• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Boost.Geometry
2 
3 // Copyright (c) 2007-2012 Barend Gehrels, Amsterdam, the Netherlands.
4 
5 // This file was modified by Oracle on 2014-2020.
6 // Modifications copyright (c) 2014-2020 Oracle and/or its affiliates.
7 
8 // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
9 
10 // Use, modification and distribution is subject to the Boost Software License,
11 // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
12 // http://www.boost.org/LICENSE_1_0.txt)
13 
14 #ifndef BOOST_GEOMETRY_FORMULAS_VINCENTY_DIRECT_HPP
15 #define BOOST_GEOMETRY_FORMULAS_VINCENTY_DIRECT_HPP
16 
17 
18 #include <boost/math/constants/constants.hpp>
19 
20 #include <boost/geometry/core/radius.hpp>
21 
22 #include <boost/geometry/util/condition.hpp>
23 #include <boost/geometry/util/math.hpp>
24 #include <boost/geometry/util/normalize_spheroidal_coordinates.hpp>
25 
26 #include <boost/geometry/formulas/differential_quantities.hpp>
27 #include <boost/geometry/formulas/flattening.hpp>
28 #include <boost/geometry/formulas/result_direct.hpp>
29 
30 
31 #ifndef BOOST_GEOMETRY_DETAIL_VINCENTY_MAX_STEPS
32 #define BOOST_GEOMETRY_DETAIL_VINCENTY_MAX_STEPS 1000
33 #endif
34 
35 
36 namespace boost { namespace geometry { namespace formula
37 {
38 
39 /*!
40 \brief The solution of the direct problem of geodesics on latlong coordinates, after Vincenty, 1975
41 \author See
42     - http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf
43     - http://www.icsm.gov.au/gda/gdav2.3.pdf
44 \author Adapted from various implementations to get it close to the original document
45     - http://www.movable-type.co.uk/scripts/LatLongVincenty.html
46     - http://exogen.case.edu/projects/geopy/source/geopy.distance.html
47     - http://futureboy.homeip.net/fsp/colorize.fsp?fileName=navigation.frink
48 
49 */
50 template <
51     typename CT,
52     bool EnableCoordinates = true,
53     bool EnableReverseAzimuth = false,
54     bool EnableReducedLength = false,
55     bool EnableGeodesicScale = false
56 >
57 class vincenty_direct
58 {
59     static const bool CalcQuantities = EnableReducedLength || EnableGeodesicScale;
60     static const bool CalcCoordinates = EnableCoordinates || CalcQuantities;
61     static const bool CalcRevAzimuth = EnableReverseAzimuth || CalcQuantities;
62 
63 public:
64     typedef result_direct<CT> result_type;
65 
66     template <typename T, typename Dist, typename Azi, typename Spheroid>
apply(T const & lo1,T const & la1,Dist const & distance,Azi const & azimuth12,Spheroid const & spheroid)67     static inline result_type apply(T const& lo1,
68                                     T const& la1,
69                                     Dist const& distance,
70                                     Azi const& azimuth12,
71                                     Spheroid const& spheroid)
72     {
73         result_type result;
74 
75         CT const lon1 = lo1;
76         CT const lat1 = la1;
77 
78         CT const radius_a = CT(get_radius<0>(spheroid));
79         CT const radius_b = CT(get_radius<2>(spheroid));
80         CT const flattening = formula::flattening<CT>(spheroid);
81 
82         CT const sin_azimuth12 = sin(azimuth12);
83         CT const cos_azimuth12 = cos(azimuth12);
84 
85         // U: reduced latitude, defined by tan U = (1-f) tan phi
86         CT const one_min_f = CT(1) - flattening;
87         CT const tan_U1 = one_min_f * tan(lat1);
88         CT const sigma1 = atan2(tan_U1, cos_azimuth12); // (1)
89 
90         // may be calculated from tan using 1 sqrt()
91         CT const U1 = atan(tan_U1);
92         CT const sin_U1 = sin(U1);
93         CT const cos_U1 = cos(U1);
94 
95         CT const sin_alpha = cos_U1 * sin_azimuth12; // (2)
96         CT const sin_alpha_sqr = math::sqr(sin_alpha);
97         CT const cos_alpha_sqr = CT(1) - sin_alpha_sqr;
98 
99         CT const b_sqr = radius_b * radius_b;
100         CT const u_sqr = cos_alpha_sqr * (radius_a * radius_a - b_sqr) / b_sqr;
101         CT const A = CT(1) + (u_sqr/CT(16384)) * (CT(4096) + u_sqr*(CT(-768) + u_sqr*(CT(320) - u_sqr*CT(175)))); // (3)
102         CT const B = (u_sqr/CT(1024))*(CT(256) + u_sqr*(CT(-128) + u_sqr*(CT(74) - u_sqr*CT(47)))); // (4)
103 
104         CT s_div_bA = distance / (radius_b * A);
105         CT sigma = s_div_bA; // (7)
106 
107         CT previous_sigma;
108         CT sin_sigma;
109         CT cos_sigma;
110         CT cos_2sigma_m;
111         CT cos_2sigma_m_sqr;
112 
113         int counter = 0; // robustness
114 
115         do
116         {
117             previous_sigma = sigma;
118 
119             CT const two_sigma_m = CT(2) * sigma1 + sigma; // (5)
120 
121             sin_sigma = sin(sigma);
122             cos_sigma = cos(sigma);
123             CT const sin_sigma_sqr = math::sqr(sin_sigma);
124             cos_2sigma_m = cos(two_sigma_m);
125             cos_2sigma_m_sqr = math::sqr(cos_2sigma_m);
126 
127             CT const delta_sigma = B * sin_sigma * (cos_2sigma_m
128                                         + (B/CT(4)) * ( cos_sigma * (CT(-1) + CT(2)*cos_2sigma_m_sqr)
129                                             - (B/CT(6) * cos_2sigma_m * (CT(-3)+CT(4)*sin_sigma_sqr) * (CT(-3)+CT(4)*cos_2sigma_m_sqr)) )); // (6)
130 
131             sigma = s_div_bA + delta_sigma; // (7)
132 
133             ++counter; // robustness
134 
135         } while ( geometry::math::abs(previous_sigma - sigma) > CT(1e-12)
136                //&& geometry::math::abs(sigma) < pi
137                && counter < BOOST_GEOMETRY_DETAIL_VINCENTY_MAX_STEPS ); // robustness
138 
139         if (BOOST_GEOMETRY_CONDITION(CalcCoordinates))
140         {
141             result.lat2
142                 = atan2( sin_U1 * cos_sigma + cos_U1 * sin_sigma * cos_azimuth12,
143                          one_min_f * math::sqrt(sin_alpha_sqr + math::sqr(sin_U1 * sin_sigma - cos_U1 * cos_sigma * cos_azimuth12))); // (8)
144 
145             CT const lambda = atan2( sin_sigma * sin_azimuth12,
146                                      cos_U1 * cos_sigma - sin_U1 * sin_sigma * cos_azimuth12); // (9)
147             CT const C = (flattening/CT(16)) * cos_alpha_sqr * ( CT(4) + flattening * ( CT(4) - CT(3) * cos_alpha_sqr ) ); // (10)
148             CT const L = lambda - (CT(1) - C) * flattening * sin_alpha
149                             * ( sigma + C * sin_sigma * ( cos_2sigma_m + C * cos_sigma * ( CT(-1) + CT(2) * cos_2sigma_m_sqr ) ) ); // (11)
150 
151             result.lon2 = lon1 + L;
152         }
153 
154         if (BOOST_GEOMETRY_CONDITION(CalcRevAzimuth))
155         {
156             result.reverse_azimuth
157                 = atan2(sin_alpha, -sin_U1 * sin_sigma + cos_U1 * cos_sigma * cos_azimuth12); // (12)
158         }
159 
160         if (BOOST_GEOMETRY_CONDITION(CalcQuantities))
161         {
162             typedef differential_quantities<CT, EnableReducedLength, EnableGeodesicScale, 2> quantities;
163             quantities::apply(lon1, lat1, result.lon2, result.lat2,
164                               azimuth12, result.reverse_azimuth,
165                               radius_b, flattening,
166                               result.reduced_length, result.geodesic_scale);
167         }
168 
169         if (BOOST_GEOMETRY_CONDITION(CalcCoordinates))
170         {
171             // For longitudes close to the antimeridian the result can be out
172             // of range. Therefore normalize.
173             // It has to be done at the end because otherwise differential
174             // quantities are calculated incorrectly.
175             math::detail::normalize_angle_cond<radian>(result.lon2);
176         }
177 
178         return result;
179     }
180 
181 };
182 
183 }}} // namespace boost::geometry::formula
184 
185 
186 #endif // BOOST_GEOMETRY_FORMULAS_VINCENTY_DIRECT_HPP
187