• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #ifndef DOUBLE_CONVERSION_DIY_FP_H_
29 #define DOUBLE_CONVERSION_DIY_FP_H_
30 
31 #include "utils.h"
32 
33 namespace double_conversion {
34 
35 // This "Do It Yourself Floating Point" class implements a floating-point number
36 // with a uint64 significand and an int exponent. Normalized DiyFp numbers will
37 // have the most significant bit of the significand set.
38 // Multiplication and Subtraction do not normalize their results.
39 // DiyFp store only non-negative numbers and are not designed to contain special
40 // doubles (NaN and Infinity).
41 class DiyFp {
42  public:
43   static const int kSignificandSize = 64;
44 
DiyFp()45   DiyFp() : f_(0), e_(0) {}
DiyFp(const uint64_t significand,const int32_t exponent)46   DiyFp(const uint64_t significand, const int32_t exponent) : f_(significand), e_(exponent) {}
47 
48   // this -= other.
49   // The exponents of both numbers must be the same and the significand of this
50   // must be greater or equal than the significand of other.
51   // The result will not be normalized.
Subtract(const DiyFp & other)52   void Subtract(const DiyFp& other) {
53     DOUBLE_CONVERSION_ASSERT(e_ == other.e_);
54     DOUBLE_CONVERSION_ASSERT(f_ >= other.f_);
55     f_ -= other.f_;
56   }
57 
58   // Returns a - b.
59   // The exponents of both numbers must be the same and a must be greater
60   // or equal than b. The result will not be normalized.
Minus(const DiyFp & a,const DiyFp & b)61   static DiyFp Minus(const DiyFp& a, const DiyFp& b) {
62     DiyFp result = a;
63     result.Subtract(b);
64     return result;
65   }
66 
67   // this *= other.
Multiply(const DiyFp & other)68   void Multiply(const DiyFp& other) {
69     // Simply "emulates" a 128 bit multiplication.
70     // However: the resulting number only contains 64 bits. The least
71     // significant 64 bits are only used for rounding the most significant 64
72     // bits.
73     const uint64_t kM32 = 0xFFFFFFFFU;
74     const uint64_t a = f_ >> 32;
75     const uint64_t b = f_ & kM32;
76     const uint64_t c = other.f_ >> 32;
77     const uint64_t d = other.f_ & kM32;
78     const uint64_t ac = a * c;
79     const uint64_t bc = b * c;
80     const uint64_t ad = a * d;
81     const uint64_t bd = b * d;
82     // By adding 1U << 31 to tmp we round the final result.
83     // Halfway cases will be rounded up.
84     const uint64_t tmp = (bd >> 32) + (ad & kM32) + (bc & kM32) + (1U << 31);
85     e_ += other.e_ + 64;
86     f_ = ac + (ad >> 32) + (bc >> 32) + (tmp >> 32);
87   }
88 
89   // returns a * b;
Times(const DiyFp & a,const DiyFp & b)90   static DiyFp Times(const DiyFp& a, const DiyFp& b) {
91     DiyFp result = a;
92     result.Multiply(b);
93     return result;
94   }
95 
Normalize()96   void Normalize() {
97     DOUBLE_CONVERSION_ASSERT(f_ != 0);
98     uint64_t significand = f_;
99     int32_t exponent = e_;
100 
101     // This method is mainly called for normalizing boundaries. In general,
102     // boundaries need to be shifted by 10 bits, and we optimize for this case.
103     const uint64_t k10MSBits = DOUBLE_CONVERSION_UINT64_2PART_C(0xFFC00000, 00000000);
104     while ((significand & k10MSBits) == 0) {
105       significand <<= 10;
106       exponent -= 10;
107     }
108     while ((significand & kUint64MSB) == 0) {
109       significand <<= 1;
110       exponent--;
111     }
112     f_ = significand;
113     e_ = exponent;
114   }
115 
Normalize(const DiyFp & a)116   static DiyFp Normalize(const DiyFp& a) {
117     DiyFp result = a;
118     result.Normalize();
119     return result;
120   }
121 
f()122   uint64_t f() const { return f_; }
e()123   int32_t e() const { return e_; }
124 
set_f(uint64_t new_value)125   void set_f(uint64_t new_value) { f_ = new_value; }
set_e(int32_t new_value)126   void set_e(int32_t new_value) { e_ = new_value; }
127 
128  private:
129   static const uint64_t kUint64MSB = DOUBLE_CONVERSION_UINT64_2PART_C(0x80000000, 00000000);
130 
131   uint64_t f_;
132   int32_t e_;
133 };
134 
135 }  // namespace double_conversion
136 
137 #endif  // DOUBLE_CONVERSION_DIY_FP_H_
138