• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //  (C) Copyright John Maddock 2005.
2 //  Use, modification and distribution are subject to the
3 //  Boost Software License, Version 1.0. (See accompanying file
4 //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
5 
6 #ifndef BOOST_MATH_COMPLEX_ATANH_INCLUDED
7 #define BOOST_MATH_COMPLEX_ATANH_INCLUDED
8 
9 #ifndef BOOST_MATH_COMPLEX_DETAILS_INCLUDED
10 #  include <boost/math/complex/details.hpp>
11 #endif
12 #ifndef BOOST_MATH_LOG1P_INCLUDED
13 #  include <boost/math/special_functions/log1p.hpp>
14 #endif
15 #include <boost/assert.hpp>
16 
17 #ifdef BOOST_NO_STDC_NAMESPACE
18 namespace std{ using ::sqrt; using ::fabs; using ::acos; using ::asin; using ::atan; using ::atan2; }
19 #endif
20 
21 namespace boost{ namespace math{
22 
23 template<class T>
atanh(const std::complex<T> & z)24 std::complex<T> atanh(const std::complex<T>& z)
25 {
26    //
27    // References:
28    //
29    // Eric W. Weisstein. "Inverse Hyperbolic Tangent."
30    // From MathWorld--A Wolfram Web Resource.
31    // http://mathworld.wolfram.com/InverseHyperbolicTangent.html
32    //
33    // Also: The Wolfram Functions Site,
34    // http://functions.wolfram.com/ElementaryFunctions/ArcTanh/
35    //
36    // Also "Abramowitz and Stegun. Handbook of Mathematical Functions."
37    // at : http://jove.prohosting.com/~skripty/toc.htm
38    //
39    // See also: https://svn.boost.org/trac/boost/ticket/7291
40    //
41 
42    static const T pi = boost::math::constants::pi<T>();
43    static const T half_pi = pi / 2;
44    static const T one = static_cast<T>(1.0L);
45    static const T two = static_cast<T>(2.0L);
46    static const T four = static_cast<T>(4.0L);
47    static const T zero = static_cast<T>(0);
48    static const T log_two = boost::math::constants::ln_two<T>();
49 
50 #ifdef BOOST_MSVC
51 #pragma warning(push)
52 #pragma warning(disable:4127)
53 #endif
54 
55    T x = std::fabs(z.real());
56    T y = std::fabs(z.imag());
57 
58    T real, imag;  // our results
59 
60    T safe_upper = detail::safe_max(two);
61    T safe_lower = detail::safe_min(static_cast<T>(2));
62 
63    //
64    // Begin by handling the special cases specified in C99:
65    //
66    if((boost::math::isnan)(x))
67    {
68       if((boost::math::isnan)(y))
69          return std::complex<T>(x, x);
70       else if((boost::math::isinf)(y))
71          return std::complex<T>(0, ((boost::math::signbit)(z.imag()) ? -half_pi : half_pi));
72       else
73          return std::complex<T>(x, x);
74    }
75    else if((boost::math::isnan)(y))
76    {
77       if(x == 0)
78          return std::complex<T>(x, y);
79       if((boost::math::isinf)(x))
80          return std::complex<T>(0, y);
81       else
82          return std::complex<T>(y, y);
83    }
84    else if((x > safe_lower) && (x < safe_upper) && (y > safe_lower) && (y < safe_upper))
85    {
86 
87       T yy = y*y;
88       T mxm1 = one - x;
89       ///
90       // The real part is given by:
91       //
92       // real(atanh(z)) == log1p(4*x / ((x-1)*(x-1) + y^2))
93       //
94       real = boost::math::log1p(four * x / (mxm1*mxm1 + yy));
95       real /= four;
96       if((boost::math::signbit)(z.real()))
97          real = (boost::math::changesign)(real);
98 
99       imag = std::atan2((y * two), (mxm1*(one+x) - yy));
100       imag /= two;
101       if(z.imag() < 0)
102          imag = (boost::math::changesign)(imag);
103    }
104    else
105    {
106       //
107       // This section handles exception cases that would normally cause
108       // underflow or overflow in the main formulas.
109       //
110       // Begin by working out the real part, we need to approximate
111       //    real = boost::math::log1p(4x / ((x-1)^2 + y^2))
112       // without either overflow or underflow in the squared terms.
113       //
114       T mxm1 = one - x;
115       if(x >= safe_upper)
116       {
117          // x-1 = x to machine precision:
118          if((boost::math::isinf)(x) || (boost::math::isinf)(y))
119          {
120             real = 0;
121          }
122          else if(y >= safe_upper)
123          {
124             // Big x and y: divide through by x*y:
125             real = boost::math::log1p((four/y) / (x/y + y/x));
126          }
127          else if(y > one)
128          {
129             // Big x: divide through by x:
130             real = boost::math::log1p(four / (x + y*y/x));
131          }
132          else
133          {
134             // Big x small y, as above but neglect y^2/x:
135             real = boost::math::log1p(four/x);
136          }
137       }
138       else if(y >= safe_upper)
139       {
140          if(x > one)
141          {
142             // Big y, medium x, divide through by y:
143             real = boost::math::log1p((four*x/y) / (y + mxm1*mxm1/y));
144          }
145          else
146          {
147             // Small or medium x, large y:
148             real = four*x/y/y;
149          }
150       }
151       else if (x != one)
152       {
153          // y is small, calculate divisor carefully:
154          T div = mxm1*mxm1;
155          if(y > safe_lower)
156             div += y*y;
157          real = boost::math::log1p(four*x/div);
158       }
159       else
160          real = boost::math::changesign(two * (std::log(y) - log_two));
161 
162       real /= four;
163       if((boost::math::signbit)(z.real()))
164          real = (boost::math::changesign)(real);
165 
166       //
167       // Now handle imaginary part, this is much easier,
168       // if x or y are large, then the formula:
169       //    atan2(2y, (1-x)*(1+x) - y^2)
170       // evaluates to +-(PI - theta) where theta is negligible compared to PI.
171       //
172       if((x >= safe_upper) || (y >= safe_upper))
173       {
174          imag = pi;
175       }
176       else if(x <= safe_lower)
177       {
178          //
179          // If both x and y are small then atan(2y),
180          // otherwise just x^2 is negligible in the divisor:
181          //
182          if(y <= safe_lower)
183             imag = std::atan2(two*y, one);
184          else
185          {
186             if((y == zero) && (x == zero))
187                imag = 0;
188             else
189                imag = std::atan2(two*y, one - y*y);
190          }
191       }
192       else
193       {
194          //
195          // y^2 is negligible:
196          //
197          if((y == zero) && (x == one))
198             imag = 0;
199          else
200             imag = std::atan2(two*y, mxm1*(one+x));
201       }
202       imag /= two;
203       if((boost::math::signbit)(z.imag()))
204          imag = (boost::math::changesign)(imag);
205    }
206    return std::complex<T>(real, imag);
207 #ifdef BOOST_MSVC
208 #pragma warning(pop)
209 #endif
210 }
211 
212 } } // namespaces
213 
214 #endif // BOOST_MATH_COMPLEX_ATANH_INCLUDED
215