• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //  Copyright John Maddock 2005-2006.
2 //  Use, modification and distribution are subject to the
3 //  Boost Software License, Version 1.0. (See accompanying file
4 //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
5 
6 #ifndef BOOST_MATH_TOOLS_PRECISION_INCLUDED
7 #define BOOST_MATH_TOOLS_PRECISION_INCLUDED
8 
9 #ifdef _MSC_VER
10 #pragma once
11 #endif
12 
13 #include <boost/limits.hpp>
14 #include <boost/assert.hpp>
15 #include <boost/static_assert.hpp>
16 #include <boost/mpl/int.hpp>
17 #include <boost/mpl/bool.hpp>
18 #include <boost/mpl/if.hpp>
19 #include <boost/math/policies/policy.hpp>
20 
21 // These two are for LDBL_MAN_DIG:
22 #include <limits.h>
23 #include <math.h>
24 
25 namespace boost{ namespace math
26 {
27 namespace tools
28 {
29 // If T is not specialized, the functions digits, max_value and min_value,
30 // all get synthesised automatically from std::numeric_limits.
31 // However, if numeric_limits is not specialised for type RealType,
32 // for example with NTL::RR type, then you will get a compiler error
33 // when code tries to use these functions, unless you explicitly specialise them.
34 
35 // For example if the precision of RealType varies at runtime,
36 // then numeric_limits support may not be appropriate,
37 // see boost/math/tools/ntl.hpp  for examples like
38 // template <> NTL::RR max_value<NTL::RR> ...
39 // See  Conceptual Requirements for Real Number Types.
40 
41 template <class T>
digits(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC (T))42 inline BOOST_MATH_CONSTEXPR int digits(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(T)) BOOST_NOEXCEPT
43 {
44 #ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
45    BOOST_STATIC_ASSERT( ::std::numeric_limits<T>::is_specialized);
46    BOOST_STATIC_ASSERT( ::std::numeric_limits<T>::radix == 2 || ::std::numeric_limits<T>::radix == 10);
47 #else
48    BOOST_ASSERT(::std::numeric_limits<T>::is_specialized);
49    BOOST_ASSERT(::std::numeric_limits<T>::radix == 2 || ::std::numeric_limits<T>::radix == 10);
50 #endif
51    return std::numeric_limits<T>::radix == 2
52       ? std::numeric_limits<T>::digits
53       : ((std::numeric_limits<T>::digits + 1) * 1000L) / 301L;
54 }
55 
56 template <class T>
max_value(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE (T))57 inline BOOST_MATH_CONSTEXPR T max_value(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE(T))  BOOST_MATH_NOEXCEPT(T)
58 {
59 #ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
60    BOOST_STATIC_ASSERT( ::std::numeric_limits<T>::is_specialized);
61 #else
62    BOOST_ASSERT(::std::numeric_limits<T>::is_specialized);
63 #endif
64    return (std::numeric_limits<T>::max)();
65 } // Also used as a finite 'infinite' value for - and +infinity, for example:
66 // -max_value<double> = -1.79769e+308, max_value<double> = 1.79769e+308.
67 
68 template <class T>
min_value(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE (T))69 inline BOOST_MATH_CONSTEXPR T min_value(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE(T)) BOOST_MATH_NOEXCEPT(T)
70 {
71 #ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
72    BOOST_STATIC_ASSERT( ::std::numeric_limits<T>::is_specialized);
73 #else
74    BOOST_ASSERT(::std::numeric_limits<T>::is_specialized);
75 #endif
76    return (std::numeric_limits<T>::min)();
77 }
78 
79 namespace detail{
80 //
81 // Logarithmic limits come next, note that although
82 // we can compute these from the log of the max value
83 // that is not in general thread safe (if we cache the value)
84 // so it's better to specialise these:
85 //
86 // For type float first:
87 //
88 template <class T>
log_max_value(const boost::integral_constant<int,128> & BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE (T))89 inline BOOST_MATH_CONSTEXPR T log_max_value(const boost::integral_constant<int, 128>& BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE(T)) BOOST_MATH_NOEXCEPT(T)
90 {
91    return 88.0f;
92 }
93 
94 template <class T>
log_min_value(const boost::integral_constant<int,128> & BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE (T))95 inline BOOST_MATH_CONSTEXPR T log_min_value(const boost::integral_constant<int, 128>& BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE(T)) BOOST_MATH_NOEXCEPT(T)
96 {
97    return -87.0f;
98 }
99 //
100 // Now double:
101 //
102 template <class T>
log_max_value(const boost::integral_constant<int,1024> & BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE (T))103 inline BOOST_MATH_CONSTEXPR T log_max_value(const boost::integral_constant<int, 1024>& BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE(T)) BOOST_MATH_NOEXCEPT(T)
104 {
105    return 709.0;
106 }
107 
108 template <class T>
log_min_value(const boost::integral_constant<int,1024> & BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE (T))109 inline BOOST_MATH_CONSTEXPR T log_min_value(const boost::integral_constant<int, 1024>& BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE(T)) BOOST_MATH_NOEXCEPT(T)
110 {
111    return -708.0;
112 }
113 //
114 // 80 and 128-bit long doubles:
115 //
116 template <class T>
log_max_value(const boost::integral_constant<int,16384> & BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE (T))117 inline BOOST_MATH_CONSTEXPR T log_max_value(const boost::integral_constant<int, 16384>& BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE(T)) BOOST_MATH_NOEXCEPT(T)
118 {
119    return 11356.0L;
120 }
121 
122 template <class T>
log_min_value(const boost::integral_constant<int,16384> & BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE (T))123 inline BOOST_MATH_CONSTEXPR T log_min_value(const boost::integral_constant<int, 16384>& BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE(T)) BOOST_MATH_NOEXCEPT(T)
124 {
125    return -11355.0L;
126 }
127 
128 template <class T>
log_max_value(const boost::integral_constant<int,0> & BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE (T))129 inline T log_max_value(const boost::integral_constant<int, 0>& BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE(T))
130 {
131    BOOST_MATH_STD_USING
132 #ifdef __SUNPRO_CC
133    static const T m = boost::math::tools::max_value<T>();
134    static const T val = log(m);
135 #else
136    static const T val = log(boost::math::tools::max_value<T>());
137 #endif
138    return val;
139 }
140 
141 template <class T>
log_min_value(const boost::integral_constant<int,0> & BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE (T))142 inline T log_min_value(const boost::integral_constant<int, 0>& BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE(T))
143 {
144    BOOST_MATH_STD_USING
145 #ifdef __SUNPRO_CC
146    static const T m = boost::math::tools::min_value<T>();
147    static const T val = log(m);
148 #else
149    static const T val = log(boost::math::tools::min_value<T>());
150 #endif
151    return val;
152 }
153 
154 template <class T>
epsilon(const boost::true_type & BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE (T))155 inline BOOST_MATH_CONSTEXPR T epsilon(const boost::true_type& BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE(T)) BOOST_MATH_NOEXCEPT(T)
156 {
157    return std::numeric_limits<T>::epsilon();
158 }
159 
160 #if defined(__GNUC__) && ((LDBL_MANT_DIG == 106) || (__LDBL_MANT_DIG__ == 106))
161 template <>
epsilon(const boost::true_type & BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE (long double))162 inline BOOST_MATH_CONSTEXPR long double epsilon<long double>(const boost::true_type& BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE(long double)) BOOST_MATH_NOEXCEPT(long double)
163 {
164    // numeric_limits on Darwin (and elsewhere) tells lies here:
165    // the issue is that long double on a few platforms is
166    // really a "double double" which has a non-contiguous
167    // mantissa: 53 bits followed by an unspecified number of
168    // zero bits, followed by 53 more bits.  Thus the apparent
169    // precision of the type varies depending where it's been.
170    // Set epsilon to the value that a 106 bit fixed mantissa
171    // type would have, as that will give us sensible behaviour everywhere.
172    //
173    // This static assert fails for some unknown reason, so
174    // disabled for now...
175    // BOOST_STATIC_ASSERT(std::numeric_limits<long double>::digits == 106);
176    return 2.4651903288156618919116517665087e-32L;
177 }
178 #endif
179 
180 template <class T>
epsilon(const boost::false_type & BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE (T))181 inline T epsilon(const boost::false_type& BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE(T))
182 {
183    // Note: don't cache result as precision may vary at runtime:
184    BOOST_MATH_STD_USING  // for ADL of std names
185    return ldexp(static_cast<T>(1), 1-policies::digits<T, policies::policy<> >());
186 }
187 
188 template <class T>
189 struct log_limit_traits
190 {
191    typedef typename mpl::if_c<
192       (std::numeric_limits<T>::radix == 2) &&
193       (std::numeric_limits<T>::max_exponent == 128
194          || std::numeric_limits<T>::max_exponent == 1024
195          || std::numeric_limits<T>::max_exponent == 16384),
196       boost::integral_constant<int, (std::numeric_limits<T>::max_exponent > INT_MAX ? INT_MAX : static_cast<int>(std::numeric_limits<T>::max_exponent))>,
197       boost::integral_constant<int, 0>
198    >::type tag_type;
199    BOOST_STATIC_CONSTANT(bool, value = tag_type::value ? true : false);
200    BOOST_STATIC_ASSERT(::std::numeric_limits<T>::is_specialized || (value == 0));
201 };
202 
203 template <class T, bool b> struct log_limit_noexcept_traits_imp : public log_limit_traits<T> {};
204 template <class T> struct log_limit_noexcept_traits_imp<T, false> : public boost::integral_constant<bool, false> {};
205 
206 template <class T>
207 struct log_limit_noexcept_traits : public log_limit_noexcept_traits_imp<T, BOOST_MATH_IS_FLOAT(T)> {};
208 
209 } // namespace detail
210 
211 #ifdef BOOST_MSVC
212 #pragma warning(push)
213 #pragma warning(disable:4309)
214 #endif
215 
216 template <class T>
log_max_value(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE (T))217 inline BOOST_MATH_CONSTEXPR T log_max_value(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE(T)) BOOST_NOEXCEPT_IF(detail::log_limit_noexcept_traits<T>::value)
218 {
219 #ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
220    return detail::log_max_value<T>(typename detail::log_limit_traits<T>::tag_type());
221 #else
222    BOOST_ASSERT(::std::numeric_limits<T>::is_specialized);
223    BOOST_MATH_STD_USING
224    static const T val = log((std::numeric_limits<T>::max)());
225    return val;
226 #endif
227 }
228 
229 template <class T>
log_min_value(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE (T))230 inline BOOST_MATH_CONSTEXPR T log_min_value(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE(T)) BOOST_NOEXCEPT_IF(detail::log_limit_noexcept_traits<T>::value)
231 {
232 #ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
233    return detail::log_min_value<T>(typename detail::log_limit_traits<T>::tag_type());
234 #else
235    BOOST_ASSERT(::std::numeric_limits<T>::is_specialized);
236    BOOST_MATH_STD_USING
237    static const T val = log((std::numeric_limits<T>::min)());
238    return val;
239 #endif
240 }
241 
242 #ifdef BOOST_MSVC
243 #pragma warning(pop)
244 #endif
245 
246 template <class T>
epsilon(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC (T))247 inline BOOST_MATH_CONSTEXPR T epsilon(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(T)) BOOST_MATH_NOEXCEPT(T)
248 {
249 #ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
250    return detail::epsilon<T>(boost::integral_constant<bool, ::std::numeric_limits<T>::is_specialized>());
251 #else
252    return ::std::numeric_limits<T>::is_specialized ?
253       detail::epsilon<T>(boost::true_type()) :
254       detail::epsilon<T>(boost::false_type());
255 #endif
256 }
257 
258 namespace detail{
259 
260 template <class T>
root_epsilon_imp(const boost::integral_constant<int,24> &)261 inline BOOST_MATH_CONSTEXPR T root_epsilon_imp(const boost::integral_constant<int, 24>&) BOOST_MATH_NOEXCEPT(T)
262 {
263    return static_cast<T>(0.00034526698300124390839884978618400831996329879769945L);
264 }
265 
266 template <class T>
root_epsilon_imp(const T *,const boost::integral_constant<int,53> &)267 inline BOOST_MATH_CONSTEXPR T root_epsilon_imp(const T*, const boost::integral_constant<int, 53>&) BOOST_MATH_NOEXCEPT(T)
268 {
269    return static_cast<T>(0.1490116119384765625e-7L);
270 }
271 
272 template <class T>
root_epsilon_imp(const T *,const boost::integral_constant<int,64> &)273 inline BOOST_MATH_CONSTEXPR T root_epsilon_imp(const T*, const boost::integral_constant<int, 64>&) BOOST_MATH_NOEXCEPT(T)
274 {
275    return static_cast<T>(0.32927225399135962333569506281281311031656150598474e-9L);
276 }
277 
278 template <class T>
root_epsilon_imp(const T *,const boost::integral_constant<int,113> &)279 inline BOOST_MATH_CONSTEXPR T root_epsilon_imp(const T*, const boost::integral_constant<int, 113>&) BOOST_MATH_NOEXCEPT(T)
280 {
281    return static_cast<T>(0.1387778780781445675529539585113525390625e-16L);
282 }
283 
284 template <class T, class Tag>
root_epsilon_imp(const T *,const Tag &)285 inline T root_epsilon_imp(const T*, const Tag&)
286 {
287    BOOST_MATH_STD_USING
288    static const T r_eps = sqrt(tools::epsilon<T>());
289    return r_eps;
290 }
291 
292 template <class T>
root_epsilon_imp(const T *,const boost::integral_constant<int,0> &)293 inline T root_epsilon_imp(const T*, const boost::integral_constant<int, 0>&)
294 {
295    BOOST_MATH_STD_USING
296    return sqrt(tools::epsilon<T>());
297 }
298 
299 template <class T>
cbrt_epsilon_imp(const boost::integral_constant<int,24> &)300 inline BOOST_MATH_CONSTEXPR T cbrt_epsilon_imp(const boost::integral_constant<int, 24>&) BOOST_MATH_NOEXCEPT(T)
301 {
302    return static_cast<T>(0.0049215666011518482998719164346805794944150447839903L);
303 }
304 
305 template <class T>
cbrt_epsilon_imp(const T *,const boost::integral_constant<int,53> &)306 inline BOOST_MATH_CONSTEXPR T cbrt_epsilon_imp(const T*, const boost::integral_constant<int, 53>&) BOOST_MATH_NOEXCEPT(T)
307 {
308    return static_cast<T>(6.05545445239333906078989272793696693569753008995e-6L);
309 }
310 
311 template <class T>
cbrt_epsilon_imp(const T *,const boost::integral_constant<int,64> &)312 inline BOOST_MATH_CONSTEXPR T cbrt_epsilon_imp(const T*, const boost::integral_constant<int, 64>&) BOOST_MATH_NOEXCEPT(T)
313 {
314    return static_cast<T>(4.76837158203125e-7L);
315 }
316 
317 template <class T>
cbrt_epsilon_imp(const T *,const boost::integral_constant<int,113> &)318 inline BOOST_MATH_CONSTEXPR T cbrt_epsilon_imp(const T*, const boost::integral_constant<int, 113>&) BOOST_MATH_NOEXCEPT(T)
319 {
320    return static_cast<T>(5.7749313854154005630396773604745549542403508090496e-12L);
321 }
322 
323 template <class T, class Tag>
cbrt_epsilon_imp(const T *,const Tag &)324 inline T cbrt_epsilon_imp(const T*, const Tag&)
325 {
326    BOOST_MATH_STD_USING;
327    static const T cbrt_eps = pow(tools::epsilon<T>(), T(1) / 3);
328    return cbrt_eps;
329 }
330 
331 template <class T>
cbrt_epsilon_imp(const T *,const boost::integral_constant<int,0> &)332 inline T cbrt_epsilon_imp(const T*, const boost::integral_constant<int, 0>&)
333 {
334    BOOST_MATH_STD_USING;
335    return pow(tools::epsilon<T>(), T(1) / 3);
336 }
337 
338 template <class T>
forth_root_epsilon_imp(const T *,const boost::integral_constant<int,24> &)339 inline BOOST_MATH_CONSTEXPR T forth_root_epsilon_imp(const T*, const boost::integral_constant<int, 24>&) BOOST_MATH_NOEXCEPT(T)
340 {
341    return static_cast<T>(0.018581361171917516667460937040007436176452688944747L);
342 }
343 
344 template <class T>
forth_root_epsilon_imp(const T *,const boost::integral_constant<int,53> &)345 inline BOOST_MATH_CONSTEXPR T forth_root_epsilon_imp(const T*, const boost::integral_constant<int, 53>&) BOOST_MATH_NOEXCEPT(T)
346 {
347    return static_cast<T>(0.0001220703125L);
348 }
349 
350 template <class T>
forth_root_epsilon_imp(const T *,const boost::integral_constant<int,64> &)351 inline BOOST_MATH_CONSTEXPR T forth_root_epsilon_imp(const T*, const boost::integral_constant<int, 64>&) BOOST_MATH_NOEXCEPT(T)
352 {
353    return static_cast<T>(0.18145860519450699870567321328132261891067079047605e-4L);
354 }
355 
356 template <class T>
forth_root_epsilon_imp(const T *,const boost::integral_constant<int,113> &)357 inline BOOST_MATH_CONSTEXPR T forth_root_epsilon_imp(const T*, const boost::integral_constant<int, 113>&) BOOST_MATH_NOEXCEPT(T)
358 {
359    return static_cast<T>(0.37252902984619140625e-8L);
360 }
361 
362 template <class T, class Tag>
forth_root_epsilon_imp(const T *,const Tag &)363 inline T forth_root_epsilon_imp(const T*, const Tag&)
364 {
365    BOOST_MATH_STD_USING
366    static const T r_eps = sqrt(sqrt(tools::epsilon<T>()));
367    return r_eps;
368 }
369 
370 template <class T>
forth_root_epsilon_imp(const T *,const boost::integral_constant<int,0> &)371 inline T forth_root_epsilon_imp(const T*, const boost::integral_constant<int, 0>&)
372 {
373    BOOST_MATH_STD_USING
374    return sqrt(sqrt(tools::epsilon<T>()));
375 }
376 
377 template <class T>
378 struct root_epsilon_traits
379 {
380    typedef boost::integral_constant<int, (::std::numeric_limits<T>::radix == 2) && (::std::numeric_limits<T>::digits != INT_MAX) ? std::numeric_limits<T>::digits : 0> tag_type;
381    BOOST_STATIC_CONSTANT(bool, has_noexcept = (tag_type::value == 113) || (tag_type::value == 64) || (tag_type::value == 53) || (tag_type::value == 24));
382 };
383 
384 }
385 
386 template <class T>
root_epsilon()387 inline BOOST_MATH_CONSTEXPR T root_epsilon() BOOST_NOEXCEPT_IF(BOOST_MATH_IS_FLOAT(T) && detail::root_epsilon_traits<T>::has_noexcept)
388 {
389    return detail::root_epsilon_imp(static_cast<T const*>(0), typename detail::root_epsilon_traits<T>::tag_type());
390 }
391 
392 template <class T>
cbrt_epsilon()393 inline BOOST_MATH_CONSTEXPR T cbrt_epsilon() BOOST_NOEXCEPT_IF(BOOST_MATH_IS_FLOAT(T) && detail::root_epsilon_traits<T>::has_noexcept)
394 {
395    return detail::cbrt_epsilon_imp(static_cast<T const*>(0), typename detail::root_epsilon_traits<T>::tag_type());
396 }
397 
398 template <class T>
forth_root_epsilon()399 inline BOOST_MATH_CONSTEXPR T forth_root_epsilon() BOOST_NOEXCEPT_IF(BOOST_MATH_IS_FLOAT(T) && detail::root_epsilon_traits<T>::has_noexcept)
400 {
401    return detail::forth_root_epsilon_imp(static_cast<T const*>(0), typename detail::root_epsilon_traits<T>::tag_type());
402 }
403 
404 } // namespace tools
405 } // namespace math
406 } // namespace boost
407 
408 #endif // BOOST_MATH_TOOLS_PRECISION_INCLUDED
409 
410