• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright Nick Thompson, 2017
3  *  Use, modification and distribution are subject to the
4  *  Boost Software License, Version 1.0. (See accompanying file
5  *  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
6  */
7 
8 #ifndef BOOST_MATH_INTERPOLATORS_BARYCENTRIC_RATIONAL_DETAIL_HPP
9 #define BOOST_MATH_INTERPOLATORS_BARYCENTRIC_RATIONAL_DETAIL_HPP
10 
11 #include <vector>
12 #include <utility> // for std::move
13 #include <algorithm> // for std::is_sorted
14 #include <boost/lexical_cast.hpp>
15 #include <boost/math/special_functions/fpclassify.hpp>
16 #include <boost/core/demangle.hpp>
17 #include <boost/assert.hpp>
18 
19 namespace boost{ namespace math{ namespace detail{
20 
21 template<class Real>
22 class barycentric_rational_imp
23 {
24 public:
25     template <class InputIterator1, class InputIterator2>
26     barycentric_rational_imp(InputIterator1 start_x, InputIterator1 end_x, InputIterator2 start_y, size_t approximation_order = 3);
27 
28     barycentric_rational_imp(std::vector<Real>&& x, std::vector<Real>&& y, size_t approximation_order = 3);
29 
30     Real operator()(Real x) const;
31 
32     Real prime(Real x) const;
33 
34     // The barycentric weights are not really that interesting; except to the unit tests!
weight(size_t i) const35     Real weight(size_t i) const { return m_w[i]; }
36 
return_x()37     std::vector<Real>&& return_x()
38     {
39         return std::move(m_x);
40     }
41 
return_y()42     std::vector<Real>&& return_y()
43     {
44         return std::move(m_y);
45     }
46 
47 private:
48 
49     void calculate_weights(size_t approximation_order);
50 
51     std::vector<Real> m_x;
52     std::vector<Real> m_y;
53     std::vector<Real> m_w;
54 };
55 
56 template <class Real>
57 template <class InputIterator1, class InputIterator2>
barycentric_rational_imp(InputIterator1 start_x,InputIterator1 end_x,InputIterator2 start_y,size_t approximation_order)58 barycentric_rational_imp<Real>::barycentric_rational_imp(InputIterator1 start_x, InputIterator1 end_x, InputIterator2 start_y, size_t approximation_order)
59 {
60     std::ptrdiff_t n = std::distance(start_x, end_x);
61 
62     if (approximation_order >= (std::size_t)n)
63     {
64         throw std::domain_error("Approximation order must be < data length.");
65     }
66 
67     // Big sad memcpy.
68     m_x.resize(n);
69     m_y.resize(n);
70     for(unsigned i = 0; start_x != end_x; ++start_x, ++start_y, ++i)
71     {
72         // But if we're going to do a memcpy, we can do some error checking which is inexpensive relative to the copy:
73         if(boost::math::isnan(*start_x))
74         {
75             std::string msg = std::string("x[") + boost::lexical_cast<std::string>(i) + "] is a NAN";
76             throw std::domain_error(msg);
77         }
78 
79         if(boost::math::isnan(*start_y))
80         {
81            std::string msg = std::string("y[") + boost::lexical_cast<std::string>(i) + "] is a NAN";
82            throw std::domain_error(msg);
83         }
84 
85         m_x[i] = *start_x;
86         m_y[i] = *start_y;
87     }
88     calculate_weights(approximation_order);
89 }
90 
91 template <class Real>
barycentric_rational_imp(std::vector<Real> && x,std::vector<Real> && y,size_t approximation_order)92 barycentric_rational_imp<Real>::barycentric_rational_imp(std::vector<Real>&& x, std::vector<Real>&& y,size_t approximation_order) : m_x(std::move(x)), m_y(std::move(y))
93 {
94     BOOST_ASSERT_MSG(m_x.size() == m_y.size(), "There must be the same number of abscissas and ordinates.");
95     BOOST_ASSERT_MSG(approximation_order < m_x.size(), "Approximation order must be < data length.");
96     BOOST_ASSERT_MSG(std::is_sorted(m_x.begin(), m_x.end()), "The abscissas must be listed in increasing order x[0] < x[1] < ... < x[n-1].");
97     calculate_weights(approximation_order);
98 }
99 
100 template<class Real>
calculate_weights(size_t approximation_order)101 void barycentric_rational_imp<Real>::calculate_weights(size_t approximation_order)
102 {
103     using std::abs;
104     int64_t n = m_x.size();
105     m_w.resize(n, 0);
106     for(int64_t k = 0; k < n; ++k)
107     {
108         int64_t i_min = (std::max)(k - (int64_t) approximation_order, (int64_t) 0);
109         int64_t i_max = k;
110         if (k >= n - (std::ptrdiff_t)approximation_order)
111         {
112             i_max = n - approximation_order - 1;
113         }
114 
115         for(int64_t i = i_min; i <= i_max; ++i)
116         {
117             Real inv_product = 1;
118             int64_t j_max = (std::min)(static_cast<int64_t>(i + approximation_order), static_cast<int64_t>(n - 1));
119             for(int64_t j = i; j <= j_max; ++j)
120             {
121                 if (j == k)
122                 {
123                     continue;
124                 }
125 
126                 Real diff = m_x[k] - m_x[j];
127                 using std::numeric_limits;
128                 if (abs(diff) < (numeric_limits<Real>::min)())
129                 {
130                    std::string msg = std::string("Spacing between  x[")
131                       + boost::lexical_cast<std::string>(k) + std::string("] and x[")
132                       + boost::lexical_cast<std::string>(i) + std::string("] is ")
133                       + boost::lexical_cast<std::string>(diff) + std::string(", which is smaller than the epsilon of ")
134                       + boost::core::demangle(typeid(Real).name());
135                     throw std::logic_error(msg);
136                 }
137                 inv_product *= diff;
138             }
139             if (i % 2 == 0)
140             {
141                 m_w[k] += 1/inv_product;
142             }
143             else
144             {
145                 m_w[k] -= 1/inv_product;
146             }
147         }
148     }
149 }
150 
151 
152 template<class Real>
operator ()(Real x) const153 Real barycentric_rational_imp<Real>::operator()(Real x) const
154 {
155     Real numerator = 0;
156     Real denominator = 0;
157     for(size_t i = 0; i < m_x.size(); ++i)
158     {
159         // Presumably we should see if the accuracy is improved by using ULP distance of say, 5 here, instead of testing for floating point equality.
160         // However, it has been shown that if x approx x_i, but x != x_i, then inaccuracy in the numerator cancels the inaccuracy in the denominator,
161         // and the result is fairly accurate. See: http://epubs.siam.org/doi/pdf/10.1137/S0036144502417715
162         if (x == m_x[i])
163         {
164             return m_y[i];
165         }
166         Real t = m_w[i]/(x - m_x[i]);
167         numerator += t*m_y[i];
168         denominator += t;
169     }
170     return numerator/denominator;
171 }
172 
173 /*
174  * A formula for computing the derivative of the barycentric representation is given in
175  * "Some New Aspects of Rational Interpolation", by Claus Schneider and Wilhelm Werner,
176  * Mathematics of Computation, v47, number 175, 1986.
177  * http://www.ams.org/journals/mcom/1986-47-175/S0025-5718-1986-0842136-8/S0025-5718-1986-0842136-8.pdf
178  * and reviewed in
179  * Recent developments in barycentric rational interpolation
180  * Jean-Paul Berrut, Richard Baltensperger and Hans D. Mittelmann
181  *
182  * Is it possible to complete this in one pass through the data?
183  */
184 
185 template<class Real>
prime(Real x) const186 Real barycentric_rational_imp<Real>::prime(Real x) const
187 {
188     Real rx = this->operator()(x);
189     Real numerator = 0;
190     Real denominator = 0;
191     for(size_t i = 0; i < m_x.size(); ++i)
192     {
193         if (x == m_x[i])
194         {
195             Real sum = 0;
196             for (size_t j = 0; j < m_x.size(); ++j)
197             {
198                 if (j == i)
199                 {
200                     continue;
201                 }
202                 sum += m_w[j]*(m_y[i] - m_y[j])/(m_x[i] - m_x[j]);
203             }
204             return -sum/m_w[i];
205         }
206         Real t = m_w[i]/(x - m_x[i]);
207         Real diff = (rx - m_y[i])/(x-m_x[i]);
208         numerator += t*diff;
209         denominator += t;
210     }
211 
212     return numerator/denominator;
213 }
214 }}}
215 #endif
216