• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  [auto_generated]
3  boost/numeric/odeint/stepper/runge_kutta_cash_karp54_classic.hpp
4 
5  [begin_description]
6  Classical implementation of the Runge-Kutta Cash-Karp 5(4) method.
7  [end_description]
8 
9  Copyright 2010-2013 Mario Mulansky
10  Copyright 2010-2013 Karsten Ahnert
11  Copyright 2012 Christoph Koke
12 
13  Distributed under the Boost Software License, Version 1.0.
14  (See accompanying file LICENSE_1_0.txt or
15  copy at http://www.boost.org/LICENSE_1_0.txt)
16  */
17 
18 
19 #ifndef BOOST_NUMERIC_ODEINT_STEPPER_RUNGE_KUTTA_CASH_KARP54_CLASSIC_HPP_INCLUDED
20 #define BOOST_NUMERIC_ODEINT_STEPPER_RUNGE_KUTTA_CASH_KARP54_CLASSIC_HPP_INCLUDED
21 
22 
23 #include <boost/numeric/odeint/util/bind.hpp>
24 
25 #include <boost/numeric/odeint/stepper/base/explicit_error_stepper_base.hpp>
26 #include <boost/numeric/odeint/algebra/range_algebra.hpp>
27 #include <boost/numeric/odeint/algebra/default_operations.hpp>
28 #include <boost/numeric/odeint/algebra/algebra_dispatcher.hpp>
29 #include <boost/numeric/odeint/algebra/operations_dispatcher.hpp>
30 #include <boost/numeric/odeint/stepper/stepper_categories.hpp>
31 #include <boost/numeric/odeint/util/state_wrapper.hpp>
32 #include <boost/numeric/odeint/util/is_resizeable.hpp>
33 #include <boost/numeric/odeint/util/resizer.hpp>
34 
35 namespace boost {
36 namespace numeric {
37 namespace odeint {
38 
39 
40 
41 
42 template<
43 class State ,
44 class Value = double ,
45 class Deriv = State ,
46 class Time = Value ,
47 class Algebra = typename algebra_dispatcher< State >::algebra_type ,
48 class Operations = typename operations_dispatcher< State >::operations_type ,
49 class Resizer = initially_resizer
50 >
51 #ifndef DOXYGEN_SKIP
52 class runge_kutta_cash_karp54_classic
53 : public explicit_error_stepper_base<
54   runge_kutta_cash_karp54_classic< State , Value , Deriv , Time , Algebra , Operations , Resizer > ,
55   5 , 5 , 4 , State , Value , Deriv , Time , Algebra , Operations , Resizer >
56 #else
57 class runge_kutta_cash_karp54_classic : public explicit_error_stepper_base
58 #endif
59 {
60 
61 
62 public :
63 
64     #ifndef DOXYGEN_SKIP
65     typedef explicit_error_stepper_base<
66     runge_kutta_cash_karp54_classic< State , Value , Deriv , Time , Algebra , Operations , Resizer > ,
67     5 , 5 , 4 , State , Value , Deriv , Time , Algebra , Operations , Resizer > stepper_base_type;
68     #else
69     typedef explicit_error_stepper_base< runge_kutta_cash_karp54_classic< ... > , ... > stepper_base_type;
70     #endif
71 
72     typedef typename stepper_base_type::state_type state_type;
73     typedef typename stepper_base_type::value_type value_type;
74     typedef typename stepper_base_type::deriv_type deriv_type;
75     typedef typename stepper_base_type::time_type time_type;
76     typedef typename stepper_base_type::algebra_type algebra_type;
77     typedef typename stepper_base_type::operations_type operations_type;
78     typedef typename stepper_base_type::resizer_type resizer_type;
79 
80     #ifndef DOXYGEN_SKIP
81     typedef typename stepper_base_type::wrapped_state_type wrapped_state_type;
82     typedef typename stepper_base_type::wrapped_deriv_type wrapped_deriv_type;
83     typedef typename stepper_base_type::stepper_type stepper_type;
84     #endif
85 
86 
runge_kutta_cash_karp54_classic(const algebra_type & algebra=algebra_type ())87     runge_kutta_cash_karp54_classic( const algebra_type &algebra = algebra_type() ) : stepper_base_type( algebra )
88     { }
89 
90 
91 
92     template< class System , class StateIn , class DerivIn , class StateOut , class Err >
do_step_impl(System system,const StateIn & in,const DerivIn & dxdt,time_type t,StateOut & out,time_type dt,Err & xerr)93     void do_step_impl( System system , const StateIn &in , const DerivIn &dxdt , time_type t , StateOut &out , time_type dt , Err &xerr )
94     {
95         const value_type c1 = static_cast<value_type> ( 37 ) / static_cast<value_type>( 378 );
96         const value_type c3 = static_cast<value_type> ( 250 ) / static_cast<value_type>( 621 );
97         const value_type c4 = static_cast<value_type> ( 125 ) / static_cast<value_type>( 594 );
98         const value_type c6 = static_cast<value_type> ( 512 ) / static_cast<value_type>( 1771 );
99 
100         const value_type dc1 = c1 - static_cast<value_type> ( 2825 ) / static_cast<value_type>( 27648 );
101         const value_type dc3 = c3 - static_cast<value_type> ( 18575 ) / static_cast<value_type>( 48384 );
102         const value_type dc4 = c4 - static_cast<value_type> ( 13525 ) / static_cast<value_type>( 55296 );
103         const value_type dc5 = static_cast<value_type> ( -277 ) / static_cast<value_type>( 14336 );
104         const value_type dc6 = c6 - static_cast<value_type> ( 1 ) / static_cast<value_type> ( 4 );
105 
106         do_step_impl( system , in , dxdt , t , out , dt );
107 
108         //error estimate
109         stepper_base_type::m_algebra.for_each6( xerr , dxdt , m_k3.m_v , m_k4.m_v , m_k5.m_v , m_k6.m_v ,
110                 typename operations_type::template scale_sum5< time_type , time_type , time_type , time_type , time_type >( dt*dc1 , dt*dc3 , dt*dc4 , dt*dc5 , dt*dc6 ));
111 
112     }
113 
114 
115 
116     template< class System , class StateIn , class DerivIn , class StateOut >
do_step_impl(System system,const StateIn & in,const DerivIn & dxdt,time_type t,StateOut & out,time_type dt)117     void do_step_impl( System system , const StateIn &in , const DerivIn &dxdt , time_type t , StateOut &out , time_type dt )
118     {
119         const value_type a2 = static_cast<value_type> ( 1 ) / static_cast<value_type> ( 5 );
120         const value_type a3 = static_cast<value_type> ( 3 ) / static_cast<value_type> ( 10 );
121         const value_type a4 = static_cast<value_type> ( 3 ) / static_cast<value_type> ( 5 );
122         const value_type a5 = static_cast<value_type> ( 1 );
123         const value_type a6 = static_cast<value_type> ( 7 ) / static_cast<value_type> ( 8 );
124 
125         const value_type b21 = static_cast<value_type> ( 1 ) / static_cast<value_type> ( 5 );
126         const value_type b31 = static_cast<value_type> ( 3 ) / static_cast<value_type>( 40 );
127         const value_type b32 = static_cast<value_type> ( 9 ) / static_cast<value_type>( 40 );
128         const value_type b41 = static_cast<value_type> ( 3 ) / static_cast<value_type> ( 10 );
129         const value_type b42 = static_cast<value_type> ( -9 ) / static_cast<value_type> ( 10 );
130         const value_type b43 = static_cast<value_type> ( 6 ) / static_cast<value_type> ( 5 );
131         const value_type b51 = static_cast<value_type> ( -11 ) / static_cast<value_type>( 54 );
132         const value_type b52 = static_cast<value_type> ( 5 ) / static_cast<value_type> ( 2 );
133         const value_type b53 = static_cast<value_type> ( -70 ) / static_cast<value_type>( 27 );
134         const value_type b54 = static_cast<value_type> ( 35 ) / static_cast<value_type>( 27 );
135         const value_type b61 = static_cast<value_type> ( 1631 ) / static_cast<value_type>( 55296 );
136         const value_type b62 = static_cast<value_type> ( 175 ) / static_cast<value_type>( 512 );
137         const value_type b63 = static_cast<value_type> ( 575 ) / static_cast<value_type>( 13824 );
138         const value_type b64 = static_cast<value_type> ( 44275 ) / static_cast<value_type>( 110592 );
139         const value_type b65 = static_cast<value_type> ( 253 ) / static_cast<value_type>( 4096 );
140 
141         const value_type c1 = static_cast<value_type> ( 37 ) / static_cast<value_type>( 378 );
142         const value_type c3 = static_cast<value_type> ( 250 ) / static_cast<value_type>( 621 );
143         const value_type c4 = static_cast<value_type> ( 125 ) / static_cast<value_type>( 594 );
144         const value_type c6 = static_cast<value_type> ( 512 ) / static_cast<value_type>( 1771 );
145 
146         typename odeint::unwrap_reference< System >::type &sys = system;
147 
148         m_resizer.adjust_size( in , detail::bind( &stepper_type::template resize_impl<StateIn> , detail::ref( *this ) , detail::_1 ) );
149 
150         //m_x1 = x + dt*b21*dxdt
151         stepper_base_type::m_algebra.for_each3( m_x_tmp.m_v , in , dxdt ,
152                 typename operations_type::template scale_sum2< value_type , time_type >( 1.0 , dt*b21 ) );
153 
154         sys( m_x_tmp.m_v , m_k2.m_v , t + dt*a2 );
155         // m_x_tmp = x + dt*b31*dxdt + dt*b32*m_x2
156         stepper_base_type::m_algebra.for_each4( m_x_tmp.m_v , in , dxdt , m_k2.m_v ,
157                 typename operations_type::template scale_sum3< value_type , time_type , time_type >( 1.0 , dt*b31 , dt*b32 ));
158 
159         sys( m_x_tmp.m_v , m_k3.m_v , t + dt*a3 );
160         // m_x_tmp = x + dt * (b41*dxdt + b42*m_x2 + b43*m_x3)
161         stepper_base_type::m_algebra.for_each5( m_x_tmp.m_v , in , dxdt , m_k2.m_v , m_k3.m_v ,
162                 typename operations_type::template scale_sum4< value_type , time_type , time_type , time_type >( 1.0 , dt*b41 , dt*b42 , dt*b43 ));
163 
164         sys( m_x_tmp.m_v, m_k4.m_v , t + dt*a4 );
165         stepper_base_type::m_algebra.for_each6( m_x_tmp.m_v , in , dxdt , m_k2.m_v , m_k3.m_v , m_k4.m_v ,
166                 typename operations_type::template scale_sum5< value_type , time_type , time_type , time_type , time_type >( 1.0 , dt*b51 , dt*b52 , dt*b53 , dt*b54 ));
167 
168         sys( m_x_tmp.m_v , m_k5.m_v , t + dt*a5 );
169         stepper_base_type::m_algebra.for_each7( m_x_tmp.m_v , in , dxdt , m_k2.m_v , m_k3.m_v , m_k4.m_v , m_k5.m_v ,
170                 typename operations_type::template scale_sum6< value_type , time_type , time_type , time_type , time_type , time_type >( 1.0 , dt*b61 , dt*b62 , dt*b63 , dt*b64 , dt*b65 ));
171 
172         sys( m_x_tmp.m_v , m_k6.m_v , t + dt*a6 );
173         stepper_base_type::m_algebra.for_each6( out , in , dxdt , m_k3.m_v , m_k4.m_v , m_k6.m_v ,
174                 typename operations_type::template scale_sum5< value_type , time_type , time_type , time_type , time_type >( 1.0 , dt*c1 , dt*c3 , dt*c4 , dt*c6 ));
175 
176     }
177 
178     /**
179      * \brief Adjust the size of all temporaries in the stepper manually.
180      * \param x A state from which the size of the temporaries to be resized is deduced.
181      */
182     template< class StateIn >
adjust_size(const StateIn & x)183     void adjust_size( const StateIn &x )
184     {
185         resize_impl( x );
186         stepper_base_type::adjust_size( x );
187     }
188 
189 private:
190 
191     template< class StateIn >
resize_impl(const StateIn & x)192     bool resize_impl( const StateIn &x )
193     {
194         bool resized = false;
195         resized |= adjust_size_by_resizeability( m_x_tmp , x , typename is_resizeable<state_type>::type() );
196         resized |= adjust_size_by_resizeability( m_k2 , x , typename is_resizeable<deriv_type>::type() );
197         resized |= adjust_size_by_resizeability( m_k3 , x , typename is_resizeable<deriv_type>::type() );
198         resized |= adjust_size_by_resizeability( m_k4 , x , typename is_resizeable<deriv_type>::type() );
199         resized |= adjust_size_by_resizeability( m_k5 , x , typename is_resizeable<deriv_type>::type() );
200         resized |= adjust_size_by_resizeability( m_k6 , x , typename is_resizeable<deriv_type>::type() );
201         return resized;
202     }
203 
204 
205     wrapped_state_type m_x_tmp;
206     wrapped_deriv_type m_k2, m_k3, m_k4, m_k5, m_k6;
207     resizer_type m_resizer;
208 
209 };
210 
211 
212 
213 /************ DOXYGEN *************/
214 
215 /**
216  * \class runge_kutta_cash_karp54_classic
217  * \brief The Runge-Kutta Cash-Karp method implemented without the generic Runge-Kutta algorithm.
218  *
219  * The Runge-Kutta Cash-Karp method is one of the standard methods for
220  * solving ordinary differential equations, see
221  * <a href="http://en.wikipedia.org/wiki/Cash%E2%80%93Karp_method">en.wikipedia.org/wiki/Cash-Karp_method</a>.
222  * The method is explicit and fulfills the Error Stepper concept. Step size control
223  * is provided but continuous output is not available for this method.
224  *
225  * This class derives from explicit_error_stepper_base and inherits its interface via CRTP (current recurring
226  * template pattern). This class implements the method directly, hence the generic Runge-Kutta algorithm is not used.
227  *
228  * \tparam State The state type.
229  * \tparam Value The value type.
230  * \tparam Deriv The type representing the time derivative of the state.
231  * \tparam Time The time representing the independent variable - the time.
232  * \tparam Algebra The algebra type.
233  * \tparam Operations The operations type.
234  * \tparam Resizer The resizer policy type.
235  */
236 
237 
238     /**
239      * \fn runge_kutta_cash_karp54_classic::runge_kutta_cash_karp54_classic( const algebra_type &algebra )
240      * \brief Constructs the runge_kutta_cash_karp54_classic class. This constructor can be used as a default
241      * constructor if the algebra has a default constructor.
242      * \param algebra A copy of algebra is made and stored inside explicit_stepper_base.
243      */
244 
245 
246     /**
247      * \fn runge_kutta_cash_karp54_classic::do_step_impl( System system , const StateIn &in , const DerivIn &dxdt , time_type t , StateOut &out , time_type dt , Err &xerr )
248      * \brief This method performs one step. The derivative `dxdt` of `in` at the time `t` is passed to the method.
249      *
250      * The result is updated out-of-place, hence the input is in `in` and the output in `out`. Futhermore, an
251      * estimation of the error is stored in `xerr`.
252      * Access to this step functionality is provided by explicit_error_stepper_base and
253      * `do_step_impl` should not be called directly.
254 
255      *
256      * \param system The system function to solve, hence the r.h.s. of the ODE. It must fulfill the
257      *               Simple System concept.
258      * \param in The state of the ODE which should be solved. in is not modified in this method
259      * \param dxdt The derivative of x at t.
260      * \param t The value of the time, at which the step should be performed.
261      * \param out The result of the step is written in out.
262      * \param dt The step size.
263      * \param xerr The result of the error estimation is written in xerr.
264      */
265 
266     /**
267      * \fn runge_kutta_cash_karp54_classic::do_step_impl( System system , const StateIn &in , const DerivIn &dxdt , time_type t , StateOut &out , time_type dt )
268      * \brief This method performs one step. The derivative `dxdt` of `in` at the time `t` is passed to the method.
269      * The result is updated out-of-place, hence the input is in `in` and the output in `out`.
270      * Access to this step functionality is provided by explicit_error_stepper_base and
271      * `do_step_impl` should not be called directly.
272      *
273      * \param system The system function to solve, hence the r.h.s. of the ODE. It must fulfill the
274      *               Simple System concept.
275      * \param in The state of the ODE which should be solved. in is not modified in this method
276      * \param dxdt The derivative of x at t.
277      * \param t The value of the time, at which the step should be performed.
278      * \param out The result of the step is written in out.
279      * \param dt The step size.
280      */
281 
282 } // odeint
283 } // numeric
284 } // boost
285 
286 
287 
288 
289 #endif // BOOST_NUMERIC_ODEINT_STEPPER_RUNGE_KUTTA_CASH_KARP54_CLASSIC_HPP_INCLUDED
290