• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<html>
2<head>
3<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
4<title>Digamma</title>
5<link rel="stylesheet" href="../../math.css" type="text/css">
6<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
7<link rel="home" href="../../index.html" title="Math Toolkit 2.12.0">
8<link rel="up" href="../sf_gamma.html" title="Gamma Functions">
9<link rel="prev" href="lgamma.html" title="Log Gamma">
10<link rel="next" href="trigamma.html" title="Trigamma">
11</head>
12<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
13<table cellpadding="2" width="100%"><tr>
14<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../boost.png"></td>
15<td align="center"><a href="../../../../../../index.html">Home</a></td>
16<td align="center"><a href="../../../../../../libs/libraries.htm">Libraries</a></td>
17<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
18<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
19<td align="center"><a href="../../../../../../more/index.htm">More</a></td>
20</tr></table>
21<hr>
22<div class="spirit-nav">
23<a accesskey="p" href="lgamma.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../sf_gamma.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="trigamma.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
24</div>
25<div class="section">
26<div class="titlepage"><div><div><h3 class="title">
27<a name="math_toolkit.sf_gamma.digamma"></a><a class="link" href="digamma.html" title="Digamma">Digamma</a>
28</h3></div></div></div>
29<h5>
30<a name="math_toolkit.sf_gamma.digamma.h0"></a>
31        <span class="phrase"><a name="math_toolkit.sf_gamma.digamma.synopsis"></a></span><a class="link" href="digamma.html#math_toolkit.sf_gamma.digamma.synopsis">Synopsis</a>
32      </h5>
33<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">special_functions</span><span class="special">/</span><span class="identifier">digamma</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
34</pre>
35<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span><span class="special">{</span>
36
37<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
38<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">digamma</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">z</span><span class="special">);</span>
39
40<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
41<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">digamma</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">z</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
42
43<span class="special">}}</span> <span class="comment">// namespaces</span>
44</pre>
45<h5>
46<a name="math_toolkit.sf_gamma.digamma.h1"></a>
47        <span class="phrase"><a name="math_toolkit.sf_gamma.digamma.description"></a></span><a class="link" href="digamma.html#math_toolkit.sf_gamma.digamma.description">Description</a>
48      </h5>
49<p>
50        Returns the digamma or psi function of <span class="emphasis"><em>x</em></span>. Digamma is
51        defined as the logarithmic derivative of the gamma function:
52      </p>
53<div class="blockquote"><blockquote class="blockquote"><p>
54          <span class="inlinemediaobject"><img src="../../../equations/digamma1.svg"></span>
55
56        </p></blockquote></div>
57<div class="blockquote"><blockquote class="blockquote"><p>
58          <span class="inlinemediaobject"><img src="../../../graphs/digamma.svg" align="middle"></span>
59
60        </p></blockquote></div>
61<p>
62        The final <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a> argument is optional and can
63        be used to control the behaviour of the function: how it handles errors,
64        what level of precision to use etc. Refer to the <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">policy
65        documentation for more details</a>.
66      </p>
67<p>
68        The return type of this function is computed using the <a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>result
69        type calculation rules</em></span></a>: the result is of type <code class="computeroutput"><span class="keyword">double</span></code> when T is an integer type, and type
70        T otherwise.
71      </p>
72<h5>
73<a name="math_toolkit.sf_gamma.digamma.h2"></a>
74        <span class="phrase"><a name="math_toolkit.sf_gamma.digamma.accuracy"></a></span><a class="link" href="digamma.html#math_toolkit.sf_gamma.digamma.accuracy">Accuracy</a>
75      </h5>
76<p>
77        The following table shows the peak errors (in units of epsilon) found on
78        various platforms with various floating point types. Unless otherwise specified
79        any floating point type that is narrower than the one shown will have <a class="link" href="../relative_error.html#math_toolkit.relative_error.zero_error">effectively zero error</a>.
80      </p>
81<div class="table">
82<a name="math_toolkit.sf_gamma.digamma.table_digamma"></a><p class="title"><b>Table 8.4. Error rates for digamma</b></p>
83<div class="table-contents"><table class="table" summary="Error rates for digamma">
84<colgroup>
85<col>
86<col>
87<col>
88<col>
89<col>
90</colgroup>
91<thead><tr>
92<th>
93              </th>
94<th>
95                <p>
96                  GNU C++ version 7.1.0<br> linux<br> double
97                </p>
98              </th>
99<th>
100                <p>
101                  GNU C++ version 7.1.0<br> linux<br> long double
102                </p>
103              </th>
104<th>
105                <p>
106                  Sun compiler version 0x5150<br> Sun Solaris<br> long double
107                </p>
108              </th>
109<th>
110                <p>
111                  Microsoft Visual C++ version 14.1<br> Win32<br> double
112                </p>
113              </th>
114</tr></thead>
115<tbody>
116<tr>
117<td>
118                <p>
119                  Digamma Function: Large Values
120                </p>
121              </td>
122<td>
123                <p>
124                  <span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
125                  2.1:</em></span> Max = 1.84ε (Mean = 0.71ε))<br> (<span class="emphasis"><em>Rmath
126                  3.2.3:</em></span> Max = 1.18ε (Mean = 0.331ε))
127                </p>
128              </td>
129<td>
130                <p>
131                  <span class="blue">Max = 1.39ε (Mean = 0.413ε)</span>
132                </p>
133              </td>
134<td>
135                <p>
136                  <span class="blue">Max = 1.39ε (Mean = 0.413ε)</span>
137                </p>
138              </td>
139<td>
140                <p>
141                  <span class="blue">Max = 0.98ε (Mean = 0.369ε)</span>
142                </p>
143              </td>
144</tr>
145<tr>
146<td>
147                <p>
148                  Digamma Function: Near the Positive Root
149                </p>
150              </td>
151<td>
152                <p>
153                  <span class="blue">Max = 0.891ε (Mean = 0.0995ε)</span><br>
154                  <br> (<span class="emphasis"><em>GSL 2.1:</em></span> Max = 135ε (Mean = 11.9ε))<br>
155                  (<span class="emphasis"><em>Rmath 3.2.3:</em></span> Max = 2.02e+03ε (Mean = 256ε))
156                </p>
157              </td>
158<td>
159                <p>
160                  <span class="blue">Max = 1.37ε (Mean = 0.477ε)</span>
161                </p>
162              </td>
163<td>
164                <p>
165                  <span class="blue">Max = 1.31ε (Mean = 0.471ε)</span>
166                </p>
167              </td>
168<td>
169                <p>
170                  <span class="blue">Max = 0.997ε (Mean = 0.527ε)</span>
171                </p>
172              </td>
173</tr>
174<tr>
175<td>
176                <p>
177                  Digamma Function: Near Zero
178                </p>
179              </td>
180<td>
181                <p>
182                  <span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
183                  2.1:</em></span> Max = 0.953ε (Mean = 0.348ε))<br> (<span class="emphasis"><em>Rmath
184                  3.2.3:</em></span> Max = 1.17ε (Mean = 0.564ε))
185                </p>
186              </td>
187<td>
188                <p>
189                  <span class="blue">Max = 0.984ε (Mean = 0.361ε)</span>
190                </p>
191              </td>
192<td>
193                <p>
194                  <span class="blue">Max = 0.984ε (Mean = 0.361ε)</span>
195                </p>
196              </td>
197<td>
198                <p>
199                  <span class="blue">Max = 0.953ε (Mean = 0.337ε)</span>
200                </p>
201              </td>
202</tr>
203<tr>
204<td>
205                <p>
206                  Digamma Function: Negative Values
207                </p>
208              </td>
209<td>
210                <p>
211                  <span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
212                  2.1:</em></span> Max = 4.56e+04ε (Mean = 3.91e+03ε))<br> (<span class="emphasis"><em>Rmath
213                  3.2.3:</em></span> Max = 4.6e+04ε (Mean = 3.94e+03ε))
214                </p>
215              </td>
216<td>
217                <p>
218                  <span class="blue">Max = 180ε (Mean = 13ε)</span>
219                </p>
220              </td>
221<td>
222                <p>
223                  <span class="blue">Max = 180ε (Mean = 13ε)</span>
224                </p>
225              </td>
226<td>
227                <p>
228                  <span class="blue">Max = 214ε (Mean = 16.1ε)</span>
229                </p>
230              </td>
231</tr>
232<tr>
233<td>
234                <p>
235                  Digamma Function: Values near 0
236                </p>
237              </td>
238<td>
239                <p>
240                  <span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
241                  2.1:</em></span> Max = 0.866ε (Mean = 0.387ε))<br> (<span class="emphasis"><em>Rmath
242                  3.2.3:</em></span> Max = 3.58e+05ε (Mean = 1.6e+05ε))
243                </p>
244              </td>
245<td>
246                <p>
247                  <span class="blue">Max = 1ε (Mean = 0.592ε)</span>
248                </p>
249              </td>
250<td>
251                <p>
252                  <span class="blue">Max = 1ε (Mean = 0.592ε)</span>
253                </p>
254              </td>
255<td>
256                <p>
257                  <span class="blue">Max = 0ε (Mean = 0ε)</span>
258                </p>
259              </td>
260</tr>
261<tr>
262<td>
263                <p>
264                  Digamma Function: Integer arguments
265                </p>
266              </td>
267<td>
268                <p>
269                  <span class="blue">Max = 0.992ε (Mean = 0.215ε)</span><br> <br>
270                  (<span class="emphasis"><em>GSL 2.1:</em></span> Max = 1.18ε (Mean = 0.607ε))<br>
271                  (<span class="emphasis"><em>Rmath 3.2.3:</em></span> Max = 4.33ε (Mean = 0.982ε))
272                </p>
273              </td>
274<td>
275                <p>
276                  <span class="blue">Max = 0.888ε (Mean = 0.403ε)</span>
277                </p>
278              </td>
279<td>
280                <p>
281                  <span class="blue">Max = 0.888ε (Mean = 0.403ε)</span>
282                </p>
283              </td>
284<td>
285                <p>
286                  <span class="blue">Max = 0.992ε (Mean = 0.452ε)</span>
287                </p>
288              </td>
289</tr>
290<tr>
291<td>
292                <p>
293                  Digamma Function: Half integer arguments
294                </p>
295              </td>
296<td>
297                <p>
298                  <span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
299                  2.1:</em></span> Max = 1.09ε (Mean = 0.531ε))<br> (<span class="emphasis"><em>Rmath
300                  3.2.3:</em></span> Max = 46.2ε (Mean = 7.24ε))
301                </p>
302              </td>
303<td>
304                <p>
305                  <span class="blue">Max = 0.906ε (Mean = 0.409ε)</span>
306                </p>
307              </td>
308<td>
309                <p>
310                  <span class="blue">Max = 0.906ε (Mean = 0.409ε)</span>
311                </p>
312              </td>
313<td>
314                <p>
315                  <span class="blue">Max = 0.78ε (Mean = 0.314ε)</span>
316                </p>
317              </td>
318</tr>
319</tbody>
320</table></div>
321</div>
322<br class="table-break"><p>
323        As shown above, error rates for positive arguments are generally very low.
324        For negative arguments there are an infinite number of irrational roots:
325        relative errors very close to these can be arbitrarily large, although absolute
326        error will remain very low.
327      </p>
328<p>
329        The following error plot are based on an exhaustive search of the functions
330        domain, MSVC-15.5 at <code class="computeroutput"><span class="keyword">double</span></code>
331        precision, and GCC-7.1/Ubuntu for <code class="computeroutput"><span class="keyword">long</span>
332        <span class="keyword">double</span></code> and <code class="computeroutput"><span class="identifier">__float128</span></code>.
333      </p>
334<div class="blockquote"><blockquote class="blockquote"><p>
335          <span class="inlinemediaobject"><img src="../../../graphs/digamma__double.svg" align="middle"></span>
336
337        </p></blockquote></div>
338<div class="blockquote"><blockquote class="blockquote"><p>
339          <span class="inlinemediaobject"><img src="../../../graphs/digamma__80_bit_long_double.svg" align="middle"></span>
340
341        </p></blockquote></div>
342<div class="blockquote"><blockquote class="blockquote"><p>
343          <span class="inlinemediaobject"><img src="../../../graphs/digamma____float128.svg" align="middle"></span>
344
345        </p></blockquote></div>
346<h5>
347<a name="math_toolkit.sf_gamma.digamma.h3"></a>
348        <span class="phrase"><a name="math_toolkit.sf_gamma.digamma.testing"></a></span><a class="link" href="digamma.html#math_toolkit.sf_gamma.digamma.testing">Testing</a>
349      </h5>
350<p>
351        There are two sets of tests: spot values are computed using the online calculator
352        at functions.wolfram.com, while random test values are generated using the
353        high-precision reference implementation (a differentiated <a class="link" href="../lanczos.html" title="The Lanczos Approximation">Lanczos
354        approximation</a> see below).
355      </p>
356<h5>
357<a name="math_toolkit.sf_gamma.digamma.h4"></a>
358        <span class="phrase"><a name="math_toolkit.sf_gamma.digamma.implementation"></a></span><a class="link" href="digamma.html#math_toolkit.sf_gamma.digamma.implementation">Implementation</a>
359      </h5>
360<p>
361        The implementation is divided up into the following domains:
362      </p>
363<p>
364        For Negative arguments the reflection formula:
365      </p>
366<pre class="programlisting"><span class="identifier">digamma</span><span class="special">(</span><span class="number">1</span><span class="special">-</span><span class="identifier">x</span><span class="special">)</span> <span class="special">=</span> <span class="identifier">digamma</span><span class="special">(</span><span class="identifier">x</span><span class="special">)</span> <span class="special">+</span> <span class="identifier">pi</span><span class="special">/</span><span class="identifier">tan</span><span class="special">(</span><span class="identifier">pi</span><span class="special">*</span><span class="identifier">x</span><span class="special">);</span>
367</pre>
368<p>
369        is used to make <span class="emphasis"><em>x</em></span> positive.
370      </p>
371<p>
372        For arguments in the range [0,1] the recurrence relation:
373      </p>
374<pre class="programlisting"><span class="identifier">digamma</span><span class="special">(</span><span class="identifier">x</span><span class="special">)</span> <span class="special">=</span> <span class="identifier">digamma</span><span class="special">(</span><span class="identifier">x</span><span class="special">+</span><span class="number">1</span><span class="special">)</span> <span class="special">-</span> <span class="number">1</span><span class="special">/</span><span class="identifier">x</span>
375</pre>
376<p>
377        is used to shift the evaluation to [1,2].
378      </p>
379<p>
380        For arguments in the range [1,2] a rational approximation <a class="link" href="../sf_implementation.html#math_toolkit.sf_implementation.rational_approximations_used">devised
381        by JM</a> is used (see below).
382      </p>
383<p>
384        For arguments in the range [2,BIG] the recurrence relation:
385      </p>
386<pre class="programlisting"><span class="identifier">digamma</span><span class="special">(</span><span class="identifier">x</span><span class="special">+</span><span class="number">1</span><span class="special">)</span> <span class="special">=</span> <span class="identifier">digamma</span><span class="special">(</span><span class="identifier">x</span><span class="special">)</span> <span class="special">+</span> <span class="number">1</span><span class="special">/</span><span class="identifier">x</span><span class="special">;</span>
387</pre>
388<p>
389        is used to shift the evaluation to the range [1,2].
390      </p>
391<p>
392        For arguments &gt; BIG the asymptotic expansion:
393      </p>
394<div class="blockquote"><blockquote class="blockquote"><p>
395          <span class="inlinemediaobject"><img src="../../../equations/digamma2.svg"></span>
396
397        </p></blockquote></div>
398<p>
399        can be used. However, this expansion is divergent after a few terms: exactly
400        how many terms depends on the size of <span class="emphasis"><em>x</em></span>. Therefore the
401        value of <span class="emphasis"><em>BIG</em></span> must be chosen so that the series can be
402        truncated at a term that is too small to have any effect on the result when
403        evaluated at <span class="emphasis"><em>BIG</em></span>. Choosing BIG=10 for up to 80-bit reals,
404        and BIG=20 for 128-bit reals allows the series to truncated after a suitably
405        small number of terms and evaluated as a polynomial in <code class="computeroutput"><span class="number">1</span><span class="special">/(</span><span class="identifier">x</span><span class="special">*</span><span class="identifier">x</span><span class="special">)</span></code>.
406      </p>
407<p>
408        The arbitrary precision version of this function uses recurrence relations
409        until x &gt; BIG, and then evaluation via the asymptotic expansion above.
410        As special cases integer and half integer arguments are handled via:
411      </p>
412<div class="blockquote"><blockquote class="blockquote"><p>
413          <span class="inlinemediaobject"><img src="../../../equations/digamma4.svg"></span>
414
415        </p></blockquote></div>
416<div class="blockquote"><blockquote class="blockquote"><p>
417          <span class="inlinemediaobject"><img src="../../../equations/digamma5.svg"></span>
418
419        </p></blockquote></div>
420<p>
421        The rational approximation <a class="link" href="../sf_implementation.html#math_toolkit.sf_implementation.rational_approximations_used">devised
422        by JM</a> in the range [1,2] is derived as follows.
423      </p>
424<p>
425        First a high precision approximation to digamma was constructed using a 60-term
426        differentiated <a class="link" href="../lanczos.html" title="The Lanczos Approximation">Lanczos approximation</a>,
427        the form used is:
428      </p>
429<div class="blockquote"><blockquote class="blockquote"><p>
430          <span class="inlinemediaobject"><img src="../../../equations/digamma3.svg"></span>
431
432        </p></blockquote></div>
433<p>
434        Where P(x) and Q(x) are the polynomials from the rational form of the Lanczos
435        sum, and P'(x) and Q'(x) are their first derivatives. The Lanzos part of
436        this approximation has a theoretical precision of ~100 decimal digits. However,
437        cancellation in the above sum will reduce that to around <code class="computeroutput"><span class="number">99</span><span class="special">-(</span><span class="number">1</span><span class="special">/</span><span class="identifier">y</span><span class="special">)</span></code> digits
438        if <span class="emphasis"><em>y</em></span> is the result. This approximation was used to calculate
439        the positive root of digamma, and was found to agree with the value used
440        by Cody to 25 digits (See Math. Comp. 27, 123-127 (1973) by Cody, Strecok
441        and Thacher) and with the value used by Morris to 35 digits (See TOMS Algorithm
442        708).
443      </p>
444<p>
445        Likewise a few spot tests agreed with values calculated using functions.wolfram.com
446        to &gt;40 digits. That's sufficiently precise to insure that the approximation
447        below is accurate to double precision. Achieving 128-bit long double precision
448        requires that the location of the root is known to ~70 digits, and it's not
449        clear whether the value calculated by this method meets that requirement:
450        the difficulty lies in independently verifying the value obtained.
451      </p>
452<p>
453        The rational approximation <a class="link" href="../sf_implementation.html#math_toolkit.sf_implementation.rational_approximations_used">devised
454        by JM</a> was optimised for absolute error using the form:
455      </p>
456<pre class="programlisting"><span class="identifier">digamma</span><span class="special">(</span><span class="identifier">x</span><span class="special">)</span> <span class="special">=</span> <span class="special">(</span><span class="identifier">x</span> <span class="special">-</span> <span class="identifier">X0</span><span class="special">)(</span><span class="identifier">Y</span> <span class="special">+</span> <span class="identifier">R</span><span class="special">(</span><span class="identifier">x</span> <span class="special">-</span> <span class="number">1</span><span class="special">));</span>
457</pre>
458<p>
459        Where X0 is the positive root of digamma, Y is a constant, and R(x - 1) is
460        the rational approximation. Note that since X0 is irrational, we need twice
461        as many digits in X0 as in x in order to avoid cancellation error during
462        the subtraction (this assumes that <span class="emphasis"><em>x</em></span> is an exact value,
463        if it's not then all bets are off). That means that even when x is the value
464        of the root rounded to the nearest representable value, the result of digamma(x)
465        <span class="emphasis"><em><span class="bold"><strong>will not be zero</strong></span></em></span>.
466      </p>
467</div>
468<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
469<td align="left"></td>
470<td align="right"><div class="copyright-footer">Copyright © 2006-2019 Nikhar
471      Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
472      Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Matthew Pulver, Johan
473      Råde, Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg,
474      Daryle Walker and Xiaogang Zhang<p>
475        Distributed under the Boost Software License, Version 1.0. (See accompanying
476        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
477      </p>
478</div></td>
479</tr></table>
480<hr>
481<div class="spirit-nav">
482<a accesskey="p" href="lgamma.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../sf_gamma.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="trigamma.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
483</div>
484</body>
485</html>
486