1 /*
2 * Copyright Nick Thompson, 2017
3 * Use, modification and distribution are subject to the
4 * Boost Software License, Version 1.0. (See accompanying file
5 * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
6 */
7
8 #ifndef BOOST_MATH_INTERPOLATORS_BARYCENTRIC_RATIONAL_DETAIL_HPP
9 #define BOOST_MATH_INTERPOLATORS_BARYCENTRIC_RATIONAL_DETAIL_HPP
10
11 #include <vector>
12 #include <utility> // for std::move
13 #include <algorithm> // for std::is_sorted
14 #include <boost/lexical_cast.hpp>
15 #include <boost/math/special_functions/fpclassify.hpp>
16 #include <boost/core/demangle.hpp>
17 #include <boost/assert.hpp>
18
19 namespace boost{ namespace math{ namespace detail{
20
21 template<class Real>
22 class barycentric_rational_imp
23 {
24 public:
25 template <class InputIterator1, class InputIterator2>
26 barycentric_rational_imp(InputIterator1 start_x, InputIterator1 end_x, InputIterator2 start_y, size_t approximation_order = 3);
27
28 barycentric_rational_imp(std::vector<Real>&& x, std::vector<Real>&& y, size_t approximation_order = 3);
29
30 Real operator()(Real x) const;
31
32 Real prime(Real x) const;
33
34 // The barycentric weights are not really that interesting; except to the unit tests!
weight(size_t i) const35 Real weight(size_t i) const { return m_w[i]; }
36
return_x()37 std::vector<Real>&& return_x()
38 {
39 return std::move(m_x);
40 }
41
return_y()42 std::vector<Real>&& return_y()
43 {
44 return std::move(m_y);
45 }
46
47 private:
48
49 void calculate_weights(size_t approximation_order);
50
51 std::vector<Real> m_x;
52 std::vector<Real> m_y;
53 std::vector<Real> m_w;
54 };
55
56 template <class Real>
57 template <class InputIterator1, class InputIterator2>
barycentric_rational_imp(InputIterator1 start_x,InputIterator1 end_x,InputIterator2 start_y,size_t approximation_order)58 barycentric_rational_imp<Real>::barycentric_rational_imp(InputIterator1 start_x, InputIterator1 end_x, InputIterator2 start_y, size_t approximation_order)
59 {
60 std::ptrdiff_t n = std::distance(start_x, end_x);
61
62 if (approximation_order >= (std::size_t)n)
63 {
64 throw std::domain_error("Approximation order must be < data length.");
65 }
66
67 // Big sad memcpy.
68 m_x.resize(n);
69 m_y.resize(n);
70 for(unsigned i = 0; start_x != end_x; ++start_x, ++start_y, ++i)
71 {
72 // But if we're going to do a memcpy, we can do some error checking which is inexpensive relative to the copy:
73 if(boost::math::isnan(*start_x))
74 {
75 std::string msg = std::string("x[") + boost::lexical_cast<std::string>(i) + "] is a NAN";
76 throw std::domain_error(msg);
77 }
78
79 if(boost::math::isnan(*start_y))
80 {
81 std::string msg = std::string("y[") + boost::lexical_cast<std::string>(i) + "] is a NAN";
82 throw std::domain_error(msg);
83 }
84
85 m_x[i] = *start_x;
86 m_y[i] = *start_y;
87 }
88 calculate_weights(approximation_order);
89 }
90
91 template <class Real>
barycentric_rational_imp(std::vector<Real> && x,std::vector<Real> && y,size_t approximation_order)92 barycentric_rational_imp<Real>::barycentric_rational_imp(std::vector<Real>&& x, std::vector<Real>&& y,size_t approximation_order) : m_x(std::move(x)), m_y(std::move(y))
93 {
94 BOOST_ASSERT_MSG(m_x.size() == m_y.size(), "There must be the same number of abscissas and ordinates.");
95 BOOST_ASSERT_MSG(approximation_order < m_x.size(), "Approximation order must be < data length.");
96 BOOST_ASSERT_MSG(std::is_sorted(m_x.begin(), m_x.end()), "The abscissas must be listed in increasing order x[0] < x[1] < ... < x[n-1].");
97 calculate_weights(approximation_order);
98 }
99
100 template<class Real>
calculate_weights(size_t approximation_order)101 void barycentric_rational_imp<Real>::calculate_weights(size_t approximation_order)
102 {
103 using std::abs;
104 int64_t n = m_x.size();
105 m_w.resize(n, 0);
106 for(int64_t k = 0; k < n; ++k)
107 {
108 int64_t i_min = (std::max)(k - (int64_t) approximation_order, (int64_t) 0);
109 int64_t i_max = k;
110 if (k >= n - (std::ptrdiff_t)approximation_order)
111 {
112 i_max = n - approximation_order - 1;
113 }
114
115 for(int64_t i = i_min; i <= i_max; ++i)
116 {
117 Real inv_product = 1;
118 int64_t j_max = (std::min)(static_cast<int64_t>(i + approximation_order), static_cast<int64_t>(n - 1));
119 for(int64_t j = i; j <= j_max; ++j)
120 {
121 if (j == k)
122 {
123 continue;
124 }
125
126 Real diff = m_x[k] - m_x[j];
127 using std::numeric_limits;
128 if (abs(diff) < (numeric_limits<Real>::min)())
129 {
130 std::string msg = std::string("Spacing between x[")
131 + boost::lexical_cast<std::string>(k) + std::string("] and x[")
132 + boost::lexical_cast<std::string>(i) + std::string("] is ")
133 + boost::lexical_cast<std::string>(diff) + std::string(", which is smaller than the epsilon of ")
134 + boost::core::demangle(typeid(Real).name());
135 throw std::logic_error(msg);
136 }
137 inv_product *= diff;
138 }
139 if (i % 2 == 0)
140 {
141 m_w[k] += 1/inv_product;
142 }
143 else
144 {
145 m_w[k] -= 1/inv_product;
146 }
147 }
148 }
149 }
150
151
152 template<class Real>
operator ()(Real x) const153 Real barycentric_rational_imp<Real>::operator()(Real x) const
154 {
155 Real numerator = 0;
156 Real denominator = 0;
157 for(size_t i = 0; i < m_x.size(); ++i)
158 {
159 // Presumably we should see if the accuracy is improved by using ULP distance of say, 5 here, instead of testing for floating point equality.
160 // However, it has been shown that if x approx x_i, but x != x_i, then inaccuracy in the numerator cancels the inaccuracy in the denominator,
161 // and the result is fairly accurate. See: http://epubs.siam.org/doi/pdf/10.1137/S0036144502417715
162 if (x == m_x[i])
163 {
164 return m_y[i];
165 }
166 Real t = m_w[i]/(x - m_x[i]);
167 numerator += t*m_y[i];
168 denominator += t;
169 }
170 return numerator/denominator;
171 }
172
173 /*
174 * A formula for computing the derivative of the barycentric representation is given in
175 * "Some New Aspects of Rational Interpolation", by Claus Schneider and Wilhelm Werner,
176 * Mathematics of Computation, v47, number 175, 1986.
177 * http://www.ams.org/journals/mcom/1986-47-175/S0025-5718-1986-0842136-8/S0025-5718-1986-0842136-8.pdf
178 * and reviewed in
179 * Recent developments in barycentric rational interpolation
180 * Jean-Paul Berrut, Richard Baltensperger and Hans D. Mittelmann
181 *
182 * Is it possible to complete this in one pass through the data?
183 */
184
185 template<class Real>
prime(Real x) const186 Real barycentric_rational_imp<Real>::prime(Real x) const
187 {
188 Real rx = this->operator()(x);
189 Real numerator = 0;
190 Real denominator = 0;
191 for(size_t i = 0; i < m_x.size(); ++i)
192 {
193 if (x == m_x[i])
194 {
195 Real sum = 0;
196 for (size_t j = 0; j < m_x.size(); ++j)
197 {
198 if (j == i)
199 {
200 continue;
201 }
202 sum += m_w[j]*(m_y[i] - m_y[j])/(m_x[i] - m_x[j]);
203 }
204 return -sum/m_w[i];
205 }
206 Real t = m_w[i]/(x - m_x[i]);
207 Real diff = (rx - m_y[i])/(x-m_x[i]);
208 numerator += t*diff;
209 denominator += t;
210 }
211
212 return numerator/denominator;
213 }
214 }}}
215 #endif
216