• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //  Copyright (c) 2006 Xiaogang Zhang, 2015 John Maddock.
2 //  Use, modification and distribution are subject to the
3 //  Boost Software License, Version 1.0. (See accompanying file
4 //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
5 //
6 //  History:
7 //  XZ wrote the original of this file as part of the Google
8 //  Summer of Code 2006.  JM modified it slightly to fit into the
9 //  Boost.Math conceptual framework better.
10 //  Updated 2015 to use Carlson's latest methods.
11 
12 #ifndef BOOST_MATH_ELLINT_RD_HPP
13 #define BOOST_MATH_ELLINT_RD_HPP
14 
15 #ifdef _MSC_VER
16 #pragma once
17 #endif
18 
19 #include <boost/math/special_functions/math_fwd.hpp>
20 #include <boost/math/special_functions/ellint_rc.hpp>
21 #include <boost/math/special_functions/pow.hpp>
22 #include <boost/math/tools/config.hpp>
23 #include <boost/math/policies/error_handling.hpp>
24 
25 // Carlson's elliptic integral of the second kind
26 // R_D(x, y, z) = R_J(x, y, z, z) = 1.5 * \int_{0}^{\infty} [(t+x)(t+y)]^{-1/2} (t+z)^{-3/2} dt
27 // Carlson, Numerische Mathematik, vol 33, 1 (1979)
28 
29 namespace boost { namespace math { namespace detail{
30 
31 template <typename T, typename Policy>
ellint_rd_imp(T x,T y,T z,const Policy & pol)32 T ellint_rd_imp(T x, T y, T z, const Policy& pol)
33 {
34    BOOST_MATH_STD_USING
35    using std::swap;
36 
37    static const char* function = "boost::math::ellint_rd<%1%>(%1%,%1%,%1%)";
38 
39    if(x < 0)
40    {
41       return policies::raise_domain_error<T>(function,
42          "Argument x must be >= 0, but got %1%", x, pol);
43    }
44    if(y < 0)
45    {
46       return policies::raise_domain_error<T>(function,
47          "Argument y must be >= 0, but got %1%", y, pol);
48    }
49    if(z <= 0)
50    {
51       return policies::raise_domain_error<T>(function,
52          "Argument z must be > 0, but got %1%", z, pol);
53    }
54    if(x + y == 0)
55    {
56       return policies::raise_domain_error<T>(function,
57          "At most one argument can be zero, but got, x + y = %1%", x + y, pol);
58    }
59    //
60    // Special cases from http://dlmf.nist.gov/19.20#iv
61    //
62    using std::swap;
63    if(x == z)
64       swap(x, y);
65    if(y == z)
66    {
67       if(x == y)
68       {
69          return 1 / (x * sqrt(x));
70       }
71       else if(x == 0)
72       {
73          return 3 * constants::pi<T>() / (4 * y * sqrt(y));
74       }
75       else
76       {
77          if((std::min)(x, y) / (std::max)(x, y) > 1.3)
78             return 3 * (ellint_rc_imp(x, y, pol) - sqrt(x) / y) / (2 * (y - x));
79          // Otherwise fall through to avoid cancellation in the above (RC(x,y) -> 1/x^0.5 as x -> y)
80       }
81    }
82    if(x == y)
83    {
84       if((std::min)(x, z) / (std::max)(x, z) > 1.3)
85          return 3 * (ellint_rc_imp(z, x, pol) - 1 / sqrt(z)) / (z - x);
86       // Otherwise fall through to avoid cancellation in the above (RC(x,y) -> 1/x^0.5 as x -> y)
87    }
88    if(y == 0)
89       swap(x, y);
90    if(x == 0)
91    {
92       //
93       // Special handling for common case, from
94       // Numerical Computation of Real or Complex Elliptic Integrals, eq.47
95       //
96       T xn = sqrt(y);
97       T yn = sqrt(z);
98       T x0 = xn;
99       T y0 = yn;
100       T sum = 0;
101       T sum_pow = 0.25f;
102 
103       while(fabs(xn - yn) >= 2.7 * tools::root_epsilon<T>() * fabs(xn))
104       {
105          T t = sqrt(xn * yn);
106          xn = (xn + yn) / 2;
107          yn = t;
108          sum_pow *= 2;
109          sum += sum_pow * boost::math::pow<2>(xn - yn);
110       }
111       T RF = constants::pi<T>() / (xn + yn);
112       //
113       // This following calculation suffers from serious cancellation when y ~ z
114       // unless we combine terms.  We have:
115       //
116       // ( ((x0 + y0)/2)^2 - z ) / (z(y-z))
117       //
118       // Substituting y = x0^2 and z = y0^2 and simplifying we get the following:
119       //
120       T pt = (x0 + 3 * y0) / (4 * z * (x0 + y0));
121       //
122       // Since we've moved the denominator from eq.47 inside the expression, we
123       // need to also scale "sum" by the same value:
124       //
125       pt -= sum / (z * (y - z));
126       return pt * RF * 3;
127    }
128 
129    T xn = x;
130    T yn = y;
131    T zn = z;
132    T An = (x + y + 3 * z) / 5;
133    T A0 = An;
134    // This has an extra 1.2 fudge factor which is really only needed when x, y and z are close in magnitude:
135    T Q = pow(tools::epsilon<T>() / 4, -T(1) / 8) * (std::max)((std::max)(An - x, An - y), An - z) * 1.2f;
136    BOOST_MATH_INSTRUMENT_VARIABLE(Q);
137    T lambda, rx, ry, rz;
138    unsigned k = 0;
139    T fn = 1;
140    T RD_sum = 0;
141 
142    for(; k < policies::get_max_series_iterations<Policy>(); ++k)
143    {
144       rx = sqrt(xn);
145       ry = sqrt(yn);
146       rz = sqrt(zn);
147       lambda = rx * ry + rx * rz + ry * rz;
148       RD_sum += fn / (rz * (zn + lambda));
149       An = (An + lambda) / 4;
150       xn = (xn + lambda) / 4;
151       yn = (yn + lambda) / 4;
152       zn = (zn + lambda) / 4;
153       fn /= 4;
154       Q /= 4;
155       BOOST_MATH_INSTRUMENT_VARIABLE(k);
156       BOOST_MATH_INSTRUMENT_VARIABLE(RD_sum);
157       BOOST_MATH_INSTRUMENT_VARIABLE(Q);
158       if(Q < An)
159          break;
160    }
161 
162    policies::check_series_iterations<T, Policy>(function, k, pol);
163 
164    T X = fn * (A0 - x) / An;
165    T Y = fn * (A0 - y) / An;
166    T Z = -(X + Y) / 3;
167    T E2 = X * Y - 6 * Z * Z;
168    T E3 = (3 * X * Y - 8 * Z * Z) * Z;
169    T E4 = 3 * (X * Y - Z * Z) * Z * Z;
170    T E5 = X * Y * Z * Z * Z;
171 
172    T result = fn * pow(An, T(-3) / 2) *
173       (1 - 3 * E2 / 14 + E3 / 6 + 9 * E2 * E2 / 88 - 3 * E4 / 22 - 9 * E2 * E3 / 52 + 3 * E5 / 26 - E2 * E2 * E2 / 16
174       + 3 * E3 * E3 / 40 + 3 * E2 * E4 / 20 + 45 * E2 * E2 * E3 / 272 - 9 * (E3 * E4 + E2 * E5) / 68);
175    BOOST_MATH_INSTRUMENT_VARIABLE(result);
176    result += 3 * RD_sum;
177 
178    return result;
179 }
180 
181 } // namespace detail
182 
183 template <class T1, class T2, class T3, class Policy>
184 inline typename tools::promote_args<T1, T2, T3>::type
ellint_rd(T1 x,T2 y,T3 z,const Policy & pol)185    ellint_rd(T1 x, T2 y, T3 z, const Policy& pol)
186 {
187    typedef typename tools::promote_args<T1, T2, T3>::type result_type;
188    typedef typename policies::evaluation<result_type, Policy>::type value_type;
189    return policies::checked_narrowing_cast<result_type, Policy>(
190       detail::ellint_rd_imp(
191          static_cast<value_type>(x),
192          static_cast<value_type>(y),
193          static_cast<value_type>(z), pol), "boost::math::ellint_rd<%1%>(%1%,%1%,%1%)");
194 }
195 
196 template <class T1, class T2, class T3>
197 inline typename tools::promote_args<T1, T2, T3>::type
ellint_rd(T1 x,T2 y,T3 z)198    ellint_rd(T1 x, T2 y, T3 z)
199 {
200    return ellint_rd(x, y, z, policies::policy<>());
201 }
202 
203 }} // namespaces
204 
205 #endif // BOOST_MATH_ELLINT_RD_HPP
206 
207