1<html> 2<head> 3<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"> 4<title>Find mean and standard deviation example</title> 5<link rel="stylesheet" href="../../../../math.css" type="text/css"> 6<meta name="generator" content="DocBook XSL Stylesheets V1.79.1"> 7<link rel="home" href="../../../../index.html" title="Math Toolkit 2.12.0"> 8<link rel="up" href="../find_eg.html" title="Find Location and Scale Examples"> 9<link rel="prev" href="find_scale_eg.html" title="Find Scale (Standard Deviation) Example"> 10<link rel="next" href="../nag_library.html" title="Comparison with C, R, FORTRAN-style Free Functions"> 11</head> 12<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"> 13<table cellpadding="2" width="100%"><tr> 14<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../../../boost.png"></td> 15<td align="center"><a href="../../../../../../../../index.html">Home</a></td> 16<td align="center"><a href="../../../../../../../../libs/libraries.htm">Libraries</a></td> 17<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td> 18<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td> 19<td align="center"><a href="../../../../../../../../more/index.htm">More</a></td> 20</tr></table> 21<hr> 22<div class="spirit-nav"> 23<a accesskey="p" href="find_scale_eg.html"><img src="../../../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../find_eg.html"><img src="../../../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../../../index.html"><img src="../../../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="../nag_library.html"><img src="../../../../../../../../doc/src/images/next.png" alt="Next"></a> 24</div> 25<div class="section"> 26<div class="titlepage"><div><div><h5 class="title"> 27<a name="math_toolkit.stat_tut.weg.find_eg.find_mean_and_sd_eg"></a><a class="link" href="find_mean_and_sd_eg.html" title="Find mean and standard deviation example">Find 28 mean and standard deviation example</a> 29</h5></div></div></div> 30<p> 31 First we need some includes to access the normal distribution, the algorithms 32 to find location and scale (and some std output of course). 33 </p> 34<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">distributions</span><span class="special">/</span><span class="identifier">normal</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span> <span class="comment">// for normal_distribution</span> 35 <span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">normal</span><span class="special">;</span> <span class="comment">// typedef provides default type is double.</span> 36<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">distributions</span><span class="special">/</span><span class="identifier">cauchy</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span> <span class="comment">// for cauchy_distribution</span> 37 <span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">cauchy</span><span class="special">;</span> <span class="comment">// typedef provides default type is double.</span> 38<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">distributions</span><span class="special">/</span><span class="identifier">find_location</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span> 39 <span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">find_location</span><span class="special">;</span> 40<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">distributions</span><span class="special">/</span><span class="identifier">find_scale</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span> 41 <span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">find_scale</span><span class="special">;</span> 42 <span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">complement</span><span class="special">;</span> 43 <span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">policies</span><span class="special">::</span><span class="identifier">policy</span><span class="special">;</span> 44 45<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">iostream</span><span class="special">></span> 46 <span class="keyword">using</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span><span class="special">;</span> <span class="keyword">using</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span> <span class="keyword">using</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">left</span><span class="special">;</span> <span class="keyword">using</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">showpoint</span><span class="special">;</span> <span class="keyword">using</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">noshowpoint</span><span class="special">;</span> 47<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">iomanip</span><span class="special">></span> 48 <span class="keyword">using</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">setw</span><span class="special">;</span> <span class="keyword">using</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">setprecision</span><span class="special">;</span> 49<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">limits</span><span class="special">></span> 50 <span class="keyword">using</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">;</span> 51<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">stdexcept</span><span class="special">></span> 52</pre> 53<h5> 54<a name="math_toolkit.stat_tut.weg.find_eg.find_mean_and_sd_eg.h0"></a> 55 <span class="phrase"><a name="math_toolkit.stat_tut.weg.find_eg.find_mean_and_sd_eg.using_find_location_and_find_sca"></a></span><a class="link" href="find_mean_and_sd_eg.html#math_toolkit.stat_tut.weg.find_eg.find_mean_and_sd_eg.using_find_location_and_find_sca">Using 56 find_location and find_scale to meet dispensing and measurement specifications</a> 57 </h5> 58<p> 59 Consider an example from K Krishnamoorthy, Handbook of Statistical Distributions 60 with Applications, ISBN 1-58488-635-8, (2006) p 126, example 10.3.7. 61 </p> 62<p> 63 "A machine is set to pack 3 kg of ground beef per pack. Over a long 64 period of time it is found that the average packed was 3 kg with a standard 65 deviation of 0.1 kg. Assume the packing is normally distributed." 66 </p> 67<p> 68 We start by constructing a normal distribution with the given parameters: 69 </p> 70<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">mean</span> <span class="special">=</span> <span class="number">3.</span><span class="special">;</span> <span class="comment">// kg</span> 71<span class="keyword">double</span> <span class="identifier">standard_deviation</span> <span class="special">=</span> <span class="number">0.1</span><span class="special">;</span> <span class="comment">// kg</span> 72<span class="identifier">normal</span> <span class="identifier">packs</span><span class="special">(</span><span class="identifier">mean</span><span class="special">,</span> <span class="identifier">standard_deviation</span><span class="special">);</span> 73</pre> 74<p> 75 We can then find the fraction (or %) of packages that weigh more than 76 3.1 kg. 77 </p> 78<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">max_weight</span> <span class="special">=</span> <span class="number">3.1</span><span class="special">;</span> <span class="comment">// kg</span> 79<span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"Percentage of packs > "</span> <span class="special"><<</span> <span class="identifier">max_weight</span> <span class="special"><<</span> <span class="string">" is "</span> 80<span class="special"><<</span> <span class="identifier">cdf</span><span class="special">(</span><span class="identifier">complement</span><span class="special">(</span><span class="identifier">packs</span><span class="special">,</span> <span class="identifier">max_weight</span><span class="special">))</span> <span class="special">*</span> <span class="number">100.</span> <span class="special"><<</span> <span class="identifier">endl</span><span class="special">;</span> <span class="comment">// P(X > 3.1)</span> 81</pre> 82<p> 83 We might want to ensure that 95% of packs are over a minimum weight specification, 84 then we want the value of the mean such that P(X < 2.9) = 0.05. 85 </p> 86<p> 87 Using the mean of 3 kg, we can estimate the fraction of packs that fail 88 to meet the specification of 2.9 kg. 89 </p> 90<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">minimum_weight</span> <span class="special">=</span> <span class="number">2.9</span><span class="special">;</span> 91<span class="identifier">cout</span> <span class="special"><<</span><span class="string">"Fraction of packs <= "</span> <span class="special"><<</span> <span class="identifier">minimum_weight</span> <span class="special"><<</span> <span class="string">" with a mean of "</span> <span class="special"><<</span> <span class="identifier">mean</span> 92 <span class="special"><<</span> <span class="string">" is "</span> <span class="special"><<</span> <span class="identifier">cdf</span><span class="special">(</span><span class="identifier">complement</span><span class="special">(</span><span class="identifier">packs</span><span class="special">,</span> <span class="identifier">minimum_weight</span><span class="special">))</span> <span class="special"><<</span> <span class="identifier">endl</span><span class="special">;</span> 93<span class="comment">// fraction of packs <= 2.9 with a mean of 3 is 0.841345</span> 94</pre> 95<p> 96 This is 0.84 - more than the target fraction of 0.95. If we want 95% 97 to be over the minimum weight, what should we set the mean weight to 98 be? 99 </p> 100<p> 101 Using the KK StatCalc program supplied with the book and the method given 102 on page 126 gives 3.06449. 103 </p> 104<p> 105 We can confirm this by constructing a new distribution which we call 106 'xpacks' with a safety margin mean of 3.06449 thus: 107 </p> 108<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">over_mean</span> <span class="special">=</span> <span class="number">3.06449</span><span class="special">;</span> 109<span class="identifier">normal</span> <span class="identifier">xpacks</span><span class="special">(</span><span class="identifier">over_mean</span><span class="special">,</span> <span class="identifier">standard_deviation</span><span class="special">);</span> 110<span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"Fraction of packs >= "</span> <span class="special"><<</span> <span class="identifier">minimum_weight</span> 111<span class="special"><<</span> <span class="string">" with a mean of "</span> <span class="special"><<</span> <span class="identifier">xpacks</span><span class="special">.</span><span class="identifier">mean</span><span class="special">()</span> 112 <span class="special"><<</span> <span class="string">" is "</span> <span class="special"><<</span> <span class="identifier">cdf</span><span class="special">(</span><span class="identifier">complement</span><span class="special">(</span><span class="identifier">xpacks</span><span class="special">,</span> <span class="identifier">minimum_weight</span><span class="special">))</span> <span class="special"><<</span> <span class="identifier">endl</span><span class="special">;</span> 113<span class="comment">// fraction of packs >= 2.9 with a mean of 3.06449 is 0.950005</span> 114</pre> 115<p> 116 Using this Math Toolkit, we can calculate the required mean directly 117 thus: 118 </p> 119<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">under_fraction</span> <span class="special">=</span> <span class="number">0.05</span><span class="special">;</span> <span class="comment">// so 95% are above the minimum weight mean - sd = 2.9</span> 120<span class="keyword">double</span> <span class="identifier">low_limit</span> <span class="special">=</span> <span class="identifier">standard_deviation</span><span class="special">;</span> 121<span class="keyword">double</span> <span class="identifier">offset</span> <span class="special">=</span> <span class="identifier">mean</span> <span class="special">-</span> <span class="identifier">low_limit</span> <span class="special">-</span> <span class="identifier">quantile</span><span class="special">(</span><span class="identifier">packs</span><span class="special">,</span> <span class="identifier">under_fraction</span><span class="special">);</span> 122<span class="keyword">double</span> <span class="identifier">nominal_mean</span> <span class="special">=</span> <span class="identifier">mean</span> <span class="special">+</span> <span class="identifier">offset</span><span class="special">;</span> 123<span class="comment">// mean + (mean - low_limit - quantile(packs, under_fraction));</span> 124 125<span class="identifier">normal</span> <span class="identifier">nominal_packs</span><span class="special">(</span><span class="identifier">nominal_mean</span><span class="special">,</span> <span class="identifier">standard_deviation</span><span class="special">);</span> 126<span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"Setting the packer to "</span> <span class="special"><<</span> <span class="identifier">nominal_mean</span> <span class="special"><<</span> <span class="string">" will mean that "</span> 127 <span class="special"><<</span> <span class="string">"fraction of packs >= "</span> <span class="special"><<</span> <span class="identifier">minimum_weight</span> 128 <span class="special"><<</span> <span class="string">" is "</span> <span class="special"><<</span> <span class="identifier">cdf</span><span class="special">(</span><span class="identifier">complement</span><span class="special">(</span><span class="identifier">nominal_packs</span><span class="special">,</span> <span class="identifier">minimum_weight</span><span class="special">))</span> <span class="special"><<</span> <span class="identifier">endl</span><span class="special">;</span> 129<span class="comment">// Setting the packer to 3.06449 will mean that fraction of packs >= 2.9 is 0.95</span> 130</pre> 131<p> 132 This calculation is generalized as the free function called <code class="computeroutput"><span class="identifier">find_location</span></code>, see <a class="link" href="../../../dist_ref/dist_algorithms.html" title="Distribution Algorithms">algorithms</a>. 133 </p> 134<p> 135 To use this we will need to 136 </p> 137<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">distributions</span><span class="special">/</span><span class="identifier">find_location</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span> 138 <span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">find_location</span><span class="special">;</span> 139</pre> 140<p> 141 and then use find_location function to find safe_mean, & construct 142 a new normal distribution called 'goodpacks'. 143 </p> 144<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">safe_mean</span> <span class="special">=</span> <span class="identifier">find_location</span><span class="special"><</span><span class="identifier">normal</span><span class="special">>(</span><span class="identifier">minimum_weight</span><span class="special">,</span> <span class="identifier">under_fraction</span><span class="special">,</span> <span class="identifier">standard_deviation</span><span class="special">);</span> 145<span class="identifier">normal</span> <span class="identifier">good_packs</span><span class="special">(</span><span class="identifier">safe_mean</span><span class="special">,</span> <span class="identifier">standard_deviation</span><span class="special">);</span> 146</pre> 147<p> 148 with the same confirmation as before: 149 </p> 150<pre class="programlisting"><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"Setting the packer to "</span> <span class="special"><<</span> <span class="identifier">nominal_mean</span> <span class="special"><<</span> <span class="string">" will mean that "</span> 151 <span class="special"><<</span> <span class="string">"fraction of packs >= "</span> <span class="special"><<</span> <span class="identifier">minimum_weight</span> 152 <span class="special"><<</span> <span class="string">" is "</span> <span class="special"><<</span> <span class="identifier">cdf</span><span class="special">(</span><span class="identifier">complement</span><span class="special">(</span><span class="identifier">good_packs</span><span class="special">,</span> <span class="identifier">minimum_weight</span><span class="special">))</span> <span class="special"><<</span> <span class="identifier">endl</span><span class="special">;</span> 153<span class="comment">// Setting the packer to 3.06449 will mean that fraction of packs >= 2.9 is 0.95</span> 154</pre> 155<h5> 156<a name="math_toolkit.stat_tut.weg.find_eg.find_mean_and_sd_eg.h1"></a> 157 <span class="phrase"><a name="math_toolkit.stat_tut.weg.find_eg.find_mean_and_sd_eg.using_cauchy_lorentz_instead_of_"></a></span><a class="link" href="find_mean_and_sd_eg.html#math_toolkit.stat_tut.weg.find_eg.find_mean_and_sd_eg.using_cauchy_lorentz_instead_of_">Using 158 Cauchy-Lorentz instead of normal distribution</a> 159 </h5> 160<p> 161 After examining the weight distribution of a large number of packs, we 162 might decide that, after all, the assumption of a normal distribution 163 is not really justified. We might find that the fit is better to a <a class="link" href="../../../dist_ref/dists/cauchy_dist.html" title="Cauchy-Lorentz Distribution">Cauchy Distribution</a>. 164 This distribution has wider 'wings', so that whereas most of the values 165 are closer to the mean than the normal, there are also more values than 166 'normal' that lie further from the mean than the normal. 167 </p> 168<p> 169 This might happen because a larger than normal lump of meat is either 170 included or excluded. 171 </p> 172<p> 173 We first create a <a class="link" href="../../../dist_ref/dists/cauchy_dist.html" title="Cauchy-Lorentz Distribution">Cauchy 174 Distribution</a> with the original mean and standard deviation, and 175 estimate the fraction that lie below our minimum weight specification. 176 </p> 177<pre class="programlisting"><span class="identifier">cauchy</span> <span class="identifier">cpacks</span><span class="special">(</span><span class="identifier">mean</span><span class="special">,</span> <span class="identifier">standard_deviation</span><span class="special">);</span> 178<span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"Cauchy Setting the packer to "</span> <span class="special"><<</span> <span class="identifier">mean</span> <span class="special"><<</span> <span class="string">" will mean that "</span> 179 <span class="special"><<</span> <span class="string">"fraction of packs >= "</span> <span class="special"><<</span> <span class="identifier">minimum_weight</span> 180 <span class="special"><<</span> <span class="string">" is "</span> <span class="special"><<</span> <span class="identifier">cdf</span><span class="special">(</span><span class="identifier">complement</span><span class="special">(</span><span class="identifier">cpacks</span><span class="special">,</span> <span class="identifier">minimum_weight</span><span class="special">))</span> <span class="special"><<</span> <span class="identifier">endl</span><span class="special">;</span> 181<span class="comment">// Cauchy Setting the packer to 3 will mean that fraction of packs >= 2.9 is 0.75</span> 182</pre> 183<p> 184 Note that far fewer of the packs meet the specification, only 75% instead 185 of 95%. Now we can repeat the find_location, using the cauchy distribution 186 as template parameter, in place of the normal used above. 187 </p> 188<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">lc</span> <span class="special">=</span> <span class="identifier">find_location</span><span class="special"><</span><span class="identifier">cauchy</span><span class="special">>(</span><span class="identifier">minimum_weight</span><span class="special">,</span> <span class="identifier">under_fraction</span><span class="special">,</span> <span class="identifier">standard_deviation</span><span class="special">);</span> 189<span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"find_location<cauchy>(minimum_weight, over fraction, standard_deviation); "</span> <span class="special"><<</span> <span class="identifier">lc</span> <span class="special"><<</span> <span class="identifier">endl</span><span class="special">;</span> 190<span class="comment">// find_location<cauchy>(minimum_weight, over fraction, packs.standard_deviation()); 3.53138</span> 191</pre> 192<p> 193 Note that the safe_mean setting needs to be much higher, 3.53138 instead 194 of 3.06449, so we will make rather less profit. 195 </p> 196<p> 197 And again confirm that the fraction meeting specification is as expected. 198 </p> 199<pre class="programlisting"><span class="identifier">cauchy</span> <span class="identifier">goodcpacks</span><span class="special">(</span><span class="identifier">lc</span><span class="special">,</span> <span class="identifier">standard_deviation</span><span class="special">);</span> 200<span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"Cauchy Setting the packer to "</span> <span class="special"><<</span> <span class="identifier">lc</span> <span class="special"><<</span> <span class="string">" will mean that "</span> 201 <span class="special"><<</span> <span class="string">"fraction of packs >= "</span> <span class="special"><<</span> <span class="identifier">minimum_weight</span> 202 <span class="special"><<</span> <span class="string">" is "</span> <span class="special"><<</span> <span class="identifier">cdf</span><span class="special">(</span><span class="identifier">complement</span><span class="special">(</span><span class="identifier">goodcpacks</span><span class="special">,</span> <span class="identifier">minimum_weight</span><span class="special">))</span> <span class="special"><<</span> <span class="identifier">endl</span><span class="special">;</span> 203<span class="comment">// Cauchy Setting the packer to 3.53138 will mean that fraction of packs >= 2.9 is 0.95</span> 204</pre> 205<p> 206 Finally we could estimate the effect of a much tighter specification, 207 that 99% of packs met the specification. 208 </p> 209<pre class="programlisting"><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"Cauchy Setting the packer to "</span> 210 <span class="special"><<</span> <span class="identifier">find_location</span><span class="special"><</span><span class="identifier">cauchy</span><span class="special">>(</span><span class="identifier">minimum_weight</span><span class="special">,</span> <span class="number">0.99</span><span class="special">,</span> <span class="identifier">standard_deviation</span><span class="special">)</span> 211 <span class="special"><<</span> <span class="string">" will mean that "</span> 212 <span class="special"><<</span> <span class="string">"fraction of packs >= "</span> <span class="special"><<</span> <span class="identifier">minimum_weight</span> 213 <span class="special"><<</span> <span class="string">" is "</span> <span class="special"><<</span> <span class="identifier">cdf</span><span class="special">(</span><span class="identifier">complement</span><span class="special">(</span><span class="identifier">goodcpacks</span><span class="special">,</span> <span class="identifier">minimum_weight</span><span class="special">))</span> <span class="special"><<</span> <span class="identifier">endl</span><span class="special">;</span> 214</pre> 215<p> 216 Setting the packer to 3.13263 will mean that fraction of packs >= 217 2.9 is 0.99, but will more than double the mean loss from 0.0644 to 0.133 218 kg per pack. 219 </p> 220<p> 221 Of course, this calculation is not limited to packs of meat, it applies 222 to dispensing anything, and it also applies to a 'virtual' material like 223 any measurement. 224 </p> 225<p> 226 The only caveat is that the calculation assumes that the standard deviation 227 (scale) is known with a reasonably low uncertainty, something that is 228 not so easy to ensure in practice. And that the distribution is well 229 defined, <a class="link" href="../../../dist_ref/dists/normal_dist.html" title="Normal (Gaussian) Distribution">Normal 230 Distribution</a> or <a class="link" href="../../../dist_ref/dists/cauchy_dist.html" title="Cauchy-Lorentz Distribution">Cauchy 231 Distribution</a>, or some other. 232 </p> 233<p> 234 If one is simply dispensing a very large number of packs, then it may 235 be feasible to measure the weight of hundreds or thousands of packs. 236 With a healthy 'degrees of freedom', the confidence intervals for the 237 standard deviation are not too wide, typically about + and - 10% for 238 hundreds of observations. 239 </p> 240<p> 241 For other applications, where it is more difficult or expensive to make 242 many observations, the confidence intervals are depressingly wide. 243 </p> 244<p> 245 See <a class="link" href="../cs_eg/chi_sq_intervals.html" title="Confidence Intervals on the Standard Deviation">Confidence 246 Intervals on the standard deviation</a> for a worked example <a href="../../../../../../example/chi_square_std_dev_test.cpp" target="_top">chi_square_std_dev_test.cpp</a> 247 of estimating these intervals. 248 </p> 249<h5> 250<a name="math_toolkit.stat_tut.weg.find_eg.find_mean_and_sd_eg.h2"></a> 251 <span class="phrase"><a name="math_toolkit.stat_tut.weg.find_eg.find_mean_and_sd_eg.changing_the_scale_or_standard_d"></a></span><a class="link" href="find_mean_and_sd_eg.html#math_toolkit.stat_tut.weg.find_eg.find_mean_and_sd_eg.changing_the_scale_or_standard_d">Changing 252 the scale or standard deviation</a> 253 </h5> 254<p> 255 Alternatively, we could invest in a better (more precise) packer (or 256 measuring device) with a lower standard deviation, or scale. 257 </p> 258<p> 259 This might cost more, but would reduce the amount we have to 'give away' 260 in order to meet the specification. 261 </p> 262<p> 263 To estimate how much better (how much smaller standard deviation) it 264 would have to be, we need to get the 5% quantile to be located at the 265 under_weight limit, 2.9 266 </p> 267<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">p</span> <span class="special">=</span> <span class="number">0.05</span><span class="special">;</span> <span class="comment">// wanted p th quantile.</span> 268<span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"Quantile of "</span> <span class="special"><<</span> <span class="identifier">p</span> <span class="special"><<</span> <span class="string">" = "</span> <span class="special"><<</span> <span class="identifier">quantile</span><span class="special">(</span><span class="identifier">packs</span><span class="special">,</span> <span class="identifier">p</span><span class="special">)</span> 269 <span class="special"><<</span> <span class="string">", mean = "</span> <span class="special"><<</span> <span class="identifier">packs</span><span class="special">.</span><span class="identifier">mean</span><span class="special">()</span> <span class="special"><<</span> <span class="string">", sd = "</span> <span class="special"><<</span> <span class="identifier">packs</span><span class="special">.</span><span class="identifier">standard_deviation</span><span class="special">()</span> <span class="special"><<</span> <span class="identifier">endl</span><span class="special">;</span> 270</pre> 271<p> 272 Quantile of 0.05 = 2.83551, mean = 3, sd = 0.1 273 </p> 274<p> 275 With the current packer (mean = 3, sd = 0.1), the 5% quantile is at 2.8551 276 kg, a little below our target of 2.9 kg. So we know that the standard 277 deviation is going to have to be smaller. 278 </p> 279<p> 280 Let's start by guessing that it (now 0.1) needs to be halved, to a standard 281 deviation of 0.05 kg. 282 </p> 283<pre class="programlisting"><span class="identifier">normal</span> <span class="identifier">pack05</span><span class="special">(</span><span class="identifier">mean</span><span class="special">,</span> <span class="number">0.05</span><span class="special">);</span> 284<span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"Quantile of "</span> <span class="special"><<</span> <span class="identifier">p</span> <span class="special"><<</span> <span class="string">" = "</span> <span class="special"><<</span> <span class="identifier">quantile</span><span class="special">(</span><span class="identifier">pack05</span><span class="special">,</span> <span class="identifier">p</span><span class="special">)</span> 285 <span class="special"><<</span> <span class="string">", mean = "</span> <span class="special"><<</span> <span class="identifier">pack05</span><span class="special">.</span><span class="identifier">mean</span><span class="special">()</span> <span class="special"><<</span> <span class="string">", sd = "</span> <span class="special"><<</span> <span class="identifier">pack05</span><span class="special">.</span><span class="identifier">standard_deviation</span><span class="special">()</span> <span class="special"><<</span> <span class="identifier">endl</span><span class="special">;</span> 286<span class="comment">// Quantile of 0.05 = 2.91776, mean = 3, sd = 0.05</span> 287 288<span class="identifier">cout</span> <span class="special"><<</span><span class="string">"Fraction of packs >= "</span> <span class="special"><<</span> <span class="identifier">minimum_weight</span> <span class="special"><<</span> <span class="string">" with a mean of "</span> <span class="special"><<</span> <span class="identifier">mean</span> 289 <span class="special"><<</span> <span class="string">" and standard deviation of "</span> <span class="special"><<</span> <span class="identifier">pack05</span><span class="special">.</span><span class="identifier">standard_deviation</span><span class="special">()</span> 290 <span class="special"><<</span> <span class="string">" is "</span> <span class="special"><<</span> <span class="identifier">cdf</span><span class="special">(</span><span class="identifier">complement</span><span class="special">(</span><span class="identifier">pack05</span><span class="special">,</span> <span class="identifier">minimum_weight</span><span class="special">))</span> <span class="special"><<</span> <span class="identifier">endl</span><span class="special">;</span> 291<span class="comment">// Fraction of packs >= 2.9 with a mean of 3 and standard deviation of 0.05 is 0.97725</span> 292</pre> 293<p> 294 So 0.05 was quite a good guess, but we are a little over the 2.9 target, 295 so the standard deviation could be a tiny bit more. So we could do some 296 more guessing to get closer, say by increasing standard deviation to 297 0.06 kg, constructing another new distribution called pack06. 298 </p> 299<pre class="programlisting"><span class="identifier">normal</span> <span class="identifier">pack06</span><span class="special">(</span><span class="identifier">mean</span><span class="special">,</span> <span class="number">0.06</span><span class="special">);</span> 300<span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"Quantile of "</span> <span class="special"><<</span> <span class="identifier">p</span> <span class="special"><<</span> <span class="string">" = "</span> <span class="special"><<</span> <span class="identifier">quantile</span><span class="special">(</span><span class="identifier">pack06</span><span class="special">,</span> <span class="identifier">p</span><span class="special">)</span> 301 <span class="special"><<</span> <span class="string">", mean = "</span> <span class="special"><<</span> <span class="identifier">pack06</span><span class="special">.</span><span class="identifier">mean</span><span class="special">()</span> <span class="special"><<</span> <span class="string">", sd = "</span> <span class="special"><<</span> <span class="identifier">pack06</span><span class="special">.</span><span class="identifier">standard_deviation</span><span class="special">()</span> <span class="special"><<</span> <span class="identifier">endl</span><span class="special">;</span> 302<span class="comment">// Quantile of 0.05 = 2.90131, mean = 3, sd = 0.06</span> 303 304<span class="identifier">cout</span> <span class="special"><<</span><span class="string">"Fraction of packs >= "</span> <span class="special"><<</span> <span class="identifier">minimum_weight</span> <span class="special"><<</span> <span class="string">" with a mean of "</span> <span class="special"><<</span> <span class="identifier">mean</span> 305 <span class="special"><<</span> <span class="string">" and standard deviation of "</span> <span class="special"><<</span> <span class="identifier">pack06</span><span class="special">.</span><span class="identifier">standard_deviation</span><span class="special">()</span> 306 <span class="special"><<</span> <span class="string">" is "</span> <span class="special"><<</span> <span class="identifier">cdf</span><span class="special">(</span><span class="identifier">complement</span><span class="special">(</span><span class="identifier">pack06</span><span class="special">,</span> <span class="identifier">minimum_weight</span><span class="special">))</span> <span class="special"><<</span> <span class="identifier">endl</span><span class="special">;</span> 307<span class="comment">// Fraction of packs >= 2.9 with a mean of 3 and standard deviation of 0.06 is 0.95221</span> 308</pre> 309<p> 310 Now we are getting really close, but to do the job properly, we might 311 need to use root finding method, for example the tools provided, and 312 used elsewhere, in the Math Toolkit, see <a class="link" href="../../../roots_noderiv.html" title="Root Finding Without Derivatives">root-finding 313 without derivatives</a> 314 </p> 315<p> 316 But in this (normal) distribution case, we can and should be even smarter 317 and make a direct calculation. 318 </p> 319<p> 320 Our required limit is minimum_weight = 2.9 kg, often called the random 321 variate z. For a standard normal distribution, then probability p = N((minimum_weight 322 - mean) / sd). 323 </p> 324<p> 325 We want to find the standard deviation that would be required to meet 326 this limit, so that the p th quantile is located at z (minimum_weight). 327 In this case, the 0.05 (5%) quantile is at 2.9 kg pack weight, when the 328 mean is 3 kg, ensuring that 0.95 (95%) of packs are above the minimum 329 weight. 330 </p> 331<p> 332 Rearranging, we can directly calculate the required standard deviation: 333 </p> 334<pre class="programlisting"><span class="identifier">normal</span> <span class="identifier">N01</span><span class="special">;</span> <span class="comment">// standard normal distribution with mean zero and unit standard deviation.</span> 335<span class="identifier">p</span> <span class="special">=</span> <span class="number">0.05</span><span class="special">;</span> 336<span class="keyword">double</span> <span class="identifier">qp</span> <span class="special">=</span> <span class="identifier">quantile</span><span class="special">(</span><span class="identifier">N01</span><span class="special">,</span> <span class="identifier">p</span><span class="special">);</span> 337<span class="keyword">double</span> <span class="identifier">sd95</span> <span class="special">=</span> <span class="special">(</span><span class="identifier">minimum_weight</span> <span class="special">-</span> <span class="identifier">mean</span><span class="special">)</span> <span class="special">/</span> <span class="identifier">qp</span><span class="special">;</span> 338 339<span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"For the "</span><span class="special"><<</span> <span class="identifier">p</span> <span class="special"><<</span> <span class="string">"th quantile to be located at "</span> 340 <span class="special"><<</span> <span class="identifier">minimum_weight</span> <span class="special"><<</span> <span class="string">", would need a standard deviation of "</span> <span class="special"><<</span> <span class="identifier">sd95</span> <span class="special"><<</span> <span class="identifier">endl</span><span class="special">;</span> 341<span class="comment">// For the 0.05th quantile to be located at 2.9, would need a standard deviation of 0.0607957</span> 342</pre> 343<p> 344 We can now construct a new (normal) distribution pack95 for the 'better' 345 packer, and check that our distribution will meet the specification. 346 </p> 347<pre class="programlisting"><span class="identifier">normal</span> <span class="identifier">pack95</span><span class="special">(</span><span class="identifier">mean</span><span class="special">,</span> <span class="identifier">sd95</span><span class="special">);</span> 348<span class="identifier">cout</span> <span class="special"><<</span><span class="string">"Fraction of packs >= "</span> <span class="special"><<</span> <span class="identifier">minimum_weight</span> <span class="special"><<</span> <span class="string">" with a mean of "</span> <span class="special"><<</span> <span class="identifier">mean</span> 349 <span class="special"><<</span> <span class="string">" and standard deviation of "</span> <span class="special"><<</span> <span class="identifier">pack95</span><span class="special">.</span><span class="identifier">standard_deviation</span><span class="special">()</span> 350 <span class="special"><<</span> <span class="string">" is "</span> <span class="special"><<</span> <span class="identifier">cdf</span><span class="special">(</span><span class="identifier">complement</span><span class="special">(</span><span class="identifier">pack95</span><span class="special">,</span> <span class="identifier">minimum_weight</span><span class="special">))</span> <span class="special"><<</span> <span class="identifier">endl</span><span class="special">;</span> 351<span class="comment">// Fraction of packs >= 2.9 with a mean of 3 and standard deviation of 0.0607957 is 0.95</span> 352</pre> 353<p> 354 This calculation is generalized in the free function find_scale, as shown 355 below, giving the same standard deviation. 356 </p> 357<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">ss</span> <span class="special">=</span> <span class="identifier">find_scale</span><span class="special"><</span><span class="identifier">normal</span><span class="special">>(</span><span class="identifier">minimum_weight</span><span class="special">,</span> <span class="identifier">under_fraction</span><span class="special">,</span> <span class="identifier">packs</span><span class="special">.</span><span class="identifier">mean</span><span class="special">());</span> 358<span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"find_scale<normal>(minimum_weight, under_fraction, packs.mean()); "</span> <span class="special"><<</span> <span class="identifier">ss</span> <span class="special"><<</span> <span class="identifier">endl</span><span class="special">;</span> 359<span class="comment">// find_scale<normal>(minimum_weight, under_fraction, packs.mean()); 0.0607957</span> 360</pre> 361<p> 362 If we had defined an over_fraction, or percentage that must pass specification 363 </p> 364<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">over_fraction</span> <span class="special">=</span> <span class="number">0.95</span><span class="special">;</span> 365</pre> 366<p> 367 And (wrongly) written 368 </p> 369<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">sso</span> <span class="special">=</span> <span class="identifier">find_scale</span><span class="special"><</span><span class="identifier">normal</span><span class="special">>(</span><span class="identifier">minimum_weight</span><span class="special">,</span> <span class="identifier">over_fraction</span><span class="special">,</span> <span class="identifier">packs</span><span class="special">.</span><span class="identifier">mean</span><span class="special">());</span> 370</pre> 371<p> 372 With the default policy, we would get a message like 373 </p> 374<pre class="programlisting">Message from thrown exception was: 375 Error in function boost::math::find_scale<Dist, Policy>(double, double, double, Policy): 376 Computed scale (-0.060795683191176959) is <= 0! Was the complement intended? 377</pre> 378<p> 379 But this would return a <span class="bold"><strong>negative</strong></span> standard 380 deviation - obviously impossible. The probability should be 1 - over_fraction, 381 not over_fraction, thus: 382 </p> 383<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">ss1o</span> <span class="special">=</span> <span class="identifier">find_scale</span><span class="special"><</span><span class="identifier">normal</span><span class="special">>(</span><span class="identifier">minimum_weight</span><span class="special">,</span> <span class="number">1</span> <span class="special">-</span> <span class="identifier">over_fraction</span><span class="special">,</span> <span class="identifier">packs</span><span class="special">.</span><span class="identifier">mean</span><span class="special">());</span> 384<span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"find_scale<normal>(minimum_weight, under_fraction, packs.mean()); "</span> <span class="special"><<</span> <span class="identifier">ss1o</span> <span class="special"><<</span> <span class="identifier">endl</span><span class="special">;</span> 385<span class="comment">// find_scale<normal>(minimum_weight, under_fraction, packs.mean()); 0.0607957</span> 386</pre> 387<p> 388 But notice that using '1 - over_fraction' - will lead to a loss of accuracy, 389 especially if over_fraction was close to unity. (See <a class="link" href="../../overview/complements.html#why_complements">why 390 complements?</a>). In this (very common) case, we should instead use 391 the <a class="link" href="../../overview/complements.html" title="Complements are supported too - and when to use them">complements</a>, 392 giving the most accurate result. 393 </p> 394<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">ssc</span> <span class="special">=</span> <span class="identifier">find_scale</span><span class="special"><</span><span class="identifier">normal</span><span class="special">>(</span><span class="identifier">complement</span><span class="special">(</span><span class="identifier">minimum_weight</span><span class="special">,</span> <span class="identifier">over_fraction</span><span class="special">,</span> <span class="identifier">packs</span><span class="special">.</span><span class="identifier">mean</span><span class="special">()));</span> 395<span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"find_scale<normal>(complement(minimum_weight, over_fraction, packs.mean())); "</span> <span class="special"><<</span> <span class="identifier">ssc</span> <span class="special"><<</span> <span class="identifier">endl</span><span class="special">;</span> 396<span class="comment">// find_scale<normal>(complement(minimum_weight, over_fraction, packs.mean())); 0.0607957</span> 397</pre> 398<p> 399 Note that our guess of 0.06 was close to the accurate value of 0.060795683191176959. 400 </p> 401<p> 402 We can again confirm our prediction thus: 403 </p> 404<pre class="programlisting"><span class="identifier">normal</span> <span class="identifier">pack95c</span><span class="special">(</span><span class="identifier">mean</span><span class="special">,</span> <span class="identifier">ssc</span><span class="special">);</span> 405<span class="identifier">cout</span> <span class="special"><<</span><span class="string">"Fraction of packs >= "</span> <span class="special"><<</span> <span class="identifier">minimum_weight</span> <span class="special"><<</span> <span class="string">" with a mean of "</span> <span class="special"><<</span> <span class="identifier">mean</span> 406 <span class="special"><<</span> <span class="string">" and standard deviation of "</span> <span class="special"><<</span> <span class="identifier">pack95c</span><span class="special">.</span><span class="identifier">standard_deviation</span><span class="special">()</span> 407 <span class="special"><<</span> <span class="string">" is "</span> <span class="special"><<</span> <span class="identifier">cdf</span><span class="special">(</span><span class="identifier">complement</span><span class="special">(</span><span class="identifier">pack95c</span><span class="special">,</span> <span class="identifier">minimum_weight</span><span class="special">))</span> <span class="special"><<</span> <span class="identifier">endl</span><span class="special">;</span> 408<span class="comment">// Fraction of packs >= 2.9 with a mean of 3 and standard deviation of 0.0607957 is 0.95</span> 409</pre> 410<p> 411 Notice that these two deceptively simple questions: 412 </p> 413<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem"> 414 Do we over-fill to make sure we meet a minimum specification (or 415 under-fill to avoid an overdose)? 416 </li></ul></div> 417<p> 418 and/or 419 </p> 420<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem"> 421 Do we measure better? 422 </li></ul></div> 423<p> 424 are actually extremely common. 425 </p> 426<p> 427 The weight of beef might be replaced by a measurement of more or less 428 anything, from drug tablet content, Apollo landing rocket firing, X-ray 429 treatment doses... 430 </p> 431<p> 432 The scale can be variation in dispensing or uncertainty in measurement. 433 </p> 434<p> 435 See <a href="../../../../../../example/find_mean_and_sd_normal.cpp" target="_top">find_mean_and_sd_normal.cpp</a> 436 for full source code & appended program output. 437 </p> 438</div> 439<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr> 440<td align="left"></td> 441<td align="right"><div class="copyright-footer">Copyright © 2006-2019 Nikhar 442 Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, 443 Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Matthew Pulver, Johan 444 Råde, Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg, 445 Daryle Walker and Xiaogang Zhang<p> 446 Distributed under the Boost Software License, Version 1.0. (See accompanying 447 file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>) 448 </p> 449</div></td> 450</tr></table> 451<hr> 452<div class="spirit-nav"> 453<a accesskey="p" href="find_scale_eg.html"><img src="../../../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../find_eg.html"><img src="../../../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../../../index.html"><img src="../../../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="../nag_library.html"><img src="../../../../../../../../doc/src/images/next.png" alt="Next"></a> 454</div> 455</body> 456</html> 457