• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Boost.Geometry
2 
3 // Copyright (c) 2016-2020 Oracle and/or its affiliates.
4 
5 // Contributed and/or modified by Vissarion Fysikopoulos, on behalf of Oracle
6 // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
7 
8 // Use, modification and distribution is subject to the Boost Software License,
9 // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
10 // http://www.boost.org/LICENSE_1_0.txt)
11 
12 #ifndef BOOST_GEOMETRY_FORMULAS_THOMAS_DIRECT_HPP
13 #define BOOST_GEOMETRY_FORMULAS_THOMAS_DIRECT_HPP
14 
15 
16 #include <boost/math/constants/constants.hpp>
17 
18 #include <boost/geometry/core/assert.hpp>
19 #include <boost/geometry/core/radius.hpp>
20 
21 #include <boost/geometry/util/condition.hpp>
22 #include <boost/geometry/util/math.hpp>
23 #include <boost/geometry/util/normalize_spheroidal_coordinates.hpp>
24 
25 #include <boost/geometry/formulas/differential_quantities.hpp>
26 #include <boost/geometry/formulas/flattening.hpp>
27 #include <boost/geometry/formulas/result_direct.hpp>
28 
29 
30 namespace boost { namespace geometry { namespace formula
31 {
32 
33 
34 /*!
35 \brief The solution of the direct problem of geodesics on latlong coordinates,
36        Forsyth-Andoyer-Lambert type approximation with first/second order terms.
37 \author See
38     - Technical Report: PAUL D. THOMAS, MATHEMATICAL MODELS FOR NAVIGATION SYSTEMS, 1965
39       http://www.dtic.mil/docs/citations/AD0627893
40     - Technical Report: PAUL D. THOMAS, SPHEROIDAL GEODESICS, REFERENCE SYSTEMS, AND LOCAL GEOMETRY, 1970
41       http://www.dtic.mil/docs/citations/AD0703541
42 */
43 template <
44     typename CT,
45     bool SecondOrder = true,
46     bool EnableCoordinates = true,
47     bool EnableReverseAzimuth = false,
48     bool EnableReducedLength = false,
49     bool EnableGeodesicScale = false
50 >
51 class thomas_direct
52 {
53     static const bool CalcQuantities = EnableReducedLength || EnableGeodesicScale;
54     static const bool CalcCoordinates = EnableCoordinates || CalcQuantities;
55     static const bool CalcRevAzimuth = EnableReverseAzimuth || CalcCoordinates || CalcQuantities;
56 
57 public:
58     typedef result_direct<CT> result_type;
59 
60     template <typename T, typename Dist, typename Azi, typename Spheroid>
apply(T const & lo1,T const & la1,Dist const & distance,Azi const & azimuth12,Spheroid const & spheroid)61     static inline result_type apply(T const& lo1,
62                                     T const& la1,
63                                     Dist const& distance,
64                                     Azi const& azimuth12,
65                                     Spheroid const& spheroid)
66     {
67         result_type result;
68 
69         CT const lon1 = lo1;
70         CT const lat1 = la1;
71 
72         CT const c0 = 0;
73         CT const c1 = 1;
74         CT const c2 = 2;
75         CT const c4 = 4;
76 
77         CT const a = CT(get_radius<0>(spheroid));
78         CT const b = CT(get_radius<2>(spheroid));
79         CT const f = formula::flattening<CT>(spheroid);
80         CT const one_minus_f = c1 - f;
81 
82         CT const pi = math::pi<CT>();
83         CT const pi_half = pi / c2;
84 
85         BOOST_GEOMETRY_ASSERT(-pi <= azimuth12 && azimuth12 <= pi);
86 
87         // keep azimuth small - experiments show low accuracy
88         // if the azimuth is closer to (+-)180 deg.
89         CT azi12_alt = azimuth12;
90         CT lat1_alt = lat1;
91         bool alter_result = vflip_if_south(lat1, azimuth12, lat1_alt, azi12_alt);
92 
93         CT const theta1 = math::equals(lat1_alt, pi_half) ? lat1_alt :
94                           math::equals(lat1_alt, -pi_half) ? lat1_alt :
95                           atan(one_minus_f * tan(lat1_alt));
96         CT const sin_theta1 = sin(theta1);
97         CT const cos_theta1 = cos(theta1);
98 
99         CT const sin_a12 = sin(azi12_alt);
100         CT const cos_a12 = cos(azi12_alt);
101 
102         CT const M = cos_theta1 * sin_a12; // cos_theta0
103         CT const theta0 = acos(M);
104         CT const sin_theta0 = sin(theta0);
105 
106         CT const N = cos_theta1 * cos_a12;
107         CT const C1 = f * M; // lower-case c1 in the technical report
108         CT const C2 = f * (c1 - math::sqr(M)) / c4; // lower-case c2 in the technical report
109         CT D = 0;
110         CT P = 0;
111         if ( BOOST_GEOMETRY_CONDITION(SecondOrder) )
112         {
113             D = (c1 - C2) * (c1 - C2 - C1 * M);
114             P = C2 * (c1 + C1 * M / c2) / D;
115         }
116         else
117         {
118             D = c1 - c2 * C2 - C1 * M;
119             P = C2 / D;
120         }
121         // special case for equator:
122         // sin_theta0 = 0 <=> lat1 = 0 ^ |azimuth12| = pi/2
123         // NOTE: in this case it doesn't matter what's the value of cos_sigma1 because
124         //       theta1=0, theta0=0, M=1|-1, C2=0 so X=0 and Y=0 so d_sigma=d
125         //       cos_a12=0 so N=0, therefore
126         //       lat2=0, azi21=pi/2|-pi/2
127         //       d_eta = atan2(sin_d_sigma, cos_d_sigma)
128         //       H = C1 * d_sigma
129         CT const cos_sigma1 = math::equals(sin_theta0, c0)
130                                 ? c1
131                                 : normalized1_1(sin_theta1 / sin_theta0);
132         CT const sigma1 = acos(cos_sigma1);
133         CT const d = distance / (a * D);
134         CT const u = 2 * (sigma1 - d);
135         CT const cos_d = cos(d);
136         CT const sin_d = sin(d);
137         CT const cos_u = cos(u);
138         CT const sin_u = sin(u);
139 
140         CT const W = c1 - c2 * P * cos_u;
141         CT const V = cos_u * cos_d - sin_u * sin_d;
142         CT const Y = c2 * P * V * W * sin_d;
143         CT X = 0;
144         CT d_sigma = d - Y;
145         if ( BOOST_GEOMETRY_CONDITION(SecondOrder) )
146         {
147             X = math::sqr(C2) * sin_d * cos_d * (2 * math::sqr(V) - c1);
148             d_sigma += X;
149         }
150         CT const sin_d_sigma = sin(d_sigma);
151         CT const cos_d_sigma = cos(d_sigma);
152 
153         if (BOOST_GEOMETRY_CONDITION(CalcRevAzimuth))
154         {
155             result.reverse_azimuth = atan2(M, N * cos_d_sigma - sin_theta1 * sin_d_sigma);
156 
157             if (alter_result)
158             {
159                 vflip_rev_azi(result.reverse_azimuth, azimuth12);
160             }
161         }
162 
163         if (BOOST_GEOMETRY_CONDITION(CalcCoordinates))
164         {
165             CT const S_sigma = c2 * sigma1 - d_sigma;
166             CT cos_S_sigma = 0;
167             CT H = C1 * d_sigma;
168             if ( BOOST_GEOMETRY_CONDITION(SecondOrder) )
169             {
170                 cos_S_sigma = cos(S_sigma);
171                 H = H * (c1 - C2) - C1 * C2 * sin_d_sigma * cos_S_sigma;
172             }
173             CT const d_eta = atan2(sin_d_sigma * sin_a12, cos_theta1 * cos_d_sigma - sin_theta1 * sin_d_sigma * cos_a12);
174             CT const d_lambda = d_eta - H;
175 
176             result.lon2 = lon1 + d_lambda;
177 
178             if (! math::equals(M, c0))
179             {
180                 CT const sin_a21 = sin(result.reverse_azimuth);
181                 CT const tan_theta2 = (sin_theta1 * cos_d_sigma + N * sin_d_sigma) * sin_a21 / M;
182                 result.lat2 = atan(tan_theta2 / one_minus_f);
183             }
184             else
185             {
186                 CT const sigma2 = S_sigma - sigma1;
187                 //theta2 = asin(cos(sigma2)) <=> sin_theta0 = 1
188                 // NOTE: cos(sigma2) defines the sign of tan_theta2
189                 CT const tan_theta2 = cos(sigma2) / math::abs(sin(sigma2));
190                 result.lat2 = atan(tan_theta2 / one_minus_f);
191             }
192 
193             if (alter_result)
194             {
195                 result.lat2 = -result.lat2;
196             }
197         }
198 
199         if (BOOST_GEOMETRY_CONDITION(CalcQuantities))
200         {
201             typedef differential_quantities<CT, EnableReducedLength, EnableGeodesicScale, 2> quantities;
202             quantities::apply(lon1, lat1, result.lon2, result.lat2,
203                               azimuth12, result.reverse_azimuth,
204                               b, f,
205                               result.reduced_length, result.geodesic_scale);
206         }
207 
208         if (BOOST_GEOMETRY_CONDITION(CalcCoordinates))
209         {
210             // For longitudes close to the antimeridian the result can be out
211             // of range. Therefore normalize.
212             // It has to be done at the end because otherwise differential
213             // quantities are calculated incorrectly.
214             math::detail::normalize_angle_cond<radian>(result.lon2);
215         }
216 
217         return result;
218     }
219 
220 private:
vflip_if_south(CT const & lat1,CT const & azi12,CT & lat1_alt,CT & azi12_alt)221     static inline bool vflip_if_south(CT const& lat1, CT const& azi12, CT & lat1_alt, CT & azi12_alt)
222     {
223         CT const c2 = 2;
224         CT const pi = math::pi<CT>();
225         CT const pi_half = pi / c2;
226 
227         if (azi12 > pi_half)
228         {
229             azi12_alt = pi - azi12;
230             lat1_alt = -lat1;
231             return true;
232         }
233         else if (azi12 < -pi_half)
234         {
235             azi12_alt = -pi - azi12;
236             lat1_alt = -lat1;
237             return true;
238         }
239 
240         return false;
241     }
242 
vflip_rev_azi(CT & rev_azi,CT const & azimuth12)243     static inline void vflip_rev_azi(CT & rev_azi, CT const& azimuth12)
244     {
245         CT const c0 = 0;
246         CT const pi = math::pi<CT>();
247 
248         if (rev_azi == c0)
249         {
250             rev_azi = azimuth12 >= 0 ? pi : -pi;
251         }
252         else if (rev_azi > c0)
253         {
254             rev_azi = pi - rev_azi;
255         }
256         else
257         {
258             rev_azi = -pi - rev_azi;
259         }
260     }
261 
normalized1_1(CT const & value)262     static inline CT normalized1_1(CT const& value)
263     {
264         CT const c1 = 1;
265         return value > c1 ? c1 :
266                value < -c1 ? -c1 :
267                value;
268     }
269 };
270 
271 }}} // namespace boost::geometry::formula
272 
273 
274 #endif // BOOST_GEOMETRY_FORMULAS_THOMAS_DIRECT_HPP
275