Figure out what multiple to use.
456 BreakoutTrip = ULO.TripMultiple =
457 (unsigned)GreatestCommonDivisor64(ULO.Count, ULO.TripMultiple);
458 }
459
460 using namespace ore;
461 // Report the unrolling decision.
462 if (CompletelyUnroll) {
463 LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
464 << " with trip count " << ULO.TripCount << "!\n");
465 if (ORE)
466 ORE->emit([&]() {
467 return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
468 L->getHeader())
469 << "completely unrolled loop with "
470 << NV("UnrollCount", ULO.TripCount) << " iterations";
471 });
472 } else if (ULO.PeelCount) {
473 LLVM_DEBUG(dbgs() << "PEELING loop %" << Header->getName()
474 << " with iteration count " << ULO.PeelCount << "!\n");
475 if (ORE)
476 ORE->emit([&]() {
477 return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(),
478 L->getHeader())
479 << " peeled loop by " << NV("PeelCount", ULO.PeelCount)
480 << " iterations";
481 });
482 } else {
483 auto DiagBuilder = [&]() {
484 OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
485 L->getHeader());
486 return Diag << "unrolled loop by a factor of "
487 << NV("UnrollCount", ULO.Count);
488 };
489
490 LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by "
491 << ULO.Count);
492 if (ULO.TripMultiple == 0 || BreakoutTrip != ULO.TripMultiple) {
493 LLVM_DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
494 if (ORE)
495 ORE->emit([&]() {
496 return DiagBuilder() << " with a breakout at trip "
497 << NV("BreakoutTrip", BreakoutTrip);
498 });
499 } else if (ULO.TripMultiple != 1) {
500 LLVM_DEBUG(dbgs() << " with " << ULO.TripMultiple << " trips per branch");
501 if (ORE)
502 ORE->emit([&]() {
503 return DiagBuilder()
504 << " with " << NV("TripMultiple", ULO.TripMultiple)
505 << " trips per branch";
506 });
507 } else if (RuntimeTripCount) {
508 LLVM_DEBUG(dbgs() << " with run-time trip count");
509 if (ORE)
510 ORE->emit(
511 [&]() { return DiagBuilder() << " with run-time trip count"; });
512 }
513 LLVM_DEBUG(dbgs() << "!\n");
514 }
515
516 // We are going to make changes to this loop. SCEV may be keeping cached info
517 // about it, in particular about backedge taken count. The changes we make
518 // are guaranteed to invalidate this information for our loop. It is tempting
519 // to only invalidate the loop being unrolled, but it is incorrect as long as
520 // all exiting branches from all inner loops have impact on the outer loops,
521 // and if something changes inside them then any of outer loops may also
522 // change. When we forget outermost loop, we also forget all contained loops
523 // and this is what we need here.
524 if (SE) {
525 if (ULO.ForgetAllSCEV)
526 SE->forgetAllLoops();
527 else
528 SE->forgetTopmostLoop(L);
529 }
530
531 bool ContinueOnTrue;
532 bool LatchIsExiting = BI->isConditional();
533 BasicBlock *LoopExit = nullptr;
534 if (LatchIsExiting) {
535 ContinueOnTrue = L->contains(BI->getSuccessor(0));
536 LoopExit = BI->getSuccessor(ContinueOnTrue);
537 } else {
538 NumUnrolledWithHeader++;
539 ContinueOnTrue = L->contains(HeaderBI->getSuccessor(0));
540 LoopExit = HeaderBI->getSuccessor(ContinueOnTrue);
541 }
542
543 // For the first iteration of the loop, we should use the precloned values for
544 // PHI nodes. Insert associations now.
545 ValueToValueMapTy LastValueMap;
546 std::vector<PHINode*> OrigPHINode;
547 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
548 OrigPHINode.push_back(cast<PHINode>(I));
549 }
550
551 std::vector<BasicBlock *> Headers;
552 std::vector<BasicBlock *> HeaderSucc;
553 std::vector<BasicBlock *> Latches;
554 Headers.push_back(Header);
555 Latches.push_back(LatchBlock);
556
557 if (!LatchIsExiting) {
558 auto *Term = cast<BranchInst>(Header->getTerminator());
559 if (Term->isUnconditional() || L->contains(Term->getSuccessor(0))) {
560 assert(L->contains(Term->getSuccessor(0)));
561 HeaderSucc.push_back(Term->getSuccessor(0));
562 } else {
563 assert(L->contains(Term->getSuccessor(1)));
564 HeaderSucc.push_back(Term->getSuccessor(1));
565 }
566 }
567
568 // The current on-the-fly SSA update requires blocks to be processed in
569 // reverse postorder so that LastValueMap contains the correct value at each
570 // exit.
571 LoopBlocksDFS DFS(L);
572 DFS.perform(LI);
573
574 // Stash the DFS iterators before adding blocks to the loop.
575 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
576 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
577
578 std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
579
580 // Loop Unrolling might create new loops. While we do preserve LoopInfo, we
581 // might break loop-simplified form for these loops (as they, e.g., would
582 // share the same exit blocks). We'll keep track of loops for which we can
583 // break this so that later we can re-simplify them.
584 SmallSetVector<Loop *, 4> LoopsToSimplify;
585 for (Loop *SubLoop : *L)
586 LoopsToSimplify.insert(SubLoop);
587
588 if (Header->getParent()->isDebugInfoForProfiling())
589 for (BasicBlock *BB : L->getBlocks())
590 for (Instruction &I : *BB)
591 if (!isa<DbgInfoIntrinsic>(&I))
592 if (const DILocation *DIL = I.getDebugLoc()) {
593 auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count);
594 if (NewDIL)
595 I.setDebugLoc(NewDIL.getValue());
596 else
597 LLVM_DEBUG(dbgs()
598 << "Failed to create new discriminator: "
599 << DIL->getFilename() << " Line: " << DIL->getLine());
600 }
601
602 for (unsigned It = 1; It != ULO.Count; ++It) {
603 std::vector<BasicBlock*> NewBlocks;
604 SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
605 NewLoops[L] = L;
606
607 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
608 ValueToValueMapTy VMap;
609 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
610 Header->getParent()->getBasicBlockList().push_back(New);
611
612 assert((*BB != Header || LI->getLoopFor(*BB) == L) &&
613 "Header should not be in a sub-loop");
614 // Tell LI about New.
615 const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops);
616 if (OldLoop)
617 LoopsToSimplify.insert(NewLoops[OldLoop]);
618
619 if (*BB == Header)
620 // Loop over all of the PHI nodes in the block, changing them to use
621 // the incoming values from the previous block.
622 for (PHINode *OrigPHI : OrigPHINode) {
623 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
624 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
625 if (Instruction *InValI = dyn_cast<Instruction>(InVal))
626 if (It > 1 && L->contains(InValI))
627 InVal = LastValueMap[InValI];
628 VMap[OrigPHI] = InVal;
629 New->getInstList().erase(NewPHI);
630 }
631
632 // Update our running map of newest clones
633 LastValueMap[*BB] = New;
634 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
635 VI != VE; ++VI)
636 LastValueMap[VI->first] = VI->second;
637
638 // Add phi entries for newly created values to all exit blocks.
639 for (BasicBlock *Succ : successors(*BB)) {
640 if (L->contains(Succ))
641 continue;
642 for (PHINode &PHI : Succ->phis()) {
643 Value *Incoming = PHI.getIncomingValueForBlock(*BB);
644 ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
645 if (It != LastValueMap.end())
646 Incoming = It->second;
647 PHI.addIncoming(Incoming, New);
648 }
649 }
650 // Keep track of new headers and latches as we create them, so that
651 // we can insert the proper branches later.
652 if (*BB == Header)
653 Headers.push_back(New);
654 if (*BB == LatchBlock)
655 Latches.push_back(New);
656
657 // Keep track of the successor of the new header in the current iteration.
658 for (auto *Pred : predecessors(*BB))
659 if (Pred == Header) {
660 HeaderSucc.push_back(New);
661 break;
662 }
663
664 NewBlocks.push_back(New);
665 UnrolledLoopBlocks.push_back(New);
666
667 // Update DomTree: since we just copy the loop body, and each copy has a
668 // dedicated entry block (copy of the header block), this header's copy
669 // dominates all copied blocks. That means, dominance relations in the
670 // copied body are the same as in the original body.
671 if (DT) {
672 if (*BB == Header)
673 DT->addNewBlock(New, Latches[It - 1]);
674 else {
675 auto BBDomNode = DT->getNode(*BB);
676 auto BBIDom = BBDomNode->getIDom();
677 BasicBlock *OriginalBBIDom = BBIDom->getBlock();
678 DT->addNewBlock(
679 New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
680 }
681 }
682 }
683
684 // Remap all instructions in the most recent iteration
685 for (BasicBlock *NewBlock : NewBlocks) {
686 for (Instruction &I : *NewBlock) {
687 ::remapInstruction(&I, LastValueMap);
688 if (auto *II = dyn_cast<IntrinsicInst>(&I))
689 if (II->getIntrinsicID() == Intrinsic::assume)
690 AC->registerAssumption(II);
691 }
692 }
693 }
694
695 // Loop over the PHI nodes in the original block, setting incoming values.
696 for (PHINode *PN : OrigPHINode) {
697 if (CompletelyUnroll) {
698 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
699 Header->getInstList().erase(PN);
700 } else if (ULO.Count > 1) {
701 Value *InVal = PN->removeIncomingValue(LatchBlock, false);
702 // If this value was defined in the loop, take the value defined by the
703 // last iteration of the loop.
704 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
705 if (L->contains(InValI))
706 InVal = LastValueMap[InVal];
707 }
708 assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
709 PN->addIncoming(InVal, Latches.back());
710 }
711 }
712
713 auto setDest = [LoopExit, ContinueOnTrue](BasicBlock *Src, BasicBlock *Dest,
714 ArrayRef<BasicBlock *> NextBlocks,
715 BasicBlock *BlockInLoop,
716 bool NeedConditional) {
717 auto *Term = cast<BranchInst>(Src->getTerminator());
718 if (NeedConditional) {
719 // Update the conditional branch's successor for the following
720 // iteration.
721 Term->setSuccessor(!ContinueOnTrue, Dest);
722 } else {
723 // Remove phi operands at this loop exit
724 if (Dest != LoopExit) {
725 BasicBlock *BB = Src;
726 for (BasicBlock *Succ : successors(BB)) {
727 // Preserve the incoming value from BB if we are jumping to the block
728 // in the current loop.
729 if (Succ == BlockInLoop)
730 continue;
731 for (PHINode &Phi : Succ->phis())
732 Phi.removeIncomingValue(BB, false);
733 }
734 }
735 // Replace the conditional branch with an unconditional one.
736 BranchInst::Create(Dest, Term);
737 Term->eraseFromParent();
738 }
739 };
740
741 // Now that all the basic blocks for the unrolled iterations are in place,
742 // set up the branches to connect them.
743 if (LatchIsExiting) {
744 // Set up latches to branch to the new header in the unrolled iterations or
745 // the loop exit for the last latch in a fully unrolled loop.
746 for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
747 // The branch destination.
748 unsigned j = (i + 1) % e;
749 BasicBlock *Dest = Headers[j];
750 bool NeedConditional = true;
751
752 if (RuntimeTripCount && j != 0) {
753 NeedConditional = false;
754 }
755
756 // For a complete unroll, make the last iteration end with a branch
757 // to the exit block.
758 if (CompletelyUnroll) {
759 if (j == 0)
760 Dest = LoopExit;
761 // If using trip count upper bound to completely unroll, we need to keep
762 // the conditional branch except the last one because the loop may exit
763 // after any iteration.
764 assert(NeedConditional &&
765 "NeedCondition cannot be modified by both complete "
766 "unrolling and runtime unrolling");
767 NeedConditional =
768 (ULO.PreserveCondBr && j && !(ULO.PreserveOnlyFirst && i != 0));
769 } else if (j != BreakoutTrip &&
770 (ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0)) {
771 // If we know the trip count or a multiple of it, we can safely use an
772 // unconditional branch for some iterations.
773 NeedConditional = false;
774 }
775
776 setDest(Latches[i], Dest, Headers, Headers[i], NeedConditional);
777 }
778 } else {
779 // Setup headers to branch to their new successors in the unrolled
780 // iterations.
781 for (unsigned i = 0, e = Headers.size(); i != e; ++i) {
782 // The branch destination.
783 unsigned j = (i + 1) % e;
784 BasicBlock *Dest = HeaderSucc[i];
785 bool NeedConditional = true;
786
787 if (RuntimeTripCount && j != 0)
788 NeedConditional = false;
789
790 if (CompletelyUnroll)
791 // We cannot drop the conditional branch for the last condition, as we
792 // may have to execute the loop body depending on the condition.
793 NeedConditional = j == 0 || ULO.PreserveCondBr;
794 else if (j != BreakoutTrip &&
795 (ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0))
796 // If we know the trip count or a multiple of it, we can safely use an
797 // unconditional branch for some iterations.
798 NeedConditional = false;
799
800 setDest(Headers[i], Dest, Headers, HeaderSucc[i], NeedConditional);
801 }
802
803 // Set up latches to branch to the new header in the unrolled iterations or
804 // the loop exit for the last latch in a fully unrolled loop.
805
806 for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
807 // The original branch was replicated in each unrolled iteration.
808 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
809
810 // The branch destination.
811 unsigned j = (i + 1) % e;
812 BasicBlock *Dest = Headers[j];
813
814 // When completely unrolling, the last latch becomes unreachable.
815 if (CompletelyUnroll && j == 0)
816 new UnreachableInst(Term->getContext(), Term);
817 else
818 // Replace the conditional branch with an unconditional one.
819 BranchInst::Create(Dest, Term);
820
821 Term->eraseFromParent();
822 }
823 }
824
825 // Update dominators of blocks we might reach through exits.
826 // Immediate dominator of such block might change, because we add more
827 // routes which can lead to the exit: we can now reach it from the copied
828 // iterations too.
829 if (DT && ULO.Count > 1) {
830 for (auto *BB : OriginalLoopBlocks) {
831 auto *BBDomNode = DT->getNode(BB);
832 SmallVector<BasicBlock *, 16> ChildrenToUpdate;
833 for (auto *ChildDomNode : BBDomNode->getChildren()) {
834 auto *ChildBB = ChildDomNode->getBlock();
835 if (!L->contains(ChildBB))
836 ChildrenToUpdate.push_back(ChildBB);
837 }
838 BasicBlock *NewIDom;
839 BasicBlock *&TermBlock = LatchIsExiting ? LatchBlock : Header;
840 auto &TermBlocks = LatchIsExiting ? Latches : Headers;
841 if (BB == TermBlock) {
842 // The latch is special because we emit unconditional branches in
843 // some cases where the original loop contained a conditional branch.
844 // Since the latch is always at the bottom of the loop, if the latch
845 // dominated an exit before unrolling, the new dominator of that exit
846 // must also be a latch. Specifically, the dominator is the first
847 // latch which ends in a conditional branch, or the last latch if
848 // there is no such latch.
849 // For loops exiting from the header, we limit the supported loops
850 // to have a single exiting block.
851 NewIDom = TermBlocks.back();
852 for (BasicBlock *Iter : TermBlocks) {
853 Instruction *Term = Iter->getTerminator();
854 if (isa<BranchInst>(Term) && cast<BranchInst>(Term)->isConditional()) {
855 NewIDom = Iter;
856 break;
857 }
858 }
859 } else {
860 // The new idom of the block will be the nearest common dominator
861 // of all copies of the previous idom. This is equivalent to the
862 // nearest common dominator of the previous idom and the first latch,
863 // which dominates all copies of the previous idom.
864 NewIDom = DT->findNearestCommonDominator(BB, LatchBlock);
865 }
866 for (auto *ChildBB : ChildrenToUpdate)
867 DT->changeImmediateDominator(ChildBB, NewIDom);
868 }
869 }
870
871 assert(!DT || !UnrollVerifyDomtree ||
872 DT->verify(DominatorTree::VerificationLevel::Fast));
873
874 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
875 // Merge adjacent basic blocks, if possible.
876 for (BasicBlock *Latch : Latches) {
877 BranchInst *Term = dyn_cast<BranchInst>(Latch->getTerminator());
878 assert((Term ||
879 (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) &&
880 "Need a branch as terminator, except when fully unrolling with "
881 "unconditional latch");
882 if (Term && Term->isUnconditional()) {
883 BasicBlock *Dest = Term->getSuccessor(0);
884 BasicBlock *Fold = Dest->getUniquePredecessor();
885 if (MergeBlockIntoPredecessor(Dest, &DTU, LI)) {
886 // Dest has been folded into Fold. Update our worklists accordingly.
887 std::replace(Latches.begin(), Latches.end(), Dest, Fold);
888 UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(),
889 UnrolledLoopBlocks.end(), Dest),
890 UnrolledLoopBlocks.end());
891 }
892 }
893 }
894 // Apply updates to the DomTree.
895 DT = &DTU.getDomTree();
896
897 // At this point, the code is well formed. We now simplify the unrolled loop,
898 // doing constant propagation and dead code elimination as we go.
899 simplifyLoopAfterUnroll(L, !CompletelyUnroll && (ULO.Count > 1 || Peeled), LI,
900 SE, DT, AC);
901
902 NumCompletelyUnrolled += CompletelyUnroll;
903 ++NumUnrolled;
904
905 Loop *OuterL = L->getParentLoop();
906 // Update LoopInfo if the loop is completely removed.
907 if (CompletelyUnroll)
908 LI->erase(L);
909
910 // After complete unrolling most of the blocks should be contained in OuterL.
911 // However, some of them might happen to be out of OuterL (e.g. if they
912 // precede a loop exit). In this case we might need to insert PHI nodes in
913 // order to preserve LCSSA form.
914 // We don't need to check this if we already know that we need to fix LCSSA
915 // form.
916 // TODO: For now we just recompute LCSSA for the outer loop in this case, but
917 // it should be possible to fix it in-place.
918 if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
919 NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
920
921 // If we have a pass and a DominatorTree we should re-simplify impacted loops
922 // to ensure subsequent analyses can rely on this form. We want to simplify
923 // at least one layer outside of the loop that was unrolled so that any
924 // changes to the parent loop exposed by the unrolling are considered.
925 if (DT) {
926 if (OuterL) {
927 // OuterL includes all loops for which we can break loop-simplify, so
928 // it's sufficient to simplify only it (it'll recursively simplify inner
929 // loops too).
930 if (NeedToFixLCSSA) {
931 // LCSSA must be performed on the outermost affected loop. The unrolled
932 // loop's last loop latch is guaranteed to be in the outermost loop
933 // after LoopInfo's been updated by LoopInfo::erase.
934 Loop *LatchLoop = LI->getLoopFor(Latches.back());
935 Loop *FixLCSSALoop = OuterL;
936 if (!FixLCSSALoop->contains(LatchLoop))
937 while (FixLCSSALoop->getParentLoop() != LatchLoop)
938 FixLCSSALoop = FixLCSSALoop->getParentLoop();
939
940 formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE);
941 } else if (PreserveLCSSA) {
942 assert(OuterL->isLCSSAForm(*DT) &&
943 "Loops should be in LCSSA form after loop-unroll.");
944 }
945
946 // TODO: That potentially might be compile-time expensive. We should try
947 // to fix the loop-simplified form incrementally.
948 simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA);
949 } else {
950 // Simplify loops for which we might've broken loop-simplify form.
951 for (Loop *SubLoop : LoopsToSimplify)
952 simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA);
953 }
954 }
955
956 return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled
957 : LoopUnrollResult::PartiallyUnrolled;
958 }
959
960 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata
961 /// node with the given name (for example, "llvm.loop.unroll.count"). If no
962 /// such metadata node exists, then nullptr is returned.
GetUnrollMetadata(MDNode * LoopID,StringRef Name)963 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
964 // First operand should refer to the loop id itself.
965 assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
966 assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
967
968 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
969 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
970 if (!MD)
971 continue;
972
973 MDString *S = dyn_cast<MDString>(MD->getOperand(0));
974 if (!S)
975 continue;
976
977 if (Name.equals(S->getString()))
978 return MD;
979 }
980 return nullptr;
981 }
982