• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //  (C) Copyright John Maddock 2005-2006.
2 //  Use, modification and distribution are subject to the
3 //  Boost Software License, Version 1.0. (See accompanying file
4 //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
5 
6 #ifndef BOOST_MATH_LOG1P_INCLUDED
7 #define BOOST_MATH_LOG1P_INCLUDED
8 
9 #ifdef _MSC_VER
10 #pragma once
11 #pragma warning(push)
12 #pragma warning(disable:4702) // Unreachable code (release mode only warning)
13 #endif
14 
15 #include <boost/config/no_tr1/cmath.hpp>
16 #include <math.h> // platform's ::log1p
17 #include <boost/limits.hpp>
18 #include <boost/math/tools/config.hpp>
19 #include <boost/math/tools/series.hpp>
20 #include <boost/math/tools/rational.hpp>
21 #include <boost/math/tools/big_constant.hpp>
22 #include <boost/math/policies/error_handling.hpp>
23 #include <boost/math/special_functions/math_fwd.hpp>
24 
25 #ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
26 #  include <boost/static_assert.hpp>
27 #else
28 #  include <boost/assert.hpp>
29 #endif
30 
31 #if defined(__GNUC__) && defined(BOOST_MATH_USE_FLOAT128)
32 //
33 // This is the only way we can avoid
34 // warning: non-standard suffix on floating constant [-Wpedantic]
35 // when building with -Wall -pedantic.  Neither __extension__
36 // nor #pragma diagnostic ignored work :(
37 //
38 #pragma GCC system_header
39 #endif
40 
41 namespace boost{ namespace math{
42 
43 namespace detail
44 {
45   // Functor log1p_series returns the next term in the Taylor series
46   //   pow(-1, k-1)*pow(x, k) / k
47   // each time that operator() is invoked.
48   //
49   template <class T>
50   struct log1p_series
51   {
52      typedef T result_type;
53 
log1p_seriesboost::math::detail::log1p_series54      log1p_series(T x)
55         : k(0), m_mult(-x), m_prod(-1){}
56 
operator ()boost::math::detail::log1p_series57      T operator()()
58      {
59         m_prod *= m_mult;
60         return m_prod / ++k;
61      }
62 
countboost::math::detail::log1p_series63      int count()const
64      {
65         return k;
66      }
67 
68   private:
69      int k;
70      const T m_mult;
71      T m_prod;
72      log1p_series(const log1p_series&);
73      log1p_series& operator=(const log1p_series&);
74   };
75 
76 // Algorithm log1p is part of C99, but is not yet provided by many compilers.
77 //
78 // This version uses a Taylor series expansion for 0.5 > x > epsilon, which may
79 // require up to std::numeric_limits<T>::digits+1 terms to be calculated.
80 // It would be much more efficient to use the equivalence:
81 //   log(1+x) == (log(1+x) * x) / ((1-x) - 1)
82 // Unfortunately many optimizing compilers make such a mess of this, that
83 // it performs no better than log(1+x): which is to say not very well at all.
84 //
85 template <class T, class Policy>
log1p_imp(T const & x,const Policy & pol,const boost::integral_constant<int,0> &)86 T log1p_imp(T const & x, const Policy& pol, const boost::integral_constant<int, 0>&)
87 { // The function returns the natural logarithm of 1 + x.
88    typedef typename tools::promote_args<T>::type result_type;
89    BOOST_MATH_STD_USING
90 
91    static const char* function = "boost::math::log1p<%1%>(%1%)";
92 
93    if((x < -1) || (boost::math::isnan)(x))
94       return policies::raise_domain_error<T>(
95          function, "log1p(x) requires x > -1, but got x = %1%.", x, pol);
96    if(x == -1)
97       return -policies::raise_overflow_error<T>(
98          function, 0, pol);
99 
100    result_type a = abs(result_type(x));
101    if(a > result_type(0.5f))
102       return log(1 + result_type(x));
103    // Note that without numeric_limits specialisation support,
104    // epsilon just returns zero, and our "optimisation" will always fail:
105    if(a < tools::epsilon<result_type>())
106       return x;
107    detail::log1p_series<result_type> s(x);
108    boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
109 #if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582)) && !BOOST_WORKAROUND(__EDG_VERSION__, <= 245)
110    result_type result = tools::sum_series(s, policies::get_epsilon<result_type, Policy>(), max_iter);
111 #else
112    result_type zero = 0;
113    result_type result = tools::sum_series(s, policies::get_epsilon<result_type, Policy>(), max_iter, zero);
114 #endif
115    policies::check_series_iterations<T>(function, max_iter, pol);
116    return result;
117 }
118 
119 template <class T, class Policy>
log1p_imp(T const & x,const Policy & pol,const boost::integral_constant<int,53> &)120 T log1p_imp(T const& x, const Policy& pol, const boost::integral_constant<int, 53>&)
121 { // The function returns the natural logarithm of 1 + x.
122    BOOST_MATH_STD_USING
123 
124    static const char* function = "boost::math::log1p<%1%>(%1%)";
125 
126    if(x < -1)
127       return policies::raise_domain_error<T>(
128          function, "log1p(x) requires x > -1, but got x = %1%.", x, pol);
129    if(x == -1)
130       return -policies::raise_overflow_error<T>(
131          function, 0, pol);
132 
133    T a = fabs(x);
134    if(a > 0.5f)
135       return log(1 + x);
136    // Note that without numeric_limits specialisation support,
137    // epsilon just returns zero, and our "optimisation" will always fail:
138    if(a < tools::epsilon<T>())
139       return x;
140 
141    // Maximum Deviation Found:                     1.846e-017
142    // Expected Error Term:                         1.843e-017
143    // Maximum Relative Change in Control Points:   8.138e-004
144    // Max Error found at double precision =        3.250766e-016
145    static const T P[] = {
146        0.15141069795941984e-16L,
147        0.35495104378055055e-15L,
148        0.33333333333332835L,
149        0.99249063543365859L,
150        1.1143969784156509L,
151        0.58052937949269651L,
152        0.13703234928513215L,
153        0.011294864812099712L
154      };
155    static const T Q[] = {
156        1L,
157        3.7274719063011499L,
158        5.5387948649720334L,
159        4.159201143419005L,
160        1.6423855110312755L,
161        0.31706251443180914L,
162        0.022665554431410243L,
163        -0.29252538135177773e-5L
164      };
165 
166    T result = 1 - x / 2 + tools::evaluate_polynomial(P, x) / tools::evaluate_polynomial(Q, x);
167    result *= x;
168 
169    return result;
170 }
171 
172 template <class T, class Policy>
log1p_imp(T const & x,const Policy & pol,const boost::integral_constant<int,64> &)173 T log1p_imp(T const& x, const Policy& pol, const boost::integral_constant<int, 64>&)
174 { // The function returns the natural logarithm of 1 + x.
175    BOOST_MATH_STD_USING
176 
177    static const char* function = "boost::math::log1p<%1%>(%1%)";
178 
179    if(x < -1)
180       return policies::raise_domain_error<T>(
181          function, "log1p(x) requires x > -1, but got x = %1%.", x, pol);
182    if(x == -1)
183       return -policies::raise_overflow_error<T>(
184          function, 0, pol);
185 
186    T a = fabs(x);
187    if(a > 0.5f)
188       return log(1 + x);
189    // Note that without numeric_limits specialisation support,
190    // epsilon just returns zero, and our "optimisation" will always fail:
191    if(a < tools::epsilon<T>())
192       return x;
193 
194    // Maximum Deviation Found:                     8.089e-20
195    // Expected Error Term:                         8.088e-20
196    // Maximum Relative Change in Control Points:   9.648e-05
197    // Max Error found at long double precision =   2.242324e-19
198    static const T P[] = {
199       BOOST_MATH_BIG_CONSTANT(T, 64, -0.807533446680736736712e-19),
200       BOOST_MATH_BIG_CONSTANT(T, 64, -0.490881544804798926426e-18),
201       BOOST_MATH_BIG_CONSTANT(T, 64, 0.333333333333333373941),
202       BOOST_MATH_BIG_CONSTANT(T, 64, 1.17141290782087994162),
203       BOOST_MATH_BIG_CONSTANT(T, 64, 1.62790522814926264694),
204       BOOST_MATH_BIG_CONSTANT(T, 64, 1.13156411870766876113),
205       BOOST_MATH_BIG_CONSTANT(T, 64, 0.408087379932853785336),
206       BOOST_MATH_BIG_CONSTANT(T, 64, 0.0706537026422828914622),
207       BOOST_MATH_BIG_CONSTANT(T, 64, 0.00441709903782239229447)
208    };
209    static const T Q[] = {
210       BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
211       BOOST_MATH_BIG_CONSTANT(T, 64, 4.26423872346263928361),
212       BOOST_MATH_BIG_CONSTANT(T, 64, 7.48189472704477708962),
213       BOOST_MATH_BIG_CONSTANT(T, 64, 6.94757016732904280913),
214       BOOST_MATH_BIG_CONSTANT(T, 64, 3.6493508622280767304),
215       BOOST_MATH_BIG_CONSTANT(T, 64, 1.06884863623790638317),
216       BOOST_MATH_BIG_CONSTANT(T, 64, 0.158292216998514145947),
217       BOOST_MATH_BIG_CONSTANT(T, 64, 0.00885295524069924328658),
218       BOOST_MATH_BIG_CONSTANT(T, 64, -0.560026216133415663808e-6)
219    };
220 
221    T result = 1 - x / 2 + tools::evaluate_polynomial(P, x) / tools::evaluate_polynomial(Q, x);
222    result *= x;
223 
224    return result;
225 }
226 
227 template <class T, class Policy>
log1p_imp(T const & x,const Policy & pol,const boost::integral_constant<int,24> &)228 T log1p_imp(T const& x, const Policy& pol, const boost::integral_constant<int, 24>&)
229 { // The function returns the natural logarithm of 1 + x.
230    BOOST_MATH_STD_USING
231 
232    static const char* function = "boost::math::log1p<%1%>(%1%)";
233 
234    if(x < -1)
235       return policies::raise_domain_error<T>(
236          function, "log1p(x) requires x > -1, but got x = %1%.", x, pol);
237    if(x == -1)
238       return -policies::raise_overflow_error<T>(
239          function, 0, pol);
240 
241    T a = fabs(x);
242    if(a > 0.5f)
243       return log(1 + x);
244    // Note that without numeric_limits specialisation support,
245    // epsilon just returns zero, and our "optimisation" will always fail:
246    if(a < tools::epsilon<T>())
247       return x;
248 
249    // Maximum Deviation Found:                     6.910e-08
250    // Expected Error Term:                         6.910e-08
251    // Maximum Relative Change in Control Points:   2.509e-04
252    // Max Error found at double precision =        6.910422e-08
253    // Max Error found at float precision =         8.357242e-08
254    static const T P[] = {
255       -0.671192866803148236519e-7L,
256       0.119670999140731844725e-6L,
257       0.333339469182083148598L,
258       0.237827183019664122066L
259    };
260    static const T Q[] = {
261       1L,
262       1.46348272586988539733L,
263       0.497859871350117338894L,
264       -0.00471666268910169651936L
265    };
266 
267    T result = 1 - x / 2 + tools::evaluate_polynomial(P, x) / tools::evaluate_polynomial(Q, x);
268    result *= x;
269 
270    return result;
271 }
272 
273 template <class T, class Policy, class tag>
274 struct log1p_initializer
275 {
276    struct init
277    {
initboost::math::detail::log1p_initializer::init278       init()
279       {
280          do_init(tag());
281       }
282       template <int N>
do_initboost::math::detail::log1p_initializer::init283       static void do_init(const boost::integral_constant<int, N>&){}
do_initboost::math::detail::log1p_initializer::init284       static void do_init(const boost::integral_constant<int, 64>&)
285       {
286          boost::math::log1p(static_cast<T>(0.25), Policy());
287       }
force_instantiateboost::math::detail::log1p_initializer::init288       void force_instantiate()const{}
289    };
290    static const init initializer;
force_instantiateboost::math::detail::log1p_initializer291    static void force_instantiate()
292    {
293       initializer.force_instantiate();
294    }
295 };
296 
297 template <class T, class Policy, class tag>
298 const typename log1p_initializer<T, Policy, tag>::init log1p_initializer<T, Policy, tag>::initializer;
299 
300 
301 } // namespace detail
302 
303 template <class T, class Policy>
log1p(T x,const Policy &)304 inline typename tools::promote_args<T>::type log1p(T x, const Policy&)
305 {
306    typedef typename tools::promote_args<T>::type result_type;
307    typedef typename policies::evaluation<result_type, Policy>::type value_type;
308    typedef typename policies::precision<result_type, Policy>::type precision_type;
309    typedef typename policies::normalise<
310       Policy,
311       policies::promote_float<false>,
312       policies::promote_double<false>,
313       policies::discrete_quantile<>,
314       policies::assert_undefined<> >::type forwarding_policy;
315 
316    typedef boost::integral_constant<int,
317       precision_type::value <= 0 ? 0 :
318       precision_type::value <= 53 ? 53 :
319       precision_type::value <= 64 ? 64 : 0
320    > tag_type;
321 
322    detail::log1p_initializer<value_type, forwarding_policy, tag_type>::force_instantiate();
323 
324    return policies::checked_narrowing_cast<result_type, forwarding_policy>(
325       detail::log1p_imp(static_cast<value_type>(x), forwarding_policy(), tag_type()), "boost::math::log1p<%1%>(%1%)");
326 }
327 
328 #if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x564))
329 // These overloads work around a type deduction bug:
log1p(float z)330 inline float log1p(float z)
331 {
332    return log1p<float>(z);
333 }
log1p(double z)334 inline double log1p(double z)
335 {
336    return log1p<double>(z);
337 }
338 #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
log1p(long double z)339 inline long double log1p(long double z)
340 {
341    return log1p<long double>(z);
342 }
343 #endif
344 #endif
345 
346 #ifdef log1p
347 #  ifndef BOOST_HAS_LOG1P
348 #     define BOOST_HAS_LOG1P
349 #  endif
350 #  undef log1p
351 #endif
352 
353 #if defined(BOOST_HAS_LOG1P) && !(defined(__osf__) && defined(__DECCXX_VER))
354 #  ifdef BOOST_MATH_USE_C99
355 template <class Policy>
log1p(float x,const Policy & pol)356 inline float log1p(float x, const Policy& pol)
357 {
358    if(x < -1)
359       return policies::raise_domain_error<float>(
360          "log1p<%1%>(%1%)", "log1p(x) requires x > -1, but got x = %1%.", x, pol);
361    if(x == -1)
362       return -policies::raise_overflow_error<float>(
363          "log1p<%1%>(%1%)", 0, pol);
364    return ::log1pf(x);
365 }
366 #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
367 template <class Policy>
log1p(long double x,const Policy & pol)368 inline long double log1p(long double x, const Policy& pol)
369 {
370    if(x < -1)
371       return policies::raise_domain_error<long double>(
372          "log1p<%1%>(%1%)", "log1p(x) requires x > -1, but got x = %1%.", x, pol);
373    if(x == -1)
374       return -policies::raise_overflow_error<long double>(
375          "log1p<%1%>(%1%)", 0, pol);
376    return ::log1pl(x);
377 }
378 #endif
379 #else
380 template <class Policy>
log1p(float x,const Policy & pol)381 inline float log1p(float x, const Policy& pol)
382 {
383    if(x < -1)
384       return policies::raise_domain_error<float>(
385          "log1p<%1%>(%1%)", "log1p(x) requires x > -1, but got x = %1%.", x, pol);
386    if(x == -1)
387       return -policies::raise_overflow_error<float>(
388          "log1p<%1%>(%1%)", 0, pol);
389    return ::log1p(x);
390 }
391 #endif
392 template <class Policy>
log1p(double x,const Policy & pol)393 inline double log1p(double x, const Policy& pol)
394 {
395    if(x < -1)
396       return policies::raise_domain_error<double>(
397          "log1p<%1%>(%1%)", "log1p(x) requires x > -1, but got x = %1%.", x, pol);
398    if(x == -1)
399       return -policies::raise_overflow_error<double>(
400          "log1p<%1%>(%1%)", 0, pol);
401    return ::log1p(x);
402 }
403 #elif defined(_MSC_VER) && (BOOST_MSVC >= 1400)
404 //
405 // You should only enable this branch if you are absolutely sure
406 // that your compilers optimizer won't mess this code up!!
407 // Currently tested with VC8 and Intel 9.1.
408 //
409 template <class Policy>
log1p(double x,const Policy & pol)410 inline double log1p(double x, const Policy& pol)
411 {
412    if(x < -1)
413       return policies::raise_domain_error<double>(
414          "log1p<%1%>(%1%)", "log1p(x) requires x > -1, but got x = %1%.", x, pol);
415    if(x == -1)
416       return -policies::raise_overflow_error<double>(
417          "log1p<%1%>(%1%)", 0, pol);
418    double u = 1+x;
419    if(u == 1.0)
420       return x;
421    else
422       return ::log(u)*(x/(u-1.0));
423 }
424 template <class Policy>
log1p(float x,const Policy & pol)425 inline float log1p(float x, const Policy& pol)
426 {
427    return static_cast<float>(boost::math::log1p(static_cast<double>(x), pol));
428 }
429 #ifndef _WIN32_WCE
430 //
431 // For some reason this fails to compile under WinCE...
432 // Needs more investigation.
433 //
434 template <class Policy>
log1p(long double x,const Policy & pol)435 inline long double log1p(long double x, const Policy& pol)
436 {
437    if(x < -1)
438       return policies::raise_domain_error<long double>(
439          "log1p<%1%>(%1%)", "log1p(x) requires x > -1, but got x = %1%.", x, pol);
440    if(x == -1)
441       return -policies::raise_overflow_error<long double>(
442          "log1p<%1%>(%1%)", 0, pol);
443    long double u = 1+x;
444    if(u == 1.0)
445       return x;
446    else
447       return ::logl(u)*(x/(u-1.0));
448 }
449 #endif
450 #endif
451 
452 template <class T>
log1p(T x)453 inline typename tools::promote_args<T>::type log1p(T x)
454 {
455    return boost::math::log1p(x, policies::policy<>());
456 }
457 //
458 // Compute log(1+x)-x:
459 //
460 template <class T, class Policy>
461 inline typename tools::promote_args<T>::type
log1pmx(T x,const Policy & pol)462    log1pmx(T x, const Policy& pol)
463 {
464    typedef typename tools::promote_args<T>::type result_type;
465    BOOST_MATH_STD_USING
466    static const char* function = "boost::math::log1pmx<%1%>(%1%)";
467 
468    if(x < -1)
469       return policies::raise_domain_error<T>(
470          function, "log1pmx(x) requires x > -1, but got x = %1%.", x, pol);
471    if(x == -1)
472       return -policies::raise_overflow_error<T>(
473          function, 0, pol);
474 
475    result_type a = abs(result_type(x));
476    if(a > result_type(0.95f))
477       return log(1 + result_type(x)) - result_type(x);
478    // Note that without numeric_limits specialisation support,
479    // epsilon just returns zero, and our "optimisation" will always fail:
480    if(a < tools::epsilon<result_type>())
481       return -x * x / 2;
482    boost::math::detail::log1p_series<T> s(x);
483    s();
484    boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
485 #if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
486    T zero = 0;
487    T result = boost::math::tools::sum_series(s, policies::get_epsilon<T, Policy>(), max_iter, zero);
488 #else
489    T result = boost::math::tools::sum_series(s, policies::get_epsilon<T, Policy>(), max_iter);
490 #endif
491    policies::check_series_iterations<T>(function, max_iter, pol);
492    return result;
493 }
494 
495 template <class T>
log1pmx(T x)496 inline typename tools::promote_args<T>::type log1pmx(T x)
497 {
498    return log1pmx(x, policies::policy<>());
499 }
500 
501 } // namespace math
502 } // namespace boost
503 
504 #ifdef _MSC_VER
505 #pragma warning(pop)
506 #endif
507 
508 #endif // BOOST_MATH_LOG1P_INCLUDED
509 
510 
511 
512