1 // (C) Copyright 2007-2009 Andrew Sutton
2 //
3 // Use, modification and distribution are subject to the
4 // Boost Software License, Version 1.0 (See accompanying file
5 // LICENSE_1_0.txt or http://www.boost.org/LICENSE_1_0.txt)
6
7 #ifndef BOOST_GRAPH_CYCLE_HPP
8 #define BOOST_GRAPH_CYCLE_HPP
9
10 #include <vector>
11
12 #include <boost/config.hpp>
13 #include <boost/graph/graph_concepts.hpp>
14 #include <boost/graph/graph_traits.hpp>
15 #include <boost/graph/properties.hpp>
16 #include <boost/concept/assert.hpp>
17
18 #include <boost/concept/detail/concept_def.hpp>
19 namespace boost
20 {
21 namespace concepts
22 {
23 BOOST_concept(CycleVisitor, (Visitor)(Path)(Graph))
24 {
BOOST_CONCEPT_USAGE(CycleVisitor)25 BOOST_CONCEPT_USAGE(CycleVisitor) { vis.cycle(p, g); }
26
27 private:
28 Visitor vis;
29 Graph g;
30 Path p;
31 };
32 } /* namespace concepts */
33 using concepts::CycleVisitorConcept;
34 } /* namespace boost */
35 #include <boost/concept/detail/concept_undef.hpp>
36
37 namespace boost
38 {
39
40 // The implementation of this algorithm is a reproduction of the Teirnan
41 // approach for directed graphs: bibtex follows
42 //
43 // @article{362819,
44 // author = {James C. Tiernan},
45 // title = {An efficient search algorithm to find the elementary
46 // circuits of a graph}, journal = {Commun. ACM}, volume = {13}, number
47 // = {12}, year = {1970}, issn = {0001-0782}, pages = {722--726}, doi =
48 // {http://doi.acm.org/10.1145/362814.362819},
49 // publisher = {ACM Press},
50 // address = {New York, NY, USA},
51 // }
52 //
53 // It should be pointed out that the author does not provide a complete analysis
54 // for either time or space. This is in part, due to the fact that it's a fairly
55 // input sensitive problem related to the density and construction of the graph,
56 // not just its size.
57 //
58 // I've also taken some liberties with the interpretation of the algorithm -
59 // I've basically modernized it to use real data structures (no more arrays and
60 // matrices). Oh... and there's explicit control structures - not just gotos.
61 //
62 // The problem is definitely NP-complete, an unbounded implementation of this
63 // will probably run for quite a while on a large graph. The conclusions
64 // of this paper also reference a Paton algorithm for undirected graphs as being
65 // much more efficient (apparently based on spanning trees). Although not
66 // implemented, it can be found here:
67 //
68 // @article{363232,
69 // author = {Keith Paton},
70 // title = {An algorithm for finding a fundamental set of cycles of a
71 // graph}, journal = {Commun. ACM}, volume = {12}, number = {9}, year =
72 // {1969}, issn = {0001-0782}, pages = {514--518}, doi =
73 // {http://doi.acm.org/10.1145/363219.363232},
74 // publisher = {ACM Press},
75 // address = {New York, NY, USA},
76 // }
77
78 /**
79 * The default cycle visitor provides an empty visit function for cycle
80 * visitors.
81 */
82 struct cycle_visitor
83 {
84 template < typename Path, typename Graph >
cycleboost::cycle_visitor85 inline void cycle(const Path& p, const Graph& g)
86 {
87 }
88 };
89
90 /**
91 * The min_max_cycle_visitor simultaneously records the minimum and maximum
92 * cycles in a graph.
93 */
94 struct min_max_cycle_visitor
95 {
min_max_cycle_visitorboost::min_max_cycle_visitor96 min_max_cycle_visitor(std::size_t& min_, std::size_t& max_)
97 : minimum(min_), maximum(max_)
98 {
99 }
100
101 template < typename Path, typename Graph >
cycleboost::min_max_cycle_visitor102 inline void cycle(const Path& p, const Graph& g)
103 {
104 BOOST_USING_STD_MIN();
105 BOOST_USING_STD_MAX();
106 std::size_t len = p.size();
107 minimum = min BOOST_PREVENT_MACRO_SUBSTITUTION(minimum, len);
108 maximum = max BOOST_PREVENT_MACRO_SUBSTITUTION(maximum, len);
109 }
110 std::size_t& minimum;
111 std::size_t& maximum;
112 };
113
find_min_max_cycle(std::size_t & min_,std::size_t & max_)114 inline min_max_cycle_visitor find_min_max_cycle(
115 std::size_t& min_, std::size_t& max_)
116 {
117 return min_max_cycle_visitor(min_, max_);
118 }
119
120 namespace detail
121 {
122 template < typename Graph, typename Path >
is_vertex_in_path(const Graph &,typename graph_traits<Graph>::vertex_descriptor v,const Path & p)123 inline bool is_vertex_in_path(const Graph&,
124 typename graph_traits< Graph >::vertex_descriptor v, const Path& p)
125 {
126 return (std::find(p.begin(), p.end(), v) != p.end());
127 }
128
129 template < typename Graph, typename ClosedMatrix >
is_path_closed(const Graph & g,typename graph_traits<Graph>::vertex_descriptor u,typename graph_traits<Graph>::vertex_descriptor v,const ClosedMatrix & closed)130 inline bool is_path_closed(const Graph& g,
131 typename graph_traits< Graph >::vertex_descriptor u,
132 typename graph_traits< Graph >::vertex_descriptor v,
133 const ClosedMatrix& closed)
134 {
135 // the path from u to v is closed if v can be found in the list
136 // of closed vertices associated with u.
137 typedef typename ClosedMatrix::const_reference Row;
138 Row r = closed[get(vertex_index, g, u)];
139 if (find(r.begin(), r.end(), v) != r.end())
140 {
141 return true;
142 }
143 return false;
144 }
145
146 template < typename Graph, typename Path, typename ClosedMatrix >
can_extend_path(const Graph & g,typename graph_traits<Graph>::edge_descriptor e,const Path & p,const ClosedMatrix & m)147 inline bool can_extend_path(const Graph& g,
148 typename graph_traits< Graph >::edge_descriptor e, const Path& p,
149 const ClosedMatrix& m)
150 {
151 BOOST_CONCEPT_ASSERT((IncidenceGraphConcept< Graph >));
152 BOOST_CONCEPT_ASSERT((VertexIndexGraphConcept< Graph >));
153 typedef typename graph_traits< Graph >::vertex_descriptor Vertex;
154
155 // get the vertices in question
156 Vertex u = source(e, g), v = target(e, g);
157
158 // conditions for allowing a traversal along this edge are:
159 // 1. the index of v must be greater than that at which the
160 // path is rooted (p.front()).
161 // 2. the vertex v cannot already be in the path
162 // 3. the vertex v cannot be closed to the vertex u
163
164 bool indices
165 = get(vertex_index, g, p.front()) < get(vertex_index, g, v);
166 bool path = !is_vertex_in_path(g, v, p);
167 bool closed = !is_path_closed(g, u, v, m);
168 return indices && path && closed;
169 }
170
171 template < typename Graph, typename Path >
can_wrap_path(const Graph & g,const Path & p)172 inline bool can_wrap_path(const Graph& g, const Path& p)
173 {
174 BOOST_CONCEPT_ASSERT((IncidenceGraphConcept< Graph >));
175 typedef typename graph_traits< Graph >::vertex_descriptor Vertex;
176 typedef typename graph_traits< Graph >::out_edge_iterator OutIterator;
177
178 // iterate over the out-edges of the back, looking for the
179 // front of the path. also, we can't travel along the same
180 // edge that we did on the way here, but we don't quite have the
181 // stringent requirements that we do in can_extend_path().
182 Vertex u = p.back(), v = p.front();
183 OutIterator i, end;
184 for (boost::tie(i, end) = out_edges(u, g); i != end; ++i)
185 {
186 if ((target(*i, g) == v))
187 {
188 return true;
189 }
190 }
191 return false;
192 }
193
194 template < typename Graph, typename Path, typename ClosedMatrix >
extend_path(const Graph & g,Path & p,ClosedMatrix & closed)195 inline typename graph_traits< Graph >::vertex_descriptor extend_path(
196 const Graph& g, Path& p, ClosedMatrix& closed)
197 {
198 BOOST_CONCEPT_ASSERT((IncidenceGraphConcept< Graph >));
199 typedef typename graph_traits< Graph >::vertex_descriptor Vertex;
200 typedef typename graph_traits< Graph >::out_edge_iterator OutIterator;
201
202 // get the current vertex
203 Vertex u = p.back();
204 Vertex ret = graph_traits< Graph >::null_vertex();
205
206 // AdjacencyIterator i, end;
207 OutIterator i, end;
208 for (boost::tie(i, end) = out_edges(u, g); i != end; ++i)
209 {
210 Vertex v = target(*i, g);
211
212 // if we can actually extend along this edge,
213 // then that's what we want to do
214 if (can_extend_path(g, *i, p, closed))
215 {
216 p.push_back(v); // add the vertex to the path
217 ret = v;
218 break;
219 }
220 }
221 return ret;
222 }
223
224 template < typename Graph, typename Path, typename ClosedMatrix >
exhaust_paths(const Graph & g,Path & p,ClosedMatrix & closed)225 inline bool exhaust_paths(const Graph& g, Path& p, ClosedMatrix& closed)
226 {
227 BOOST_CONCEPT_ASSERT((GraphConcept< Graph >));
228 typedef typename graph_traits< Graph >::vertex_descriptor Vertex;
229
230 // if there's more than one vertex in the path, this closes
231 // of some possible routes and returns true. otherwise, if there's
232 // only one vertex left, the vertex has been used up
233 if (p.size() > 1)
234 {
235 // get the last and second to last vertices, popping the last
236 // vertex off the path
237 Vertex last, prev;
238 last = p.back();
239 p.pop_back();
240 prev = p.back();
241
242 // reset the closure for the last vertex of the path and
243 // indicate that the last vertex in p is now closed to
244 // the next-to-last vertex in p
245 closed[get(vertex_index, g, last)].clear();
246 closed[get(vertex_index, g, prev)].push_back(last);
247 return true;
248 }
249 else
250 {
251 return false;
252 }
253 }
254
255 template < typename Graph, typename Visitor >
all_cycles_from_vertex(const Graph & g,typename graph_traits<Graph>::vertex_descriptor v,Visitor vis,std::size_t minlen,std::size_t maxlen)256 inline void all_cycles_from_vertex(const Graph& g,
257 typename graph_traits< Graph >::vertex_descriptor v, Visitor vis,
258 std::size_t minlen, std::size_t maxlen)
259 {
260 BOOST_CONCEPT_ASSERT((VertexListGraphConcept< Graph >));
261 typedef typename graph_traits< Graph >::vertex_descriptor Vertex;
262 typedef std::vector< Vertex > Path;
263 BOOST_CONCEPT_ASSERT((CycleVisitorConcept< Visitor, Path, Graph >));
264 typedef std::vector< Vertex > VertexList;
265 typedef std::vector< VertexList > ClosedMatrix;
266
267 Path p;
268 ClosedMatrix closed(num_vertices(g), VertexList());
269 Vertex null = graph_traits< Graph >::null_vertex();
270
271 // each path investigation starts at the ith vertex
272 p.push_back(v);
273
274 while (1)
275 {
276 // extend the path until we've reached the end or the
277 // maxlen-sized cycle
278 Vertex j = null;
279 while (((j = detail::extend_path(g, p, closed)) != null)
280 && (p.size() < maxlen))
281 ; // empty loop
282
283 // if we're done extending the path and there's an edge
284 // connecting the back to the front, then we should have
285 // a cycle.
286 if (detail::can_wrap_path(g, p) && p.size() >= minlen)
287 {
288 vis.cycle(p, g);
289 }
290
291 if (!detail::exhaust_paths(g, p, closed))
292 {
293 break;
294 }
295 }
296 }
297
298 // Select the minimum allowable length of a cycle based on the directedness
299 // of the graph - 2 for directed, 3 for undirected.
300 template < typename D > struct min_cycles
301 {
302 enum
303 {
304 value = 2
305 };
306 };
307 template <> struct min_cycles< undirected_tag >
308 {
309 enum
310 {
311 value = 3
312 };
313 };
314 } /* namespace detail */
315
316 template < typename Graph, typename Visitor >
tiernan_all_cycles(const Graph & g,Visitor vis,std::size_t minlen,std::size_t maxlen)317 inline void tiernan_all_cycles(
318 const Graph& g, Visitor vis, std::size_t minlen, std::size_t maxlen)
319 {
320 BOOST_CONCEPT_ASSERT((VertexListGraphConcept< Graph >));
321 typedef typename graph_traits< Graph >::vertex_iterator VertexIterator;
322
323 VertexIterator i, end;
324 for (boost::tie(i, end) = vertices(g); i != end; ++i)
325 {
326 detail::all_cycles_from_vertex(g, *i, vis, minlen, maxlen);
327 }
328 }
329
330 template < typename Graph, typename Visitor >
tiernan_all_cycles(const Graph & g,Visitor vis,std::size_t maxlen)331 inline void tiernan_all_cycles(const Graph& g, Visitor vis, std::size_t maxlen)
332 {
333 typedef typename graph_traits< Graph >::directed_category Dir;
334 tiernan_all_cycles(g, vis, detail::min_cycles< Dir >::value, maxlen);
335 }
336
337 template < typename Graph, typename Visitor >
tiernan_all_cycles(const Graph & g,Visitor vis)338 inline void tiernan_all_cycles(const Graph& g, Visitor vis)
339 {
340 typedef typename graph_traits< Graph >::directed_category Dir;
341 tiernan_all_cycles(g, vis, detail::min_cycles< Dir >::value,
342 (std::numeric_limits< std::size_t >::max)());
343 }
344
345 template < typename Graph >
tiernan_girth_and_circumference(const Graph & g)346 inline std::pair< std::size_t, std::size_t > tiernan_girth_and_circumference(
347 const Graph& g)
348 {
349 std::size_t min_ = (std::numeric_limits< std::size_t >::max)(), max_ = 0;
350 tiernan_all_cycles(g, find_min_max_cycle(min_, max_));
351
352 // if this is the case, the graph is acyclic...
353 if (max_ == 0)
354 max_ = min_;
355
356 return std::make_pair(min_, max_);
357 }
358
tiernan_girth(const Graph & g)359 template < typename Graph > inline std::size_t tiernan_girth(const Graph& g)
360 {
361 return tiernan_girth_and_circumference(g).first;
362 }
363
364 template < typename Graph >
tiernan_circumference(const Graph & g)365 inline std::size_t tiernan_circumference(const Graph& g)
366 {
367 return tiernan_girth_and_circumference(g).second;
368 }
369
370 } /* namespace boost */
371
372 #endif
373