• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #include <algorithm>
29 #include <cstring>
30 
31 #include "bignum.h"
32 #include "utils.h"
33 
34 namespace double_conversion {
35 
RawBigit(const int index)36 Bignum::Chunk& Bignum::RawBigit(const int index) {
37   DOUBLE_CONVERSION_ASSERT(static_cast<unsigned>(index) < kBigitCapacity);
38   return bigits_buffer_[index];
39 }
40 
41 
RawBigit(const int index) const42 const Bignum::Chunk& Bignum::RawBigit(const int index) const {
43   DOUBLE_CONVERSION_ASSERT(static_cast<unsigned>(index) < kBigitCapacity);
44   return bigits_buffer_[index];
45 }
46 
47 
48 template<typename S>
BitSize(const S value)49 static int BitSize(const S value) {
50   (void) value;  // Mark variable as used.
51   return 8 * sizeof(value);
52 }
53 
54 // Guaranteed to lie in one Bigit.
AssignUInt16(const uint16_t value)55 void Bignum::AssignUInt16(const uint16_t value) {
56   DOUBLE_CONVERSION_ASSERT(kBigitSize >= BitSize(value));
57   Zero();
58   if (value > 0) {
59     RawBigit(0) = value;
60     used_bigits_ = 1;
61   }
62 }
63 
64 
AssignUInt64(uint64_t value)65 void Bignum::AssignUInt64(uint64_t value) {
66   Zero();
67   for(int i = 0; value > 0; ++i) {
68     RawBigit(i) = value & kBigitMask;
69     value >>= kBigitSize;
70     ++used_bigits_;
71   }
72 }
73 
74 
AssignBignum(const Bignum & other)75 void Bignum::AssignBignum(const Bignum& other) {
76   exponent_ = other.exponent_;
77   for (int i = 0; i < other.used_bigits_; ++i) {
78     RawBigit(i) = other.RawBigit(i);
79   }
80   used_bigits_ = other.used_bigits_;
81 }
82 
83 
ReadUInt64(const Vector<const char> buffer,const int from,const int digits_to_read)84 static uint64_t ReadUInt64(const Vector<const char> buffer,
85                            const int from,
86                            const int digits_to_read) {
87   uint64_t result = 0;
88   for (int i = from; i < from + digits_to_read; ++i) {
89     const int digit = buffer[i] - '0';
90     DOUBLE_CONVERSION_ASSERT(0 <= digit && digit <= 9);
91     result = result * 10 + digit;
92   }
93   return result;
94 }
95 
96 
AssignDecimalString(const Vector<const char> value)97 void Bignum::AssignDecimalString(const Vector<const char> value) {
98   // 2^64 = 18446744073709551616 > 10^19
99   static const int kMaxUint64DecimalDigits = 19;
100   Zero();
101   int length = value.length();
102   unsigned pos = 0;
103   // Let's just say that each digit needs 4 bits.
104   while (length >= kMaxUint64DecimalDigits) {
105     const uint64_t digits = ReadUInt64(value, pos, kMaxUint64DecimalDigits);
106     pos += kMaxUint64DecimalDigits;
107     length -= kMaxUint64DecimalDigits;
108     MultiplyByPowerOfTen(kMaxUint64DecimalDigits);
109     AddUInt64(digits);
110   }
111   const uint64_t digits = ReadUInt64(value, pos, length);
112   MultiplyByPowerOfTen(length);
113   AddUInt64(digits);
114   Clamp();
115 }
116 
117 
HexCharValue(const int c)118 static uint64_t HexCharValue(const int c) {
119   if ('0' <= c && c <= '9') {
120     return c - '0';
121   }
122   if ('a' <= c && c <= 'f') {
123     return 10 + c - 'a';
124   }
125   DOUBLE_CONVERSION_ASSERT('A' <= c && c <= 'F');
126   return 10 + c - 'A';
127 }
128 
129 
130 // Unlike AssignDecimalString(), this function is "only" used
131 // for unit-tests and therefore not performance critical.
AssignHexString(Vector<const char> value)132 void Bignum::AssignHexString(Vector<const char> value) {
133   Zero();
134   // Required capacity could be reduced by ignoring leading zeros.
135   EnsureCapacity(((value.length() * 4) + kBigitSize - 1) / kBigitSize);
136   DOUBLE_CONVERSION_ASSERT(sizeof(uint64_t) * 8 >= kBigitSize + 4);  // TODO: static_assert
137   // Accumulates converted hex digits until at least kBigitSize bits.
138   // Works with non-factor-of-four kBigitSizes.
139   uint64_t tmp = 0;  // Accumulates converted hex digits until at least
140   for (int cnt = 0; !value.is_empty(); value.pop_back()) {
141     tmp |= (HexCharValue(value.last()) << cnt);
142     if ((cnt += 4) >= kBigitSize) {
143       RawBigit(used_bigits_++) = (tmp & kBigitMask);
144       cnt -= kBigitSize;
145       tmp >>= kBigitSize;
146     }
147   }
148   if (tmp > 0) {
149     RawBigit(used_bigits_++) = tmp;
150   }
151   Clamp();
152 }
153 
154 
AddUInt64(const uint64_t operand)155 void Bignum::AddUInt64(const uint64_t operand) {
156   if (operand == 0) {
157     return;
158   }
159   Bignum other;
160   other.AssignUInt64(operand);
161   AddBignum(other);
162 }
163 
164 
AddBignum(const Bignum & other)165 void Bignum::AddBignum(const Bignum& other) {
166   DOUBLE_CONVERSION_ASSERT(IsClamped());
167   DOUBLE_CONVERSION_ASSERT(other.IsClamped());
168 
169   // If this has a greater exponent than other append zero-bigits to this.
170   // After this call exponent_ <= other.exponent_.
171   Align(other);
172 
173   // There are two possibilities:
174   //   aaaaaaaaaaa 0000  (where the 0s represent a's exponent)
175   //     bbbbb 00000000
176   //   ----------------
177   //   ccccccccccc 0000
178   // or
179   //    aaaaaaaaaa 0000
180   //  bbbbbbbbb 0000000
181   //  -----------------
182   //  cccccccccccc 0000
183   // In both cases we might need a carry bigit.
184 
185   EnsureCapacity(1 + (std::max)(BigitLength(), other.BigitLength()) - exponent_);
186   Chunk carry = 0;
187   int bigit_pos = other.exponent_ - exponent_;
188   DOUBLE_CONVERSION_ASSERT(bigit_pos >= 0);
189   for (int i = used_bigits_; i < bigit_pos; ++i) {
190     RawBigit(i) = 0;
191   }
192   for (int i = 0; i < other.used_bigits_; ++i) {
193     const Chunk my = (bigit_pos < used_bigits_) ? RawBigit(bigit_pos) : 0;
194     const Chunk sum = my + other.RawBigit(i) + carry;
195     RawBigit(bigit_pos) = sum & kBigitMask;
196     carry = sum >> kBigitSize;
197     ++bigit_pos;
198   }
199   while (carry != 0) {
200     const Chunk my = (bigit_pos < used_bigits_) ? RawBigit(bigit_pos) : 0;
201     const Chunk sum = my + carry;
202     RawBigit(bigit_pos) = sum & kBigitMask;
203     carry = sum >> kBigitSize;
204     ++bigit_pos;
205   }
206   used_bigits_ = (std::max)(bigit_pos, static_cast<int>(used_bigits_));
207   DOUBLE_CONVERSION_ASSERT(IsClamped());
208 }
209 
210 
SubtractBignum(const Bignum & other)211 void Bignum::SubtractBignum(const Bignum& other) {
212   DOUBLE_CONVERSION_ASSERT(IsClamped());
213   DOUBLE_CONVERSION_ASSERT(other.IsClamped());
214   // We require this to be bigger than other.
215   DOUBLE_CONVERSION_ASSERT(LessEqual(other, *this));
216 
217   Align(other);
218 
219   const int offset = other.exponent_ - exponent_;
220   Chunk borrow = 0;
221   int i;
222   for (i = 0; i < other.used_bigits_; ++i) {
223     DOUBLE_CONVERSION_ASSERT((borrow == 0) || (borrow == 1));
224     const Chunk difference = RawBigit(i + offset) - other.RawBigit(i) - borrow;
225     RawBigit(i + offset) = difference & kBigitMask;
226     borrow = difference >> (kChunkSize - 1);
227   }
228   while (borrow != 0) {
229     const Chunk difference = RawBigit(i + offset) - borrow;
230     RawBigit(i + offset) = difference & kBigitMask;
231     borrow = difference >> (kChunkSize - 1);
232     ++i;
233   }
234   Clamp();
235 }
236 
237 
ShiftLeft(const int shift_amount)238 void Bignum::ShiftLeft(const int shift_amount) {
239   if (used_bigits_ == 0) {
240     return;
241   }
242   exponent_ += (shift_amount / kBigitSize);
243   const int local_shift = shift_amount % kBigitSize;
244   EnsureCapacity(used_bigits_ + 1);
245   BigitsShiftLeft(local_shift);
246 }
247 
248 
MultiplyByUInt32(const uint32_t factor)249 void Bignum::MultiplyByUInt32(const uint32_t factor) {
250   if (factor == 1) {
251     return;
252   }
253   if (factor == 0) {
254     Zero();
255     return;
256   }
257   if (used_bigits_ == 0) {
258     return;
259   }
260   // The product of a bigit with the factor is of size kBigitSize + 32.
261   // Assert that this number + 1 (for the carry) fits into double chunk.
262   DOUBLE_CONVERSION_ASSERT(kDoubleChunkSize >= kBigitSize + 32 + 1);
263   DoubleChunk carry = 0;
264   for (int i = 0; i < used_bigits_; ++i) {
265     const DoubleChunk product = static_cast<DoubleChunk>(factor) * RawBigit(i) + carry;
266     RawBigit(i) = static_cast<Chunk>(product & kBigitMask);
267     carry = (product >> kBigitSize);
268   }
269   while (carry != 0) {
270     EnsureCapacity(used_bigits_ + 1);
271     RawBigit(used_bigits_) = carry & kBigitMask;
272     used_bigits_++;
273     carry >>= kBigitSize;
274   }
275 }
276 
277 
MultiplyByUInt64(const uint64_t factor)278 void Bignum::MultiplyByUInt64(const uint64_t factor) {
279   if (factor == 1) {
280     return;
281   }
282   if (factor == 0) {
283     Zero();
284     return;
285   }
286   if (used_bigits_ == 0) {
287     return;
288   }
289   DOUBLE_CONVERSION_ASSERT(kBigitSize < 32);
290   uint64_t carry = 0;
291   const uint64_t low = factor & 0xFFFFFFFF;
292   const uint64_t high = factor >> 32;
293   for (int i = 0; i < used_bigits_; ++i) {
294     const uint64_t product_low = low * RawBigit(i);
295     const uint64_t product_high = high * RawBigit(i);
296     const uint64_t tmp = (carry & kBigitMask) + product_low;
297     RawBigit(i) = tmp & kBigitMask;
298     carry = (carry >> kBigitSize) + (tmp >> kBigitSize) +
299         (product_high << (32 - kBigitSize));
300   }
301   while (carry != 0) {
302     EnsureCapacity(used_bigits_ + 1);
303     RawBigit(used_bigits_) = carry & kBigitMask;
304     used_bigits_++;
305     carry >>= kBigitSize;
306   }
307 }
308 
309 
MultiplyByPowerOfTen(const int exponent)310 void Bignum::MultiplyByPowerOfTen(const int exponent) {
311   static const uint64_t kFive27 = DOUBLE_CONVERSION_UINT64_2PART_C(0x6765c793, fa10079d);
312   static const uint16_t kFive1 = 5;
313   static const uint16_t kFive2 = kFive1 * 5;
314   static const uint16_t kFive3 = kFive2 * 5;
315   static const uint16_t kFive4 = kFive3 * 5;
316   static const uint16_t kFive5 = kFive4 * 5;
317   static const uint16_t kFive6 = kFive5 * 5;
318   static const uint32_t kFive7 = kFive6 * 5;
319   static const uint32_t kFive8 = kFive7 * 5;
320   static const uint32_t kFive9 = kFive8 * 5;
321   static const uint32_t kFive10 = kFive9 * 5;
322   static const uint32_t kFive11 = kFive10 * 5;
323   static const uint32_t kFive12 = kFive11 * 5;
324   static const uint32_t kFive13 = kFive12 * 5;
325   static const uint32_t kFive1_to_12[] =
326       { kFive1, kFive2, kFive3, kFive4, kFive5, kFive6,
327         kFive7, kFive8, kFive9, kFive10, kFive11, kFive12 };
328 
329   DOUBLE_CONVERSION_ASSERT(exponent >= 0);
330 
331   if (exponent == 0) {
332     return;
333   }
334   if (used_bigits_ == 0) {
335     return;
336   }
337   // We shift by exponent at the end just before returning.
338   int remaining_exponent = exponent;
339   while (remaining_exponent >= 27) {
340     MultiplyByUInt64(kFive27);
341     remaining_exponent -= 27;
342   }
343   while (remaining_exponent >= 13) {
344     MultiplyByUInt32(kFive13);
345     remaining_exponent -= 13;
346   }
347   if (remaining_exponent > 0) {
348     MultiplyByUInt32(kFive1_to_12[remaining_exponent - 1]);
349   }
350   ShiftLeft(exponent);
351 }
352 
353 
Square()354 void Bignum::Square() {
355   DOUBLE_CONVERSION_ASSERT(IsClamped());
356   const int product_length = 2 * used_bigits_;
357   EnsureCapacity(product_length);
358 
359   // Comba multiplication: compute each column separately.
360   // Example: r = a2a1a0 * b2b1b0.
361   //    r =  1    * a0b0 +
362   //        10    * (a1b0 + a0b1) +
363   //        100   * (a2b0 + a1b1 + a0b2) +
364   //        1000  * (a2b1 + a1b2) +
365   //        10000 * a2b2
366   //
367   // In the worst case we have to accumulate nb-digits products of digit*digit.
368   //
369   // Assert that the additional number of bits in a DoubleChunk are enough to
370   // sum up used_digits of Bigit*Bigit.
371   if ((1 << (2 * (kChunkSize - kBigitSize))) <= used_bigits_) {
372     DOUBLE_CONVERSION_UNIMPLEMENTED();
373   }
374   DoubleChunk accumulator = 0;
375   // First shift the digits so we don't overwrite them.
376   const int copy_offset = used_bigits_;
377   for (int i = 0; i < used_bigits_; ++i) {
378     RawBigit(copy_offset + i) = RawBigit(i);
379   }
380   // We have two loops to avoid some 'if's in the loop.
381   for (int i = 0; i < used_bigits_; ++i) {
382     // Process temporary digit i with power i.
383     // The sum of the two indices must be equal to i.
384     int bigit_index1 = i;
385     int bigit_index2 = 0;
386     // Sum all of the sub-products.
387     while (bigit_index1 >= 0) {
388       const Chunk chunk1 = RawBigit(copy_offset + bigit_index1);
389       const Chunk chunk2 = RawBigit(copy_offset + bigit_index2);
390       accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
391       bigit_index1--;
392       bigit_index2++;
393     }
394     RawBigit(i) = static_cast<Chunk>(accumulator) & kBigitMask;
395     accumulator >>= kBigitSize;
396   }
397   for (int i = used_bigits_; i < product_length; ++i) {
398     int bigit_index1 = used_bigits_ - 1;
399     int bigit_index2 = i - bigit_index1;
400     // Invariant: sum of both indices is again equal to i.
401     // Inner loop runs 0 times on last iteration, emptying accumulator.
402     while (bigit_index2 < used_bigits_) {
403       const Chunk chunk1 = RawBigit(copy_offset + bigit_index1);
404       const Chunk chunk2 = RawBigit(copy_offset + bigit_index2);
405       accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
406       bigit_index1--;
407       bigit_index2++;
408     }
409     // The overwritten RawBigit(i) will never be read in further loop iterations,
410     // because bigit_index1 and bigit_index2 are always greater
411     // than i - used_bigits_.
412     RawBigit(i) = static_cast<Chunk>(accumulator) & kBigitMask;
413     accumulator >>= kBigitSize;
414   }
415   // Since the result was guaranteed to lie inside the number the
416   // accumulator must be 0 now.
417   DOUBLE_CONVERSION_ASSERT(accumulator == 0);
418 
419   // Don't forget to update the used_digits and the exponent.
420   used_bigits_ = product_length;
421   exponent_ *= 2;
422   Clamp();
423 }
424 
425 
AssignPowerUInt16(uint16_t base,const int power_exponent)426 void Bignum::AssignPowerUInt16(uint16_t base, const int power_exponent) {
427   DOUBLE_CONVERSION_ASSERT(base != 0);
428   DOUBLE_CONVERSION_ASSERT(power_exponent >= 0);
429   if (power_exponent == 0) {
430     AssignUInt16(1);
431     return;
432   }
433   Zero();
434   int shifts = 0;
435   // We expect base to be in range 2-32, and most often to be 10.
436   // It does not make much sense to implement different algorithms for counting
437   // the bits.
438   while ((base & 1) == 0) {
439     base >>= 1;
440     shifts++;
441   }
442   int bit_size = 0;
443   int tmp_base = base;
444   while (tmp_base != 0) {
445     tmp_base >>= 1;
446     bit_size++;
447   }
448   const int final_size = bit_size * power_exponent;
449   // 1 extra bigit for the shifting, and one for rounded final_size.
450   EnsureCapacity(final_size / kBigitSize + 2);
451 
452   // Left to Right exponentiation.
453   int mask = 1;
454   while (power_exponent >= mask) mask <<= 1;
455 
456   // The mask is now pointing to the bit above the most significant 1-bit of
457   // power_exponent.
458   // Get rid of first 1-bit;
459   mask >>= 2;
460   uint64_t this_value = base;
461 
462   bool delayed_multiplication = false;
463   const uint64_t max_32bits = 0xFFFFFFFF;
464   while (mask != 0 && this_value <= max_32bits) {
465     this_value = this_value * this_value;
466     // Verify that there is enough space in this_value to perform the
467     // multiplication.  The first bit_size bits must be 0.
468     if ((power_exponent & mask) != 0) {
469       DOUBLE_CONVERSION_ASSERT(bit_size > 0);
470       const uint64_t base_bits_mask =
471         ~((static_cast<uint64_t>(1) << (64 - bit_size)) - 1);
472       const bool high_bits_zero = (this_value & base_bits_mask) == 0;
473       if (high_bits_zero) {
474         this_value *= base;
475       } else {
476         delayed_multiplication = true;
477       }
478     }
479     mask >>= 1;
480   }
481   AssignUInt64(this_value);
482   if (delayed_multiplication) {
483     MultiplyByUInt32(base);
484   }
485 
486   // Now do the same thing as a bignum.
487   while (mask != 0) {
488     Square();
489     if ((power_exponent & mask) != 0) {
490       MultiplyByUInt32(base);
491     }
492     mask >>= 1;
493   }
494 
495   // And finally add the saved shifts.
496   ShiftLeft(shifts * power_exponent);
497 }
498 
499 
500 // Precondition: this/other < 16bit.
DivideModuloIntBignum(const Bignum & other)501 uint16_t Bignum::DivideModuloIntBignum(const Bignum& other) {
502   DOUBLE_CONVERSION_ASSERT(IsClamped());
503   DOUBLE_CONVERSION_ASSERT(other.IsClamped());
504   DOUBLE_CONVERSION_ASSERT(other.used_bigits_ > 0);
505 
506   // Easy case: if we have less digits than the divisor than the result is 0.
507   // Note: this handles the case where this == 0, too.
508   if (BigitLength() < other.BigitLength()) {
509     return 0;
510   }
511 
512   Align(other);
513 
514   uint16_t result = 0;
515 
516   // Start by removing multiples of 'other' until both numbers have the same
517   // number of digits.
518   while (BigitLength() > other.BigitLength()) {
519     // This naive approach is extremely inefficient if `this` divided by other
520     // is big. This function is implemented for doubleToString where
521     // the result should be small (less than 10).
522     DOUBLE_CONVERSION_ASSERT(other.RawBigit(other.used_bigits_ - 1) >= ((1 << kBigitSize) / 16));
523     DOUBLE_CONVERSION_ASSERT(RawBigit(used_bigits_ - 1) < 0x10000);
524     // Remove the multiples of the first digit.
525     // Example this = 23 and other equals 9. -> Remove 2 multiples.
526     result += static_cast<uint16_t>(RawBigit(used_bigits_ - 1));
527     SubtractTimes(other, RawBigit(used_bigits_ - 1));
528   }
529 
530   DOUBLE_CONVERSION_ASSERT(BigitLength() == other.BigitLength());
531 
532   // Both bignums are at the same length now.
533   // Since other has more than 0 digits we know that the access to
534   // RawBigit(used_bigits_ - 1) is safe.
535   const Chunk this_bigit = RawBigit(used_bigits_ - 1);
536   const Chunk other_bigit = other.RawBigit(other.used_bigits_ - 1);
537 
538   if (other.used_bigits_ == 1) {
539     // Shortcut for easy (and common) case.
540     int quotient = this_bigit / other_bigit;
541     RawBigit(used_bigits_ - 1) = this_bigit - other_bigit * quotient;
542     DOUBLE_CONVERSION_ASSERT(quotient < 0x10000);
543     result += static_cast<uint16_t>(quotient);
544     Clamp();
545     return result;
546   }
547 
548   const int division_estimate = this_bigit / (other_bigit + 1);
549   DOUBLE_CONVERSION_ASSERT(division_estimate < 0x10000);
550   result += static_cast<uint16_t>(division_estimate);
551   SubtractTimes(other, division_estimate);
552 
553   if (other_bigit * (division_estimate + 1) > this_bigit) {
554     // No need to even try to subtract. Even if other's remaining digits were 0
555     // another subtraction would be too much.
556     return result;
557   }
558 
559   while (LessEqual(other, *this)) {
560     SubtractBignum(other);
561     result++;
562   }
563   return result;
564 }
565 
566 
567 template<typename S>
SizeInHexChars(S number)568 static int SizeInHexChars(S number) {
569   DOUBLE_CONVERSION_ASSERT(number > 0);
570   int result = 0;
571   while (number != 0) {
572     number >>= 4;
573     result++;
574   }
575   return result;
576 }
577 
578 
HexCharOfValue(const int value)579 static char HexCharOfValue(const int value) {
580   DOUBLE_CONVERSION_ASSERT(0 <= value && value <= 16);
581   if (value < 10) {
582     return static_cast<char>(value + '0');
583   }
584   return static_cast<char>(value - 10 + 'A');
585 }
586 
587 
ToHexString(char * buffer,const int buffer_size) const588 bool Bignum::ToHexString(char* buffer, const int buffer_size) const {
589   DOUBLE_CONVERSION_ASSERT(IsClamped());
590   // Each bigit must be printable as separate hex-character.
591   DOUBLE_CONVERSION_ASSERT(kBigitSize % 4 == 0);
592   static const int kHexCharsPerBigit = kBigitSize / 4;
593 
594   if (used_bigits_ == 0) {
595     if (buffer_size < 2) {
596       return false;
597     }
598     buffer[0] = '0';
599     buffer[1] = '\0';
600     return true;
601   }
602   // We add 1 for the terminating '\0' character.
603   const int needed_chars = (BigitLength() - 1) * kHexCharsPerBigit +
604     SizeInHexChars(RawBigit(used_bigits_ - 1)) + 1;
605   if (needed_chars > buffer_size) {
606     return false;
607   }
608   int string_index = needed_chars - 1;
609   buffer[string_index--] = '\0';
610   for (int i = 0; i < exponent_; ++i) {
611     for (int j = 0; j < kHexCharsPerBigit; ++j) {
612       buffer[string_index--] = '0';
613     }
614   }
615   for (int i = 0; i < used_bigits_ - 1; ++i) {
616     Chunk current_bigit = RawBigit(i);
617     for (int j = 0; j < kHexCharsPerBigit; ++j) {
618       buffer[string_index--] = HexCharOfValue(current_bigit & 0xF);
619       current_bigit >>= 4;
620     }
621   }
622   // And finally the last bigit.
623   Chunk most_significant_bigit = RawBigit(used_bigits_ - 1);
624   while (most_significant_bigit != 0) {
625     buffer[string_index--] = HexCharOfValue(most_significant_bigit & 0xF);
626     most_significant_bigit >>= 4;
627   }
628   return true;
629 }
630 
631 
BigitOrZero(const int index) const632 Bignum::Chunk Bignum::BigitOrZero(const int index) const {
633   if (index >= BigitLength()) {
634     return 0;
635   }
636   if (index < exponent_) {
637     return 0;
638   }
639   return RawBigit(index - exponent_);
640 }
641 
642 
Compare(const Bignum & a,const Bignum & b)643 int Bignum::Compare(const Bignum& a, const Bignum& b) {
644   DOUBLE_CONVERSION_ASSERT(a.IsClamped());
645   DOUBLE_CONVERSION_ASSERT(b.IsClamped());
646   const int bigit_length_a = a.BigitLength();
647   const int bigit_length_b = b.BigitLength();
648   if (bigit_length_a < bigit_length_b) {
649     return -1;
650   }
651   if (bigit_length_a > bigit_length_b) {
652     return +1;
653   }
654   for (int i = bigit_length_a - 1; i >= (std::min)(a.exponent_, b.exponent_); --i) {
655     const Chunk bigit_a = a.BigitOrZero(i);
656     const Chunk bigit_b = b.BigitOrZero(i);
657     if (bigit_a < bigit_b) {
658       return -1;
659     }
660     if (bigit_a > bigit_b) {
661       return +1;
662     }
663     // Otherwise they are equal up to this digit. Try the next digit.
664   }
665   return 0;
666 }
667 
668 
PlusCompare(const Bignum & a,const Bignum & b,const Bignum & c)669 int Bignum::PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c) {
670   DOUBLE_CONVERSION_ASSERT(a.IsClamped());
671   DOUBLE_CONVERSION_ASSERT(b.IsClamped());
672   DOUBLE_CONVERSION_ASSERT(c.IsClamped());
673   if (a.BigitLength() < b.BigitLength()) {
674     return PlusCompare(b, a, c);
675   }
676   if (a.BigitLength() + 1 < c.BigitLength()) {
677     return -1;
678   }
679   if (a.BigitLength() > c.BigitLength()) {
680     return +1;
681   }
682   // The exponent encodes 0-bigits. So if there are more 0-digits in 'a' than
683   // 'b' has digits, then the bigit-length of 'a'+'b' must be equal to the one
684   // of 'a'.
685   if (a.exponent_ >= b.BigitLength() && a.BigitLength() < c.BigitLength()) {
686     return -1;
687   }
688 
689   Chunk borrow = 0;
690   // Starting at min_exponent all digits are == 0. So no need to compare them.
691   const int min_exponent = (std::min)((std::min)(a.exponent_, b.exponent_), c.exponent_);
692   for (int i = c.BigitLength() - 1; i >= min_exponent; --i) {
693     const Chunk chunk_a = a.BigitOrZero(i);
694     const Chunk chunk_b = b.BigitOrZero(i);
695     const Chunk chunk_c = c.BigitOrZero(i);
696     const Chunk sum = chunk_a + chunk_b;
697     if (sum > chunk_c + borrow) {
698       return +1;
699     } else {
700       borrow = chunk_c + borrow - sum;
701       if (borrow > 1) {
702         return -1;
703       }
704       borrow <<= kBigitSize;
705     }
706   }
707   if (borrow == 0) {
708     return 0;
709   }
710   return -1;
711 }
712 
713 
Clamp()714 void Bignum::Clamp() {
715   while (used_bigits_ > 0 && RawBigit(used_bigits_ - 1) == 0) {
716     used_bigits_--;
717   }
718   if (used_bigits_ == 0) {
719     // Zero.
720     exponent_ = 0;
721   }
722 }
723 
724 
Align(const Bignum & other)725 void Bignum::Align(const Bignum& other) {
726   if (exponent_ > other.exponent_) {
727     // If "X" represents a "hidden" bigit (by the exponent) then we are in the
728     // following case (a == this, b == other):
729     // a:  aaaaaaXXXX   or a:   aaaaaXXX
730     // b:     bbbbbbX      b: bbbbbbbbXX
731     // We replace some of the hidden digits (X) of a with 0 digits.
732     // a:  aaaaaa000X   or a:   aaaaa0XX
733     const int zero_bigits = exponent_ - other.exponent_;
734     EnsureCapacity(used_bigits_ + zero_bigits);
735     for (int i = used_bigits_ - 1; i >= 0; --i) {
736       RawBigit(i + zero_bigits) = RawBigit(i);
737     }
738     for (int i = 0; i < zero_bigits; ++i) {
739       RawBigit(i) = 0;
740     }
741     used_bigits_ += zero_bigits;
742     exponent_ -= zero_bigits;
743 
744     DOUBLE_CONVERSION_ASSERT(used_bigits_ >= 0);
745     DOUBLE_CONVERSION_ASSERT(exponent_ >= 0);
746   }
747 }
748 
749 
BigitsShiftLeft(const int shift_amount)750 void Bignum::BigitsShiftLeft(const int shift_amount) {
751   DOUBLE_CONVERSION_ASSERT(shift_amount < kBigitSize);
752   DOUBLE_CONVERSION_ASSERT(shift_amount >= 0);
753   Chunk carry = 0;
754   for (int i = 0; i < used_bigits_; ++i) {
755     const Chunk new_carry = RawBigit(i) >> (kBigitSize - shift_amount);
756     RawBigit(i) = ((RawBigit(i) << shift_amount) + carry) & kBigitMask;
757     carry = new_carry;
758   }
759   if (carry != 0) {
760     RawBigit(used_bigits_) = carry;
761     used_bigits_++;
762   }
763 }
764 
765 
SubtractTimes(const Bignum & other,const int factor)766 void Bignum::SubtractTimes(const Bignum& other, const int factor) {
767   DOUBLE_CONVERSION_ASSERT(exponent_ <= other.exponent_);
768   if (factor < 3) {
769     for (int i = 0; i < factor; ++i) {
770       SubtractBignum(other);
771     }
772     return;
773   }
774   Chunk borrow = 0;
775   const int exponent_diff = other.exponent_ - exponent_;
776   for (int i = 0; i < other.used_bigits_; ++i) {
777     const DoubleChunk product = static_cast<DoubleChunk>(factor) * other.RawBigit(i);
778     const DoubleChunk remove = borrow + product;
779     const Chunk difference = RawBigit(i + exponent_diff) - (remove & kBigitMask);
780     RawBigit(i + exponent_diff) = difference & kBigitMask;
781     borrow = static_cast<Chunk>((difference >> (kChunkSize - 1)) +
782                                 (remove >> kBigitSize));
783   }
784   for (int i = other.used_bigits_ + exponent_diff; i < used_bigits_; ++i) {
785     if (borrow == 0) {
786       return;
787     }
788     const Chunk difference = RawBigit(i) - borrow;
789     RawBigit(i) = difference & kBigitMask;
790     borrow = difference >> (kChunkSize - 1);
791   }
792   Clamp();
793 }
794 
795 
796 }  // namespace double_conversion
797