• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // boost\math\distributions\geometric.hpp
2 
3 // Copyright John Maddock 2010.
4 // Copyright Paul A. Bristow 2010.
5 
6 // Use, modification and distribution are subject to the
7 // Boost Software License, Version 1.0.
8 // (See accompanying file LICENSE_1_0.txt
9 // or copy at http://www.boost.org/LICENSE_1_0.txt)
10 
11 // geometric distribution is a discrete probability distribution.
12 // It expresses the probability distribution of the number (k) of
13 // events, occurrences, failures or arrivals before the first success.
14 // supported on the set {0, 1, 2, 3...}
15 
16 // Note that the set includes zero (unlike some definitions that start at one).
17 
18 // The random variate k is the number of events, occurrences or arrivals.
19 // k argument may be integral, signed, or unsigned, or floating point.
20 // If necessary, it has already been promoted from an integral type.
21 
22 // Note that the geometric distribution
23 // (like others including the binomial, geometric & Bernoulli)
24 // is strictly defined as a discrete function:
25 // only integral values of k are envisaged.
26 // However because the method of calculation uses a continuous gamma function,
27 // it is convenient to treat it as if a continuous function,
28 // and permit non-integral values of k.
29 // To enforce the strict mathematical model, users should use floor or ceil functions
30 // on k outside this function to ensure that k is integral.
31 
32 // See http://en.wikipedia.org/wiki/geometric_distribution
33 // http://documents.wolfram.com/v5/Add-onsLinks/StandardPackages/Statistics/DiscreteDistributions.html
34 // http://mathworld.wolfram.com/GeometricDistribution.html
35 
36 #ifndef BOOST_MATH_SPECIAL_GEOMETRIC_HPP
37 #define BOOST_MATH_SPECIAL_GEOMETRIC_HPP
38 
39 #include <boost/math/distributions/fwd.hpp>
40 #include <boost/math/special_functions/beta.hpp> // for ibeta(a, b, x) == Ix(a, b).
41 #include <boost/math/distributions/complement.hpp> // complement.
42 #include <boost/math/distributions/detail/common_error_handling.hpp> // error checks domain_error & logic_error.
43 #include <boost/math/special_functions/fpclassify.hpp> // isnan.
44 #include <boost/math/tools/roots.hpp> // for root finding.
45 #include <boost/math/distributions/detail/inv_discrete_quantile.hpp>
46 
47 #include <boost/type_traits/is_floating_point.hpp>
48 #include <boost/type_traits/is_integral.hpp>
49 #include <boost/type_traits/is_same.hpp>
50 #include <boost/mpl/if.hpp>
51 
52 #include <limits> // using std::numeric_limits;
53 #include <utility>
54 
55 #if defined (BOOST_MSVC)
56 #  pragma warning(push)
57 // This believed not now necessary, so commented out.
58 //#  pragma warning(disable: 4702) // unreachable code.
59 // in domain_error_imp in error_handling.
60 #endif
61 
62 namespace boost
63 {
64   namespace math
65   {
66     namespace geometric_detail
67     {
68       // Common error checking routines for geometric distribution function:
69       template <class RealType, class Policy>
check_success_fraction(const char * function,const RealType & p,RealType * result,const Policy & pol)70       inline bool check_success_fraction(const char* function, const RealType& p, RealType* result, const Policy& pol)
71       {
72         if( !(boost::math::isfinite)(p) || (p < 0) || (p > 1) )
73         {
74           *result = policies::raise_domain_error<RealType>(
75             function,
76             "Success fraction argument is %1%, but must be >= 0 and <= 1 !", p, pol);
77           return false;
78         }
79         return true;
80       }
81 
82       template <class RealType, class Policy>
check_dist(const char * function,const RealType & p,RealType * result,const Policy & pol)83       inline bool check_dist(const char* function, const RealType& p, RealType* result, const Policy& pol)
84       {
85         return check_success_fraction(function, p, result, pol);
86       }
87 
88       template <class RealType, class Policy>
check_dist_and_k(const char * function,const RealType & p,RealType k,RealType * result,const Policy & pol)89       inline bool check_dist_and_k(const char* function,  const RealType& p, RealType k, RealType* result, const Policy& pol)
90       {
91         if(check_dist(function, p, result, pol) == false)
92         {
93           return false;
94         }
95         if( !(boost::math::isfinite)(k) || (k < 0) )
96         { // Check k failures.
97           *result = policies::raise_domain_error<RealType>(
98             function,
99             "Number of failures argument is %1%, but must be >= 0 !", k, pol);
100           return false;
101         }
102         return true;
103       } // Check_dist_and_k
104 
105       template <class RealType, class Policy>
check_dist_and_prob(const char * function,RealType p,RealType prob,RealType * result,const Policy & pol)106       inline bool check_dist_and_prob(const char* function, RealType p, RealType prob, RealType* result, const Policy& pol)
107       {
108         if((check_dist(function, p, result, pol) && detail::check_probability(function, prob, result, pol)) == false)
109         {
110           return false;
111         }
112         return true;
113       } // check_dist_and_prob
114     } //  namespace geometric_detail
115 
116     template <class RealType = double, class Policy = policies::policy<> >
117     class geometric_distribution
118     {
119     public:
120       typedef RealType value_type;
121       typedef Policy policy_type;
122 
geometric_distribution(RealType p)123       geometric_distribution(RealType p) : m_p(p)
124       { // Constructor stores success_fraction p.
125         RealType result;
126         geometric_detail::check_dist(
127           "geometric_distribution<%1%>::geometric_distribution",
128           m_p, // Check success_fraction 0 <= p <= 1.
129           &result, Policy());
130       } // geometric_distribution constructor.
131 
132       // Private data getter class member functions.
success_fraction() const133       RealType success_fraction() const
134       { // Probability of success as fraction in range 0 to 1.
135         return m_p;
136       }
successes() const137       RealType successes() const
138       { // Total number of successes r = 1 (for compatibility with negative binomial?).
139         return 1;
140       }
141 
142       // Parameter estimation.
143       // (These are copies of negative_binomial distribution with successes = 1).
find_lower_bound_on_p(RealType trials,RealType alpha)144       static RealType find_lower_bound_on_p(
145         RealType trials,
146         RealType alpha) // alpha 0.05 equivalent to 95% for one-sided test.
147       {
148         static const char* function = "boost::math::geometric<%1%>::find_lower_bound_on_p";
149         RealType result = 0;  // of error checks.
150         RealType successes = 1;
151         RealType failures = trials - successes;
152         if(false == detail::check_probability(function, alpha, &result, Policy())
153           && geometric_detail::check_dist_and_k(
154           function, RealType(0), failures, &result, Policy()))
155         {
156           return result;
157         }
158         // Use complement ibeta_inv function for lower bound.
159         // This is adapted from the corresponding binomial formula
160         // here: http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm
161         // This is a Clopper-Pearson interval, and may be overly conservative,
162         // see also "A Simple Improved Inferential Method for Some
163         // Discrete Distributions" Yong CAI and K. KRISHNAMOORTHY
164         // http://www.ucs.louisiana.edu/~kxk4695/Discrete_new.pdf
165         //
166         return ibeta_inv(successes, failures + 1, alpha, static_cast<RealType*>(0), Policy());
167       } // find_lower_bound_on_p
168 
find_upper_bound_on_p(RealType trials,RealType alpha)169       static RealType find_upper_bound_on_p(
170         RealType trials,
171         RealType alpha) // alpha 0.05 equivalent to 95% for one-sided test.
172       {
173         static const char* function = "boost::math::geometric<%1%>::find_upper_bound_on_p";
174         RealType result = 0;  // of error checks.
175         RealType successes = 1;
176         RealType failures = trials - successes;
177         if(false == geometric_detail::check_dist_and_k(
178           function, RealType(0), failures, &result, Policy())
179           && detail::check_probability(function, alpha, &result, Policy()))
180         {
181           return result;
182         }
183         if(failures == 0)
184         {
185            return 1;
186         }// Use complement ibetac_inv function for upper bound.
187         // Note adjusted failures value: *not* failures+1 as usual.
188         // This is adapted from the corresponding binomial formula
189         // here: http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm
190         // This is a Clopper-Pearson interval, and may be overly conservative,
191         // see also "A Simple Improved Inferential Method for Some
192         // Discrete Distributions" Yong CAI and K. Krishnamoorthy
193         // http://www.ucs.louisiana.edu/~kxk4695/Discrete_new.pdf
194         //
195         return ibetac_inv(successes, failures, alpha, static_cast<RealType*>(0), Policy());
196       } // find_upper_bound_on_p
197 
198       // Estimate number of trials :
199       // "How many trials do I need to be P% sure of seeing k or fewer failures?"
200 
find_minimum_number_of_trials(RealType k,RealType p,RealType alpha)201       static RealType find_minimum_number_of_trials(
202         RealType k,     // number of failures (k >= 0).
203         RealType p,     // success fraction 0 <= p <= 1.
204         RealType alpha) // risk level threshold 0 <= alpha <= 1.
205       {
206         static const char* function = "boost::math::geometric<%1%>::find_minimum_number_of_trials";
207         // Error checks:
208         RealType result = 0;
209         if(false == geometric_detail::check_dist_and_k(
210           function, p, k, &result, Policy())
211           && detail::check_probability(function, alpha, &result, Policy()))
212         {
213           return result;
214         }
215         result = ibeta_inva(k + 1, p, alpha, Policy());  // returns n - k
216         return result + k;
217       } // RealType find_number_of_failures
218 
find_maximum_number_of_trials(RealType k,RealType p,RealType alpha)219       static RealType find_maximum_number_of_trials(
220         RealType k,     // number of failures (k >= 0).
221         RealType p,     // success fraction 0 <= p <= 1.
222         RealType alpha) // risk level threshold 0 <= alpha <= 1.
223       {
224         static const char* function = "boost::math::geometric<%1%>::find_maximum_number_of_trials";
225         // Error checks:
226         RealType result = 0;
227         if(false == geometric_detail::check_dist_and_k(
228           function, p, k, &result, Policy())
229           &&  detail::check_probability(function, alpha, &result, Policy()))
230         {
231           return result;
232         }
233         result = ibetac_inva(k + 1, p, alpha, Policy());  // returns n - k
234         return result + k;
235       } // RealType find_number_of_trials complemented
236 
237     private:
238       //RealType m_r; // successes fixed at unity.
239       RealType m_p; // success_fraction
240     }; // template <class RealType, class Policy> class geometric_distribution
241 
242     typedef geometric_distribution<double> geometric; // Reserved name of type double.
243 
244     template <class RealType, class Policy>
range(const geometric_distribution<RealType,Policy> &)245     inline const std::pair<RealType, RealType> range(const geometric_distribution<RealType, Policy>& /* dist */)
246     { // Range of permissible values for random variable k.
247        using boost::math::tools::max_value;
248        return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); // max_integer?
249     }
250 
251     template <class RealType, class Policy>
support(const geometric_distribution<RealType,Policy> &)252     inline const std::pair<RealType, RealType> support(const geometric_distribution<RealType, Policy>& /* dist */)
253     { // Range of supported values for random variable k.
254        // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
255        using boost::math::tools::max_value;
256        return std::pair<RealType, RealType>(static_cast<RealType>(0),  max_value<RealType>()); // max_integer?
257     }
258 
259     template <class RealType, class Policy>
mean(const geometric_distribution<RealType,Policy> & dist)260     inline RealType mean(const geometric_distribution<RealType, Policy>& dist)
261     { // Mean of geometric distribution = (1-p)/p.
262       return (1 - dist.success_fraction() ) / dist.success_fraction();
263     } // mean
264 
265     // median implemented via quantile(half) in derived accessors.
266 
267     template <class RealType, class Policy>
mode(const geometric_distribution<RealType,Policy> &)268     inline RealType mode(const geometric_distribution<RealType, Policy>&)
269     { // Mode of geometric distribution = zero.
270       BOOST_MATH_STD_USING // ADL of std functions.
271       return 0;
272     } // mode
273 
274     template <class RealType, class Policy>
variance(const geometric_distribution<RealType,Policy> & dist)275     inline RealType variance(const geometric_distribution<RealType, Policy>& dist)
276     { // Variance of Binomial distribution = (1-p) / p^2.
277       return  (1 - dist.success_fraction())
278         / (dist.success_fraction() * dist.success_fraction());
279     } // variance
280 
281     template <class RealType, class Policy>
skewness(const geometric_distribution<RealType,Policy> & dist)282     inline RealType skewness(const geometric_distribution<RealType, Policy>& dist)
283     { // skewness of geometric distribution = 2-p / (sqrt(r(1-p))
284       BOOST_MATH_STD_USING // ADL of std functions.
285       RealType p = dist.success_fraction();
286       return (2 - p) / sqrt(1 - p);
287     } // skewness
288 
289     template <class RealType, class Policy>
kurtosis(const geometric_distribution<RealType,Policy> & dist)290     inline RealType kurtosis(const geometric_distribution<RealType, Policy>& dist)
291     { // kurtosis of geometric distribution
292       // http://en.wikipedia.org/wiki/geometric is kurtosis_excess so add 3
293       RealType p = dist.success_fraction();
294       return 3 + (p*p - 6*p + 6) / (1 - p);
295     } // kurtosis
296 
297      template <class RealType, class Policy>
kurtosis_excess(const geometric_distribution<RealType,Policy> & dist)298     inline RealType kurtosis_excess(const geometric_distribution<RealType, Policy>& dist)
299     { // kurtosis excess of geometric distribution
300       // http://mathworld.wolfram.com/Kurtosis.html table of kurtosis_excess
301       RealType p = dist.success_fraction();
302       return (p*p - 6*p + 6) / (1 - p);
303     } // kurtosis_excess
304 
305     // RealType standard_deviation(const geometric_distribution<RealType, Policy>& dist)
306     // standard_deviation provided by derived accessors.
307     // RealType hazard(const geometric_distribution<RealType, Policy>& dist)
308     // hazard of geometric distribution provided by derived accessors.
309     // RealType chf(const geometric_distribution<RealType, Policy>& dist)
310     // chf of geometric distribution provided by derived accessors.
311 
312     template <class RealType, class Policy>
pdf(const geometric_distribution<RealType,Policy> & dist,const RealType & k)313     inline RealType pdf(const geometric_distribution<RealType, Policy>& dist, const RealType& k)
314     { // Probability Density/Mass Function.
315       BOOST_FPU_EXCEPTION_GUARD
316       BOOST_MATH_STD_USING  // For ADL of math functions.
317       static const char* function = "boost::math::pdf(const geometric_distribution<%1%>&, %1%)";
318 
319       RealType p = dist.success_fraction();
320       RealType result = 0;
321       if(false == geometric_detail::check_dist_and_k(
322         function,
323         p,
324         k,
325         &result, Policy()))
326       {
327         return result;
328       }
329       if (k == 0)
330       {
331         return p; // success_fraction
332       }
333       RealType q = 1 - p;  // Inaccurate for small p?
334       // So try to avoid inaccuracy for large or small p.
335       // but has little effect > last significant bit.
336       //cout << "p *  pow(q, k) " << result << endl; // seems best whatever p
337       //cout << "exp(p * k * log1p(-p)) " << p * exp(k * log1p(-p)) << endl;
338       //if (p < 0.5)
339       //{
340       //  result = p *  pow(q, k);
341       //}
342       //else
343       //{
344       //  result = p * exp(k * log1p(-p));
345       //}
346       result = p * pow(q, k);
347       return result;
348     } // geometric_pdf
349 
350     template <class RealType, class Policy>
cdf(const geometric_distribution<RealType,Policy> & dist,const RealType & k)351     inline RealType cdf(const geometric_distribution<RealType, Policy>& dist, const RealType& k)
352     { // Cumulative Distribution Function of geometric.
353       static const char* function = "boost::math::cdf(const geometric_distribution<%1%>&, %1%)";
354 
355       // k argument may be integral, signed, or unsigned, or floating point.
356       // If necessary, it has already been promoted from an integral type.
357       RealType p = dist.success_fraction();
358       // Error check:
359       RealType result = 0;
360       if(false == geometric_detail::check_dist_and_k(
361         function,
362         p,
363         k,
364         &result, Policy()))
365       {
366         return result;
367       }
368       if(k == 0)
369       {
370         return p; // success_fraction
371       }
372       //RealType q = 1 - p;  // Bad for small p
373       //RealType probability = 1 - std::pow(q, k+1);
374 
375       RealType z = boost::math::log1p(-p, Policy()) * (k + 1);
376       RealType probability = -boost::math::expm1(z, Policy());
377 
378       return probability;
379     } // cdf Cumulative Distribution Function geometric.
380 
381       template <class RealType, class Policy>
cdf(const complemented2_type<geometric_distribution<RealType,Policy>,RealType> & c)382       inline RealType cdf(const complemented2_type<geometric_distribution<RealType, Policy>, RealType>& c)
383       { // Complemented Cumulative Distribution Function geometric.
384       BOOST_MATH_STD_USING
385       static const char* function = "boost::math::cdf(const geometric_distribution<%1%>&, %1%)";
386       // k argument may be integral, signed, or unsigned, or floating point.
387       // If necessary, it has already been promoted from an integral type.
388       RealType const& k = c.param;
389       geometric_distribution<RealType, Policy> const& dist = c.dist;
390       RealType p = dist.success_fraction();
391       // Error check:
392       RealType result = 0;
393       if(false == geometric_detail::check_dist_and_k(
394         function,
395         p,
396         k,
397         &result, Policy()))
398       {
399         return result;
400       }
401       RealType z = boost::math::log1p(-p, Policy()) * (k+1);
402       RealType probability = exp(z);
403       return probability;
404     } // cdf Complemented Cumulative Distribution Function geometric.
405 
406     template <class RealType, class Policy>
quantile(const geometric_distribution<RealType,Policy> & dist,const RealType & x)407     inline RealType quantile(const geometric_distribution<RealType, Policy>& dist, const RealType& x)
408     { // Quantile, percentile/100 or Percent Point geometric function.
409       // Return the number of expected failures k for a given probability p.
410 
411       // Inverse cumulative Distribution Function or Quantile (percentile / 100) of geometric Probability.
412       // k argument may be integral, signed, or unsigned, or floating point.
413 
414       static const char* function = "boost::math::quantile(const geometric_distribution<%1%>&, %1%)";
415       BOOST_MATH_STD_USING // ADL of std functions.
416 
417       RealType success_fraction = dist.success_fraction();
418       // Check dist and x.
419       RealType result = 0;
420       if(false == geometric_detail::check_dist_and_prob
421         (function, success_fraction, x, &result, Policy()))
422       {
423         return result;
424       }
425 
426       // Special cases.
427       if (x == 1)
428       {  // Would need +infinity failures for total confidence.
429         result = policies::raise_overflow_error<RealType>(
430             function,
431             "Probability argument is 1, which implies infinite failures !", Policy());
432         return result;
433        // usually means return +std::numeric_limits<RealType>::infinity();
434        // unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR
435       }
436       if (x == 0)
437       { // No failures are expected if P = 0.
438         return 0; // Total trials will be just dist.successes.
439       }
440       // if (P <= pow(dist.success_fraction(), 1))
441       if (x <= success_fraction)
442       { // p <= pdf(dist, 0) == cdf(dist, 0)
443         return 0;
444       }
445       if (x == 1)
446       {
447         return 0;
448       }
449 
450       // log(1-x) /log(1-success_fraction) -1; but use log1p in case success_fraction is small
451       result = boost::math::log1p(-x, Policy()) / boost::math::log1p(-success_fraction, Policy()) - 1;
452       // Subtract a few epsilons here too?
453       // to make sure it doesn't slip over, so ceil would be one too many.
454       return result;
455     } // RealType quantile(const geometric_distribution dist, p)
456 
457     template <class RealType, class Policy>
quantile(const complemented2_type<geometric_distribution<RealType,Policy>,RealType> & c)458     inline RealType quantile(const complemented2_type<geometric_distribution<RealType, Policy>, RealType>& c)
459     {  // Quantile or Percent Point Binomial function.
460        // Return the number of expected failures k for a given
461        // complement of the probability Q = 1 - P.
462        static const char* function = "boost::math::quantile(const geometric_distribution<%1%>&, %1%)";
463        BOOST_MATH_STD_USING
464        // Error checks:
465        RealType x = c.param;
466        const geometric_distribution<RealType, Policy>& dist = c.dist;
467        RealType success_fraction = dist.success_fraction();
468        RealType result = 0;
469        if(false == geometric_detail::check_dist_and_prob(
470           function,
471           success_fraction,
472           x,
473           &result, Policy()))
474        {
475           return result;
476        }
477 
478        // Special cases:
479        if(x == 1)
480        {  // There may actually be no answer to this question,
481           // since the probability of zero failures may be non-zero,
482           return 0; // but zero is the best we can do:
483        }
484        if (-x <= boost::math::powm1(dist.success_fraction(), dist.successes(), Policy()))
485        {  // q <= cdf(complement(dist, 0)) == pdf(dist, 0)
486           return 0; //
487        }
488        if(x == 0)
489        {  // Probability 1 - Q  == 1 so infinite failures to achieve certainty.
490           // Would need +infinity failures for total confidence.
491           result = policies::raise_overflow_error<RealType>(
492              function,
493              "Probability argument complement is 0, which implies infinite failures !", Policy());
494           return result;
495           // usually means return +std::numeric_limits<RealType>::infinity();
496           // unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR
497        }
498        // log(x) /log(1-success_fraction) -1; but use log1p in case success_fraction is small
499        result = log(x) / boost::math::log1p(-success_fraction, Policy()) - 1;
500       return result;
501 
502     } // quantile complement
503 
504  } // namespace math
505 } // namespace boost
506 
507 // This include must be at the end, *after* the accessors
508 // for this distribution have been defined, in order to
509 // keep compilers that support two-phase lookup happy.
510 #include <boost/math/distributions/detail/derived_accessors.hpp>
511 
512 #if defined (BOOST_MSVC)
513 # pragma warning(pop)
514 #endif
515 
516 #endif // BOOST_MATH_SPECIAL_GEOMETRIC_HPP
517