• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * AC-3 DSP functions
3  * Copyright (c) 2011 Justin Ruggles
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 #ifndef AVCODEC_AC3DSP_H
23 #define AVCODEC_AC3DSP_H
24 
25 #include <stdint.h>
26 
27 /**
28  * Number of mantissa bits written for each bap value.
29  * bap values with fractional bits are set to 0 and are calculated separately.
30  */
31 extern const uint16_t ff_ac3_bap_bits[16];
32 
33 typedef struct AC3DSPContext {
34     /**
35      * Set each encoded exponent in a block to the minimum of itself and the
36      * exponents in the same frequency bin of up to 5 following blocks.
37      * @param exp   pointer to the start of the current block of exponents.
38      *              constraints: align 16
39      * @param num_reuse_blocks  number of blocks that will reuse exponents from the current block.
40      *                          constraints: range 0 to 5
41      * @param nb_coefs  number of frequency coefficients.
42      */
43     void (*ac3_exponent_min)(uint8_t *exp, int num_reuse_blocks, int nb_coefs);
44 
45     /**
46      * Convert an array of float in range [-1.0,1.0] to int32_t with range
47      * [-(1<<24),(1<<24)]
48      *
49      * @param dst destination array of int32_t.
50      *            constraints: 16-byte aligned
51      * @param src source array of float.
52      *            constraints: 16-byte aligned
53      * @param len number of elements to convert.
54      *            constraints: multiple of 32 greater than zero
55      */
56     void (*float_to_fixed24)(int32_t *dst, const float *src, unsigned int len);
57 
58     /**
59      * Calculate bit allocation pointers.
60      * The SNR is the difference between the masking curve and the signal.  AC-3
61      * uses this value for each frequency bin to allocate bits.  The snroffset
62      * parameter is a global adjustment to the SNR for all bins.
63      *
64      * @param[in]  mask       masking curve
65      * @param[in]  psd        signal power for each frequency bin
66      * @param[in]  start      starting bin location
67      * @param[in]  end        ending bin location
68      * @param[in]  snr_offset SNR adjustment
69      * @param[in]  floor      noise floor
70      * @param[in]  bap_tab    look-up table for bit allocation pointers
71      * @param[out] bap        bit allocation pointers
72      */
73     void (*bit_alloc_calc_bap)(int16_t *mask, int16_t *psd, int start, int end,
74                                int snr_offset, int floor,
75                                const uint8_t *bap_tab, uint8_t *bap);
76 
77     /**
78      * Update bap counts using the supplied array of bap.
79      *
80      * @param[out] mant_cnt   bap counts for 1 block
81      * @param[in]  bap        array of bap, pointing to start coef bin
82      * @param[in]  len        number of elements to process
83      */
84     void (*update_bap_counts)(uint16_t mant_cnt[16], uint8_t *bap, int len);
85 
86     /**
87      * Calculate the number of bits needed to encode a set of mantissas.
88      *
89      * @param[in] mant_cnt    bap counts for all blocks
90      * @return                mantissa bit count
91      */
92     int (*compute_mantissa_size)(uint16_t mant_cnt[6][16]);
93 
94     void (*extract_exponents)(uint8_t *exp, int32_t *coef, int nb_coefs);
95 
96     void (*sum_square_butterfly_int32)(int64_t sum[4], const int32_t *coef0,
97                                        const int32_t *coef1, int len);
98 
99     void (*sum_square_butterfly_float)(float sum[4], const float *coef0,
100                                        const float *coef1, int len);
101 
102     int out_channels;
103     int in_channels;
104     void (*downmix)(float **samples, float **matrix, int len);
105     void (*downmix_fixed)(int32_t **samples, int16_t **matrix, int len);
106 } AC3DSPContext;
107 
108 void ff_ac3dsp_init    (AC3DSPContext *c, int bit_exact);
109 void ff_ac3dsp_init_arm(AC3DSPContext *c, int bit_exact);
110 void ff_ac3dsp_init_x86(AC3DSPContext *c, int bit_exact);
111 void ff_ac3dsp_init_mips(AC3DSPContext *c, int bit_exact);
112 
113 void ff_ac3dsp_downmix(AC3DSPContext *c, float **samples, float **matrix,
114                        int out_ch, int in_ch, int len);
115 void ff_ac3dsp_downmix_fixed(AC3DSPContext *c, int32_t **samples, int16_t **matrix,
116                              int out_ch, int in_ch, int len);
117 
118 void ff_ac3dsp_set_downmix_x86(AC3DSPContext *c);
119 
120 #endif /* AVCODEC_AC3DSP_H */
121