1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include <climits>
29 #include <cstdarg>
30
31 #include "bignum.h"
32 #include "cached-powers.h"
33 #include "ieee.h"
34 #include "strtod.h"
35
36 namespace double_conversion {
37
38 #if defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS)
39 // 2^53 = 9007199254740992.
40 // Any integer with at most 15 decimal digits will hence fit into a double
41 // (which has a 53bit significand) without loss of precision.
42 static const int kMaxExactDoubleIntegerDecimalDigits = 15;
43 #endif // #if defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS)
44 // 2^64 = 18446744073709551616 > 10^19
45 static const int kMaxUint64DecimalDigits = 19;
46
47 // Max double: 1.7976931348623157 x 10^308
48 // Min non-zero double: 4.9406564584124654 x 10^-324
49 // Any x >= 10^309 is interpreted as +infinity.
50 // Any x <= 10^-324 is interpreted as 0.
51 // Note that 2.5e-324 (despite being smaller than the min double) will be read
52 // as non-zero (equal to the min non-zero double).
53 static const int kMaxDecimalPower = 309;
54 static const int kMinDecimalPower = -324;
55
56 // 2^64 = 18446744073709551616
57 static const uint64_t kMaxUint64 = DOUBLE_CONVERSION_UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF);
58
59
60 #if defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS)
61 static const double exact_powers_of_ten[] = {
62 1.0, // 10^0
63 10.0,
64 100.0,
65 1000.0,
66 10000.0,
67 100000.0,
68 1000000.0,
69 10000000.0,
70 100000000.0,
71 1000000000.0,
72 10000000000.0, // 10^10
73 100000000000.0,
74 1000000000000.0,
75 10000000000000.0,
76 100000000000000.0,
77 1000000000000000.0,
78 10000000000000000.0,
79 100000000000000000.0,
80 1000000000000000000.0,
81 10000000000000000000.0,
82 100000000000000000000.0, // 10^20
83 1000000000000000000000.0,
84 // 10^22 = 0x21e19e0c9bab2400000 = 0x878678326eac9 * 2^22
85 10000000000000000000000.0
86 };
87 static const int kExactPowersOfTenSize = DOUBLE_CONVERSION_ARRAY_SIZE(exact_powers_of_ten);
88 #endif // #if defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS)
89
90 // Maximum number of significant digits in the decimal representation.
91 // In fact the value is 772 (see conversions.cc), but to give us some margin
92 // we round up to 780.
93 static const int kMaxSignificantDecimalDigits = 780;
94
TrimLeadingZeros(Vector<const char> buffer)95 static Vector<const char> TrimLeadingZeros(Vector<const char> buffer) {
96 for (int i = 0; i < buffer.length(); i++) {
97 if (buffer[i] != '0') {
98 return buffer.SubVector(i, buffer.length());
99 }
100 }
101 return Vector<const char>(buffer.start(), 0);
102 }
103
CutToMaxSignificantDigits(Vector<const char> buffer,int exponent,char * significant_buffer,int * significant_exponent)104 static void CutToMaxSignificantDigits(Vector<const char> buffer,
105 int exponent,
106 char* significant_buffer,
107 int* significant_exponent) {
108 for (int i = 0; i < kMaxSignificantDecimalDigits - 1; ++i) {
109 significant_buffer[i] = buffer[i];
110 }
111 // The input buffer has been trimmed. Therefore the last digit must be
112 // different from '0'.
113 DOUBLE_CONVERSION_ASSERT(buffer[buffer.length() - 1] != '0');
114 // Set the last digit to be non-zero. This is sufficient to guarantee
115 // correct rounding.
116 significant_buffer[kMaxSignificantDecimalDigits - 1] = '1';
117 *significant_exponent =
118 exponent + (buffer.length() - kMaxSignificantDecimalDigits);
119 }
120
121
122 // Trims the buffer and cuts it to at most kMaxSignificantDecimalDigits.
123 // If possible the input-buffer is reused, but if the buffer needs to be
124 // modified (due to cutting), then the input needs to be copied into the
125 // buffer_copy_space.
TrimAndCut(Vector<const char> buffer,int exponent,char * buffer_copy_space,int space_size,Vector<const char> * trimmed,int * updated_exponent)126 static void TrimAndCut(Vector<const char> buffer, int exponent,
127 char* buffer_copy_space, int space_size,
128 Vector<const char>* trimmed, int* updated_exponent) {
129 Vector<const char> left_trimmed = TrimLeadingZeros(buffer);
130 Vector<const char> right_trimmed = TrimTrailingZeros(left_trimmed);
131 exponent += left_trimmed.length() - right_trimmed.length();
132 if (right_trimmed.length() > kMaxSignificantDecimalDigits) {
133 (void) space_size; // Mark variable as used.
134 DOUBLE_CONVERSION_ASSERT(space_size >= kMaxSignificantDecimalDigits);
135 CutToMaxSignificantDigits(right_trimmed, exponent,
136 buffer_copy_space, updated_exponent);
137 *trimmed = Vector<const char>(buffer_copy_space,
138 kMaxSignificantDecimalDigits);
139 } else {
140 *trimmed = right_trimmed;
141 *updated_exponent = exponent;
142 }
143 }
144
145
146 // Reads digits from the buffer and converts them to a uint64.
147 // Reads in as many digits as fit into a uint64.
148 // When the string starts with "1844674407370955161" no further digit is read.
149 // Since 2^64 = 18446744073709551616 it would still be possible read another
150 // digit if it was less or equal than 6, but this would complicate the code.
ReadUint64(Vector<const char> buffer,int * number_of_read_digits)151 static uint64_t ReadUint64(Vector<const char> buffer,
152 int* number_of_read_digits) {
153 uint64_t result = 0;
154 int i = 0;
155 while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) {
156 int digit = buffer[i++] - '0';
157 DOUBLE_CONVERSION_ASSERT(0 <= digit && digit <= 9);
158 result = 10 * result + digit;
159 }
160 *number_of_read_digits = i;
161 return result;
162 }
163
164
165 // Reads a DiyFp from the buffer.
166 // The returned DiyFp is not necessarily normalized.
167 // If remaining_decimals is zero then the returned DiyFp is accurate.
168 // Otherwise it has been rounded and has error of at most 1/2 ulp.
ReadDiyFp(Vector<const char> buffer,DiyFp * result,int * remaining_decimals)169 static void ReadDiyFp(Vector<const char> buffer,
170 DiyFp* result,
171 int* remaining_decimals) {
172 int read_digits;
173 uint64_t significand = ReadUint64(buffer, &read_digits);
174 if (buffer.length() == read_digits) {
175 *result = DiyFp(significand, 0);
176 *remaining_decimals = 0;
177 } else {
178 // Round the significand.
179 if (buffer[read_digits] >= '5') {
180 significand++;
181 }
182 // Compute the binary exponent.
183 int exponent = 0;
184 *result = DiyFp(significand, exponent);
185 *remaining_decimals = buffer.length() - read_digits;
186 }
187 }
188
189
DoubleStrtod(Vector<const char> trimmed,int exponent,double * result)190 static bool DoubleStrtod(Vector<const char> trimmed,
191 int exponent,
192 double* result) {
193 #if !defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS)
194 // Avoid "unused parameter" warnings
195 (void) trimmed;
196 (void) exponent;
197 (void) result;
198 // On x86 the floating-point stack can be 64 or 80 bits wide. If it is
199 // 80 bits wide (as is the case on Linux) then double-rounding occurs and the
200 // result is not accurate.
201 // We know that Windows32 uses 64 bits and is therefore accurate.
202 return false;
203 #else
204 if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) {
205 int read_digits;
206 // The trimmed input fits into a double.
207 // If the 10^exponent (resp. 10^-exponent) fits into a double too then we
208 // can compute the result-double simply by multiplying (resp. dividing) the
209 // two numbers.
210 // This is possible because IEEE guarantees that floating-point operations
211 // return the best possible approximation.
212 if (exponent < 0 && -exponent < kExactPowersOfTenSize) {
213 // 10^-exponent fits into a double.
214 *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
215 DOUBLE_CONVERSION_ASSERT(read_digits == trimmed.length());
216 *result /= exact_powers_of_ten[-exponent];
217 return true;
218 }
219 if (0 <= exponent && exponent < kExactPowersOfTenSize) {
220 // 10^exponent fits into a double.
221 *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
222 DOUBLE_CONVERSION_ASSERT(read_digits == trimmed.length());
223 *result *= exact_powers_of_ten[exponent];
224 return true;
225 }
226 int remaining_digits =
227 kMaxExactDoubleIntegerDecimalDigits - trimmed.length();
228 if ((0 <= exponent) &&
229 (exponent - remaining_digits < kExactPowersOfTenSize)) {
230 // The trimmed string was short and we can multiply it with
231 // 10^remaining_digits. As a result the remaining exponent now fits
232 // into a double too.
233 *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
234 DOUBLE_CONVERSION_ASSERT(read_digits == trimmed.length());
235 *result *= exact_powers_of_ten[remaining_digits];
236 *result *= exact_powers_of_ten[exponent - remaining_digits];
237 return true;
238 }
239 }
240 return false;
241 #endif
242 }
243
244
245 // Returns 10^exponent as an exact DiyFp.
246 // The given exponent must be in the range [1; kDecimalExponentDistance[.
AdjustmentPowerOfTen(int exponent)247 static DiyFp AdjustmentPowerOfTen(int exponent) {
248 DOUBLE_CONVERSION_ASSERT(0 < exponent);
249 DOUBLE_CONVERSION_ASSERT(exponent < PowersOfTenCache::kDecimalExponentDistance);
250 // Simply hardcode the remaining powers for the given decimal exponent
251 // distance.
252 DOUBLE_CONVERSION_ASSERT(PowersOfTenCache::kDecimalExponentDistance == 8);
253 switch (exponent) {
254 case 1: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xa0000000, 00000000), -60);
255 case 2: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xc8000000, 00000000), -57);
256 case 3: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xfa000000, 00000000), -54);
257 case 4: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0x9c400000, 00000000), -50);
258 case 5: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xc3500000, 00000000), -47);
259 case 6: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xf4240000, 00000000), -44);
260 case 7: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0x98968000, 00000000), -40);
261 default:
262 DOUBLE_CONVERSION_UNREACHABLE();
263 }
264 }
265
266
267 // If the function returns true then the result is the correct double.
268 // Otherwise it is either the correct double or the double that is just below
269 // the correct double.
DiyFpStrtod(Vector<const char> buffer,int exponent,double * result)270 static bool DiyFpStrtod(Vector<const char> buffer,
271 int exponent,
272 double* result) {
273 DiyFp input;
274 int remaining_decimals;
275 ReadDiyFp(buffer, &input, &remaining_decimals);
276 // Since we may have dropped some digits the input is not accurate.
277 // If remaining_decimals is different than 0 than the error is at most
278 // .5 ulp (unit in the last place).
279 // We don't want to deal with fractions and therefore keep a common
280 // denominator.
281 const int kDenominatorLog = 3;
282 const int kDenominator = 1 << kDenominatorLog;
283 // Move the remaining decimals into the exponent.
284 exponent += remaining_decimals;
285 uint64_t error = (remaining_decimals == 0 ? 0 : kDenominator / 2);
286
287 int old_e = input.e();
288 input.Normalize();
289 error <<= old_e - input.e();
290
291 DOUBLE_CONVERSION_ASSERT(exponent <= PowersOfTenCache::kMaxDecimalExponent);
292 if (exponent < PowersOfTenCache::kMinDecimalExponent) {
293 *result = 0.0;
294 return true;
295 }
296 DiyFp cached_power;
297 int cached_decimal_exponent;
298 PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent,
299 &cached_power,
300 &cached_decimal_exponent);
301
302 if (cached_decimal_exponent != exponent) {
303 int adjustment_exponent = exponent - cached_decimal_exponent;
304 DiyFp adjustment_power = AdjustmentPowerOfTen(adjustment_exponent);
305 input.Multiply(adjustment_power);
306 if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent) {
307 // The product of input with the adjustment power fits into a 64 bit
308 // integer.
309 DOUBLE_CONVERSION_ASSERT(DiyFp::kSignificandSize == 64);
310 } else {
311 // The adjustment power is exact. There is hence only an error of 0.5.
312 error += kDenominator / 2;
313 }
314 }
315
316 input.Multiply(cached_power);
317 // The error introduced by a multiplication of a*b equals
318 // error_a + error_b + error_a*error_b/2^64 + 0.5
319 // Substituting a with 'input' and b with 'cached_power' we have
320 // error_b = 0.5 (all cached powers have an error of less than 0.5 ulp),
321 // error_ab = 0 or 1 / kDenominator > error_a*error_b/ 2^64
322 int error_b = kDenominator / 2;
323 int error_ab = (error == 0 ? 0 : 1); // We round up to 1.
324 int fixed_error = kDenominator / 2;
325 error += error_b + error_ab + fixed_error;
326
327 old_e = input.e();
328 input.Normalize();
329 error <<= old_e - input.e();
330
331 // See if the double's significand changes if we add/subtract the error.
332 int order_of_magnitude = DiyFp::kSignificandSize + input.e();
333 int effective_significand_size =
334 Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude);
335 int precision_digits_count =
336 DiyFp::kSignificandSize - effective_significand_size;
337 if (precision_digits_count + kDenominatorLog >= DiyFp::kSignificandSize) {
338 // This can only happen for very small denormals. In this case the
339 // half-way multiplied by the denominator exceeds the range of an uint64.
340 // Simply shift everything to the right.
341 int shift_amount = (precision_digits_count + kDenominatorLog) -
342 DiyFp::kSignificandSize + 1;
343 input.set_f(input.f() >> shift_amount);
344 input.set_e(input.e() + shift_amount);
345 // We add 1 for the lost precision of error, and kDenominator for
346 // the lost precision of input.f().
347 error = (error >> shift_amount) + 1 + kDenominator;
348 precision_digits_count -= shift_amount;
349 }
350 // We use uint64_ts now. This only works if the DiyFp uses uint64_ts too.
351 DOUBLE_CONVERSION_ASSERT(DiyFp::kSignificandSize == 64);
352 DOUBLE_CONVERSION_ASSERT(precision_digits_count < 64);
353 uint64_t one64 = 1;
354 uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1;
355 uint64_t precision_bits = input.f() & precision_bits_mask;
356 uint64_t half_way = one64 << (precision_digits_count - 1);
357 precision_bits *= kDenominator;
358 half_way *= kDenominator;
359 DiyFp rounded_input(input.f() >> precision_digits_count,
360 input.e() + precision_digits_count);
361 if (precision_bits >= half_way + error) {
362 rounded_input.set_f(rounded_input.f() + 1);
363 }
364 // If the last_bits are too close to the half-way case than we are too
365 // inaccurate and round down. In this case we return false so that we can
366 // fall back to a more precise algorithm.
367
368 *result = Double(rounded_input).value();
369 if (half_way - error < precision_bits && precision_bits < half_way + error) {
370 // Too imprecise. The caller will have to fall back to a slower version.
371 // However the returned number is guaranteed to be either the correct
372 // double, or the next-lower double.
373 return false;
374 } else {
375 return true;
376 }
377 }
378
379
380 // Returns
381 // - -1 if buffer*10^exponent < diy_fp.
382 // - 0 if buffer*10^exponent == diy_fp.
383 // - +1 if buffer*10^exponent > diy_fp.
384 // Preconditions:
385 // buffer.length() + exponent <= kMaxDecimalPower + 1
386 // buffer.length() + exponent > kMinDecimalPower
387 // buffer.length() <= kMaxDecimalSignificantDigits
CompareBufferWithDiyFp(Vector<const char> buffer,int exponent,DiyFp diy_fp)388 static int CompareBufferWithDiyFp(Vector<const char> buffer,
389 int exponent,
390 DiyFp diy_fp) {
391 DOUBLE_CONVERSION_ASSERT(buffer.length() + exponent <= kMaxDecimalPower + 1);
392 DOUBLE_CONVERSION_ASSERT(buffer.length() + exponent > kMinDecimalPower);
393 DOUBLE_CONVERSION_ASSERT(buffer.length() <= kMaxSignificantDecimalDigits);
394 // Make sure that the Bignum will be able to hold all our numbers.
395 // Our Bignum implementation has a separate field for exponents. Shifts will
396 // consume at most one bigit (< 64 bits).
397 // ln(10) == 3.3219...
398 DOUBLE_CONVERSION_ASSERT(((kMaxDecimalPower + 1) * 333 / 100) < Bignum::kMaxSignificantBits);
399 Bignum buffer_bignum;
400 Bignum diy_fp_bignum;
401 buffer_bignum.AssignDecimalString(buffer);
402 diy_fp_bignum.AssignUInt64(diy_fp.f());
403 if (exponent >= 0) {
404 buffer_bignum.MultiplyByPowerOfTen(exponent);
405 } else {
406 diy_fp_bignum.MultiplyByPowerOfTen(-exponent);
407 }
408 if (diy_fp.e() > 0) {
409 diy_fp_bignum.ShiftLeft(diy_fp.e());
410 } else {
411 buffer_bignum.ShiftLeft(-diy_fp.e());
412 }
413 return Bignum::Compare(buffer_bignum, diy_fp_bignum);
414 }
415
416
417 // Returns true if the guess is the correct double.
418 // Returns false, when guess is either correct or the next-lower double.
ComputeGuess(Vector<const char> trimmed,int exponent,double * guess)419 static bool ComputeGuess(Vector<const char> trimmed, int exponent,
420 double* guess) {
421 if (trimmed.length() == 0) {
422 *guess = 0.0;
423 return true;
424 }
425 if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) {
426 *guess = Double::Infinity();
427 return true;
428 }
429 if (exponent + trimmed.length() <= kMinDecimalPower) {
430 *guess = 0.0;
431 return true;
432 }
433
434 if (DoubleStrtod(trimmed, exponent, guess) ||
435 DiyFpStrtod(trimmed, exponent, guess)) {
436 return true;
437 }
438 if (*guess == Double::Infinity()) {
439 return true;
440 }
441 return false;
442 }
443
IsDigit(const char d)444 static bool IsDigit(const char d) {
445 return ('0' <= d) && (d <= '9');
446 }
447
IsNonZeroDigit(const char d)448 static bool IsNonZeroDigit(const char d) {
449 return ('1' <= d) && (d <= '9');
450 }
451
452 #ifdef __has_cpp_attribute
453 #if __has_cpp_attribute(maybe_unused)
454 [[maybe_unused]]
455 #endif
456 #endif
AssertTrimmedDigits(const Vector<const char> & buffer)457 static bool AssertTrimmedDigits(const Vector<const char>& buffer) {
458 for(int i = 0; i < buffer.length(); ++i) {
459 if(!IsDigit(buffer[i])) {
460 return false;
461 }
462 }
463 return (buffer.length() == 0) || (IsNonZeroDigit(buffer[0]) && IsNonZeroDigit(buffer[buffer.length()-1]));
464 }
465
StrtodTrimmed(Vector<const char> trimmed,int exponent)466 double StrtodTrimmed(Vector<const char> trimmed, int exponent) {
467 DOUBLE_CONVERSION_ASSERT(trimmed.length() <= kMaxSignificantDecimalDigits);
468 DOUBLE_CONVERSION_ASSERT(AssertTrimmedDigits(trimmed));
469 double guess;
470 const bool is_correct = ComputeGuess(trimmed, exponent, &guess);
471 if (is_correct) {
472 return guess;
473 }
474 DiyFp upper_boundary = Double(guess).UpperBoundary();
475 int comparison = CompareBufferWithDiyFp(trimmed, exponent, upper_boundary);
476 if (comparison < 0) {
477 return guess;
478 } else if (comparison > 0) {
479 return Double(guess).NextDouble();
480 } else if ((Double(guess).Significand() & 1) == 0) {
481 // Round towards even.
482 return guess;
483 } else {
484 return Double(guess).NextDouble();
485 }
486 }
487
Strtod(Vector<const char> buffer,int exponent)488 double Strtod(Vector<const char> buffer, int exponent) {
489 char copy_buffer[kMaxSignificantDecimalDigits];
490 Vector<const char> trimmed;
491 int updated_exponent;
492 TrimAndCut(buffer, exponent, copy_buffer, kMaxSignificantDecimalDigits,
493 &trimmed, &updated_exponent);
494 return StrtodTrimmed(trimmed, updated_exponent);
495 }
496
SanitizedDoubletof(double d)497 static float SanitizedDoubletof(double d) {
498 DOUBLE_CONVERSION_ASSERT(d >= 0.0);
499 // ASAN has a sanitize check that disallows casting doubles to floats if
500 // they are too big.
501 // https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html#available-checks
502 // The behavior should be covered by IEEE 754, but some projects use this
503 // flag, so work around it.
504 float max_finite = 3.4028234663852885981170418348451692544e+38;
505 // The half-way point between the max-finite and infinity value.
506 // Since infinity has an even significand everything equal or greater than
507 // this value should become infinity.
508 double half_max_finite_infinity =
509 3.40282356779733661637539395458142568448e+38;
510 if (d >= max_finite) {
511 if (d >= half_max_finite_infinity) {
512 return Single::Infinity();
513 } else {
514 return max_finite;
515 }
516 } else {
517 return static_cast<float>(d);
518 }
519 }
520
Strtof(Vector<const char> buffer,int exponent)521 float Strtof(Vector<const char> buffer, int exponent) {
522 char copy_buffer[kMaxSignificantDecimalDigits];
523 Vector<const char> trimmed;
524 int updated_exponent;
525 TrimAndCut(buffer, exponent, copy_buffer, kMaxSignificantDecimalDigits,
526 &trimmed, &updated_exponent);
527 exponent = updated_exponent;
528 return StrtofTrimmed(trimmed, exponent);
529 }
530
StrtofTrimmed(Vector<const char> trimmed,int exponent)531 float StrtofTrimmed(Vector<const char> trimmed, int exponent) {
532 DOUBLE_CONVERSION_ASSERT(trimmed.length() <= kMaxSignificantDecimalDigits);
533 DOUBLE_CONVERSION_ASSERT(AssertTrimmedDigits(trimmed));
534
535 double double_guess;
536 bool is_correct = ComputeGuess(trimmed, exponent, &double_guess);
537
538 float float_guess = SanitizedDoubletof(double_guess);
539 if (float_guess == double_guess) {
540 // This shortcut triggers for integer values.
541 return float_guess;
542 }
543
544 // We must catch double-rounding. Say the double has been rounded up, and is
545 // now a boundary of a float, and rounds up again. This is why we have to
546 // look at previous too.
547 // Example (in decimal numbers):
548 // input: 12349
549 // high-precision (4 digits): 1235
550 // low-precision (3 digits):
551 // when read from input: 123
552 // when rounded from high precision: 124.
553 // To do this we simply look at the neigbors of the correct result and see
554 // if they would round to the same float. If the guess is not correct we have
555 // to look at four values (since two different doubles could be the correct
556 // double).
557
558 double double_next = Double(double_guess).NextDouble();
559 double double_previous = Double(double_guess).PreviousDouble();
560
561 float f1 = SanitizedDoubletof(double_previous);
562 float f2 = float_guess;
563 float f3 = SanitizedDoubletof(double_next);
564 float f4;
565 if (is_correct) {
566 f4 = f3;
567 } else {
568 double double_next2 = Double(double_next).NextDouble();
569 f4 = SanitizedDoubletof(double_next2);
570 }
571 (void) f2; // Mark variable as used.
572 DOUBLE_CONVERSION_ASSERT(f1 <= f2 && f2 <= f3 && f3 <= f4);
573
574 // If the guess doesn't lie near a single-precision boundary we can simply
575 // return its float-value.
576 if (f1 == f4) {
577 return float_guess;
578 }
579
580 DOUBLE_CONVERSION_ASSERT((f1 != f2 && f2 == f3 && f3 == f4) ||
581 (f1 == f2 && f2 != f3 && f3 == f4) ||
582 (f1 == f2 && f2 == f3 && f3 != f4));
583
584 // guess and next are the two possible candidates (in the same way that
585 // double_guess was the lower candidate for a double-precision guess).
586 float guess = f1;
587 float next = f4;
588 DiyFp upper_boundary;
589 if (guess == 0.0f) {
590 float min_float = 1e-45f;
591 upper_boundary = Double(static_cast<double>(min_float) / 2).AsDiyFp();
592 } else {
593 upper_boundary = Single(guess).UpperBoundary();
594 }
595 int comparison = CompareBufferWithDiyFp(trimmed, exponent, upper_boundary);
596 if (comparison < 0) {
597 return guess;
598 } else if (comparison > 0) {
599 return next;
600 } else if ((Single(guess).Significand() & 1) == 0) {
601 // Round towards even.
602 return guess;
603 } else {
604 return next;
605 }
606 }
607
608 } // namespace double_conversion
609