1<?xml version="1.0" encoding="ISO-Latin-1"?> 2<!DOCTYPE library PUBLIC "-//Boost//DTD BoostBook XML V1.0//EN" 3 "http://www.boost.org/tools/boostbook/dtd/boostbook.dtd"> 4<library name="Lambda" dirname="lambda" id="lambda" 5 last-revision="$Date$" 6 xmlns:xi="http://www.w3.org/2001/XInclude"> 7<libraryinfo> 8 <author> 9 <firstname>Jaakko</firstname> 10 <surname>J�rvi</surname> 11 <email>jarvi at cs tamu edu</email> 12 </author> 13 14 <copyright> 15 <year>1999</year> 16 <year>2000</year> 17 <year>2001</year> 18 <year>2002</year> 19 <year>2003</year> 20 <year>2004</year> 21 <holder>Jaakko J�rvi</holder> 22 <holder>Gary Powell</holder> 23 </copyright> 24 25 <legalnotice> 26 <para>Use, modification and distribution is subject to the Boost 27 Software License, Version 1.0. (See accompanying file 28 <filename>LICENSE_1_0.txt</filename> or copy at <ulink 29 url="http://www.boost.org/LICENSE_1_0.txt">http://www.boost.org/LICENSE_1_0.txt</ulink>)</para> 30 </legalnotice> 31 32 <librarypurpose>Define small unnamed function objects at the actual call site, and more</librarypurpose> 33 <librarycategory name="category:higher-order"/> 34</libraryinfo> 35 36 <!-- --> 37 38 <section id="introduction"> 39 40 <title>In a nutshell</title> 41 42 <para> 43 44 The Boost Lambda Library (BLL in the sequel) is a C++ template 45 library, which implements form of <emphasis>lambda abstractions</emphasis> for C++. 46The term originates from functional programming and lambda calculus, where a lambda abstraction defines an unnamed function. 47 The primary motivation for the BLL is to provide flexible and 48 convenient means to define unnamed function objects for STL algorithms. 49In explaining what the library is about, a line of code says more than a thousand words; the 50 following line outputs the elements of some STL container 51 <literal>a</literal> separated by spaces: 52 53 <programlisting><![CDATA[for_each(a.begin(), a.end(), std::cout << _1 << ' ');]]></programlisting> 54 55 The expression <literal><![CDATA[std::cout << _1 << ' ']]></literal> defines a unary function object. 56 The variable <literal>_1</literal> is the parameter of this function, a <emphasis>placeholder</emphasis> for the actual argument. 57 Within each iteration of <literal>for_each</literal>, the function is 58 called with an element of <literal>a</literal> as the actual argument. 59 This actual argument is substituted for the placeholder, and the <quote>body</quote> of the function is evaluated. 60 </para> 61 62 <para>The essence of BLL is letting you define small unnamed function objects, such as the one above, directly on the call site of an STL algorithm. 63 </para> 64 </section> 65 66 <section id="sect:getting_started"> 67 <title>Getting Started</title> 68 69 <section> 70 <title>Installing the library</title> 71 72 73 <para> 74 The library consists of include files only, hence there is no 75 installation procedure. The <literal>boost</literal> include directory 76 must be on the include path. 77 There are a number of include files that give different functionality: 78 79 <!-- TODO: tarkista viel� riippuvuudet--> 80 <itemizedlist> 81 82 <listitem><para> 83 <filename>lambda/lambda.hpp</filename> defines lambda expressions for different C++ 84 operators, see <xref linkend="sect:operator_expressions"/>. 85 </para></listitem> 86 87 <listitem><para> 88 <filename>lambda/bind.hpp</filename> defines <literal>bind</literal> functions for up to 9 arguments, see <xref linkend="sect:bind_expressions"/>.</para></listitem> 89 90 91 <listitem><para> 92 <filename>lambda/if.hpp</filename> defines lambda function equivalents for if statements and the conditional operator, see <xref linkend="sect:lambda_expressions_for_control_structures"/> (includes <filename>lambda.hpp</filename>). 93 </para></listitem> 94 95 <listitem><para> 96 <filename>lambda/loops.hpp</filename> defines lambda function equivalent for looping constructs, see <xref linkend="sect:lambda_expressions_for_control_structures"/>. 97 </para></listitem> 98 99 <listitem><para> 100 <filename>lambda/switch.hpp</filename> defines lambda function equivalent for the switch statement, see <xref linkend="sect:lambda_expressions_for_control_structures"/>. 101 </para></listitem> 102 103 <listitem><para> 104 <filename>lambda/construct.hpp</filename> provides tools for writing lambda expressions with constructor, destructor, new and delete invocations, see <xref linkend="sect:construction_and_destruction"/> (includes <filename>lambda.hpp</filename>). 105 </para></listitem> 106 107 <listitem><para> 108 <filename>lambda/casts.hpp</filename> provides lambda versions of different casts, as well as <literal>sizeof</literal> and <literal>typeid</literal>, see <xref linkend="sect:cast_expressions"/>. 109 </para></listitem> 110 111 <listitem><para> 112 <filename>lambda/exceptions.hpp</filename> gives tools for throwing and catching 113 exceptions within lambda functions, <xref linkend="sect:exceptions"/> (includes 114 <filename>lambda.hpp</filename>). 115 </para></listitem> 116 117 <listitem><para> 118 <filename>lambda/algorithm.hpp</filename> and <filename>lambda/numeric.hpp</filename> (cf. standard <filename>algortihm</filename> and <filename>numeric</filename> headers) allow nested STL algorithm invocations, see <xref linkend="sect:nested_stl_algorithms"/>. 119 </para></listitem> 120 121 </itemizedlist> 122 123 Any other header files in the package are for internal use. 124 Additionally, the library depends on two other Boost Libraries, the 125 <emphasis>Tuple</emphasis> <xref linkend="cit:boost::tuple"/> and the <emphasis>type_traits</emphasis> <xref linkend="cit:boost::type_traits"/> libraries, and on the <filename>boost/ref.hpp</filename> header. 126 </para> 127 128 <para> 129 All definitions are placed in the namespace <literal>boost::lambda</literal> and its subnamespaces. 130 </para> 131 132 </section> 133 134 <section> 135 <title>Conventions used in this document</title> 136 137 <para>In most code examples, we omit the namespace prefixes for names in the <literal moreinfo="none">std</literal> and <literal moreinfo="none">boost::lambda</literal> namespaces. 138Implicit using declarations 139<programlisting> 140using namespace std; 141using namespace boost::lambda; 142</programlisting> 143are assumed to be in effect. 144</para> 145 146 </section> 147 </section> 148 149 <section> 150 <title>Introduction</title> 151 152 <section> 153 <title>Motivation</title> 154 <para>The Standard Template Library (STL) 155 <xref role="citation" linkend="cit:stepanov:94"/>, now part of the C++ Standard Library <xref role="citation" linkend="cit:c++:98"/>, is a generic container and algorithm library. 156Typically STL algorithms operate on container elements via <emphasis>function objects</emphasis>. These function objects are passed as arguments to the algorithms. 157</para> 158 159<para> 160Any C++ construct that can be called with the function call syntax 161is a function object. 162The STL contains predefined function objects for some common cases (such as <literal>plus</literal>, <literal>less</literal> and <literal>not1</literal>). 163As an example, one possible implementation for the standard <literal>plus</literal> template is: 164 165<programlisting> 166<![CDATA[template <class T> 167struct plus : public binary_function<T, T, T> { 168 T operator()(const T& i, const T& j) const { 169 return i + j; 170 } 171};]]> 172</programlisting> 173 174The base class <literal><![CDATA[binary_function<T, T, T>]]></literal> contains typedefs for the argument and return types of the function object, which are needed to make the function object <emphasis>adaptable</emphasis>. 175</para> 176 177<para> 178In addition to the basic function object classes, such as the one above, 179the STL contains <emphasis>binder</emphasis> templates for creating a unary function object from an adaptable binary function object by fixing one of the arguments to a constant value. 180For example, instead of having to explicitly write a function object class like: 181 182<programlisting> 183<![CDATA[class plus_1 { 184 int _i; 185public: 186 plus_1(const int& i) : _i(i) {} 187 int operator()(const int& j) { return _i + j; } 188};]]> 189</programlisting> 190 191the equivalent functionality can be achieved with the <literal moreinfo="none">plus</literal> template and one of the binder templates (<literal moreinfo="none">bind1st</literal>). 192E.g., the following two expressions create function objects with identical functionalities; 193when invoked, both return the result of adding <literal moreinfo="none">1</literal> to the argument of the function object: 194 195<programlisting> 196<![CDATA[plus_1(1) 197bind1st(plus<int>(), 1)]]> 198</programlisting> 199 200The subexpression <literal><![CDATA[plus<int>()]]></literal> in the latter line is a binary function object which computes the sum of two integers, and <literal>bind1st</literal> invokes this function object partially binding the first argument to <literal>1</literal>. 201As an example of using the above function object, the following code adds <literal>1</literal> to each element of some container <literal>a</literal> and outputs the results into the standard output stream <literal>cout</literal>. 202 203<programlisting> 204<![CDATA[transform(a.begin(), a.end(), ostream_iterator<int>(cout), 205 bind1st(plus<int>(), 1));]]> 206</programlisting> 207 208</para> 209 210<para> 211To make the binder templates more generally applicable, the STL contains <emphasis>adaptors</emphasis> for making 212pointers or references to functions, and pointers to member functions, 213adaptable. 214 215Finally, some STL implementations contain function composition operations as 216extensions to the standard <xref linkend="cit:sgi:02"/>. 217 </para> 218 219<para> 220All these tools aim at one goal: to make it possible to specify 221<emphasis>unnamed functions</emphasis> in a call of an STL algorithm, 222in other words, to pass code fragments as an argument to a function. 223 224However, this goal is attained only partially. 225The simple example above shows that the definition of unnamed functions 226with the standard tools is cumbersome. 227 228Complex expressions involving functors, adaptors, binders and 229function composition operations tend to be difficult to comprehend. 230 231In addition to this, there are significant restrictions in applying 232the standard tools. E.g. the standard binders allow only one argument 233of a binary function to be bound; there are no binders for 2343-ary, 4-ary etc. functions. 235</para> 236 237<para> 238The Boost Lambda Library provides solutions for the problems described above: 239 240<itemizedlist> 241<listitem> 242<para> 243Unnamed functions can be created easily with an intuitive syntax. 244 245The above example can be written as: 246 247<programlisting> 248<![CDATA[transform(a.begin(), a.end(), ostream_iterator<int>(cout), 249 1 + _1);]]> 250</programlisting> 251 252or even more intuitively: 253 254<programlisting> 255<![CDATA[for_each(a.begin(), a.end(), cout << (1 + _1));]]> 256</programlisting> 257</para> 258 259</listitem> 260 261<listitem> 262<para> 263Most of the restrictions in argument binding are removed, 264arbitrary arguments of practically any C++ function can be bound. 265</para> 266</listitem> 267 268<listitem> 269<para> 270Separate function composition operations are not needed, 271as function composition is supported implicitly. 272 273</para> 274</listitem> 275 276</itemizedlist> 277 278</para> 279 280</section> 281 282 283 284<section> 285 <title>Introduction to lambda expressions</title> 286 287 <para> 288 Lambda expression are common in functional programming languages. 289 Their syntax varies between languages (and between different forms of lambda calculus), but the basic form of a lambda expressions is: 290 291 292<programlisting> 293lambda x<subscript>1</subscript> ... x<subscript>n</subscript>.e 294</programlisting> 295 <!-- $\lambda x_1 \cdots x_n . e$ --> 296 297 A lambda expression defines an unnamed function and consists of: 298 <itemizedlist> 299 <listitem> 300 <para> 301 the parameters of this function: <literal>x<subscript>1</subscript> ... x<subscript>n</subscript></literal>. 302 <!--$x_1 \cdots x_n$--> 303 </para> 304 </listitem> 305 <listitem> 306 <para>the expression e which computes the value of the function in terms of the parameters <literal>x<subscript>1</subscript> ... x<subscript>n</subscript></literal>. 307 </para> 308 </listitem> 309 </itemizedlist> 310 311 A simple example of a lambda expression is 312<programlisting> 313lambda x y.x+y 314</programlisting> 315Applying the lambda function means substituting the formal parameters with the actual arguments: 316<programlisting> 317(lambda x y.x+y) 2 3 = 2 + 3 = 5 318</programlisting> 319 320 321 </para> 322 323<para> 324In the C++ version of lambda expressions the <literal>lambda x<subscript>1</subscript> ... x<subscript>n</subscript></literal> part is missing and the formal parameters have predefined names. 325In the current version of the library, 326there are three such predefined formal parameters, 327called <emphasis>placeholders</emphasis>: 328<literal>_1</literal>, <literal>_2</literal> and <literal>_3</literal>. 329They refer to the first, second and third argument of the function defined 330by the lambda expression. 331 332For example, the C++ version of the definition 333<programlisting>lambda x y.x+y</programlisting> 334is 335<programlisting>_1 + _2</programlisting> 336</para> 337 338 <para> 339Hence, there is no syntactic keyword for C++ lambda expressions. 340 The use of a placeholder as an operand implies that the operator invocation is a lambda expression. 341 However, this is true only for operator invocations. 342 Lambda expressions containing function calls, control structures, casts etc. require special syntactic constructs. 343 Most importantly, function calls need to be wrapped inside a <literal>bind</literal> function. 344 345 As an example, consider the lambda expression: 346 347 <programlisting>lambda x y.foo(x,y)</programlisting> 348 349 Rather than <literal>foo(_1, _2)</literal>, the C++ counterpart for this expression is: 350 351 <programlisting>bind(foo, _1, _2)</programlisting> 352 353 We refer to this type of C++ lambda expressions as <emphasis>bind expressions</emphasis>. 354 </para> 355 356 <para>A lambda expression defines a C++ function object, hence function application syntax is like calling any other function object, for instance: <literal>(_1 + _2)(i, j)</literal>. 357 358 359 </para> 360 361 362 363<section id="sect:partial_function_application"> 364<title>Partial function application</title> 365 366<para> 367A bind expression is in effect a <emphasis>partial function application</emphasis>. 368In partial function application, some of the arguments of a function are bound to fixed values. 369 The result is another function, with possibly fewer arguments. 370 When called with the unbound arguments, this new function invokes the original function with the merged argument list of bound and unbound arguments. 371 </para> 372 373<!-- <para>The underlying implementation of the BLL unifies the two types of lambda expressions (bind expressions and lambda expressions consisting of operator calls). 374 If operators are regarded as functions, it is easy to see that lambda expressions using operators are partial function applications as well. 375 E.g. the lambda expression <literal>_1 + 1</literal> can be seen as syntactic sugar for the pseudo code <literal>bind(operator+, _1, 1)</literal>. 376 </para> 377--> 378 379 </section> 380 381 382 383 <section id="sect:terminology"> 384 <title>Terminology</title> 385 386 <para> 387 A lambda expression defines a function. A C++ lambda expression concretely constructs a function object, <emphasis>a functor</emphasis>, when evaluated. We use the name <emphasis>lambda functor</emphasis> to refer to such a function object. 388 Hence, in the terminology adopted here, the result of evaluating a lambda expression is a lambda functor. 389 </para> 390 391 </section> 392 393 </section> 394 395 396 397 </section> 398 399 <section id = "sect:using_library"> 400 <title>Using the library</title> 401 402 <para> 403The purpose of this section is to introduce the basic functionality of the library. 404There are quite a lot of exceptions and special cases, but discussion of them is postponed until later sections. 405 406 407 </para> 408 409 <section id = "sect:introductory_examples"> 410 <title>Introductory Examples</title> 411 412 <para> 413 In this section we give basic examples of using BLL lambda expressions in STL algorithm invocations. 414 We start with some simple expressions and work up. 415 First, we initialize the elements of a container, say, a <literal>list</literal>, to the value <literal>1</literal>: 416 417 418 <programlisting> 419<![CDATA[list<int> v(10); 420for_each(v.begin(), v.end(), _1 = 1);]]></programlisting> 421 422 The expression <literal>_1 = 1</literal> creates a lambda functor which assigns the value <literal>1</literal> to every element in <literal>v</literal>.<footnote> 423<para> 424Strictly taken, the C++ standard defines <literal>for_each</literal> as a <emphasis>non-modifying sequence operation</emphasis>, and the function object passed to <literal moreinfo="none">for_each</literal> should not modify its argument. 425The requirements for the arguments of <literal>for_each</literal> are unnecessary strict, since as long as the iterators are <emphasis>mutable</emphasis>, <literal>for_each</literal> accepts a function object that can have side-effects on their argument. 426Nevertheless, it is straightforward to provide another function template with the functionality of<literal>std::for_each</literal> but more fine-grained requirements for its arguments. 427</para> 428</footnote> 429 </para> 430 431 <para> 432 Next, we create a container of pointers and make them point to the elements in the first container <literal>v</literal>: 433 434 <programlisting> 435<![CDATA[vector<int*> vp(10); 436transform(v.begin(), v.end(), vp.begin(), &_1);]]></programlisting> 437 438The expression <literal><![CDATA[&_1]]></literal> creates a function object for getting the address of each element in <literal>v</literal>. 439The addresses get assigned to the corresponding elements in <literal>vp</literal>. 440 </para> 441 442 <para> 443 The next code fragment changes the values in <literal>v</literal>. 444 For each element, the function <literal>foo</literal> is called. 445The original value of the element is passed as an argument to <literal>foo</literal>. 446The result of <literal>foo</literal> is assigned back to the element: 447 448 449 <programlisting> 450<![CDATA[int foo(int); 451for_each(v.begin(), v.end(), _1 = bind(foo, _1));]]></programlisting> 452 </para> 453 454 455 <para> 456 The next step is to sort the elements of <literal>vp</literal>: 457 458 <programlisting>sort(vp.begin(), vp.end(), *_1 > *_2);</programlisting> 459 460 In this call to <literal>sort</literal>, we are sorting the elements by their contents in descending order. 461 </para> 462 463 <para> 464 Finally, the following <literal>for_each</literal> call outputs the sorted content of <literal>vp</literal> separated by line breaks: 465 466<programlisting> 467<![CDATA[for_each(vp.begin(), vp.end(), cout << *_1 << '\n');]]> 468</programlisting> 469 470Note that a normal (non-lambda) expression as subexpression of a lambda expression is evaluated immediately. 471This may cause surprises. 472For instance, if the previous example is rewritten as 473<programlisting> 474<![CDATA[for_each(vp.begin(), vp.end(), cout << '\n' << *_1);]]> 475</programlisting> 476the subexpression <literal><![CDATA[cout << '\n']]></literal> is evaluated immediately and the effect is to output a single line break, followed by the elements of <literal>vp</literal>. 477The BLL provides functions <literal>constant</literal> and <literal>var</literal> to turn constants and, respectively, variables into lambda expressions, and can be used to prevent the immediate evaluation of subexpressions: 478<programlisting> 479<![CDATA[for_each(vp.begin(), vp.end(), cout << constant('\n') << *_1);]]> 480</programlisting> 481These functions are described more thoroughly in <xref linkend="sect:delaying_constants_and_variables"/> 482 483</para> 484 485 486 487 488 489 </section> 490 491 492 <section id="sect:parameter_and_return_types"> 493 <title>Parameter and return types of lambda functors</title> 494 495 <para> 496 During the invocation of a lambda functor, the actual arguments are substituted for the placeholders. 497 The placeholders do not dictate the type of these actual arguments. 498 The basic rule is that a lambda function can be called with arguments of any types, as long as the lambda expression with substitutions performed is a valid C++ expression. 499 As an example, the expression 500 <literal>_1 + _2</literal> creates a binary lambda functor. 501 It can be called with two objects of any types <literal>A</literal> and <literal>B</literal> for which <literal>operator+(A,B)</literal> is defined (and for which BLL knows the return type of the operator, see below). 502 </para> 503 504 <para> 505 C++ lacks a mechanism to query a type of an expression. 506 However, this precise mechanism is crucial for the implementation of C++ lambda expressions. 507 Consequently, BLL includes a somewhat complex type deduction system which uses a set of traits classes for deducing the resulting type of lambda functions. 508 It handles expressions where the operands are of built-in types and many of the expressions with operands of standard library types. 509 Many of the user defined types are covered as well, particularly if the user defined operators obey normal conventions in defining the return types. 510 </para> 511 512 <!-- TODO: move this forward, and just refer to it. --> 513 <para> 514 There are, however, cases when the return type cannot be deduced. For example, suppose you have defined: 515 516 <programlisting>C operator+(A, B);</programlisting> 517 518 The following lambda function invocation fails, since the return type cannot be deduced: 519 520 <programlisting>A a; B b; (_1 + _2)(a, b);</programlisting> 521 </para> 522 523 <para> 524 There are two alternative solutions to this. 525 The first is to extend the BLL type deduction system to cover your own types (see <xref linkend="sect:extending_return_type_system"/>). 526 The second is to use a special lambda expression (<literal>ret</literal>) which defines the return type in place (see <xref linkend = "sect:overriding_deduced_return_type"/>): 527 528 <programlisting><![CDATA[A a; B b; ret<C>(_1 + _2)(a, b);]]></programlisting> 529 </para> 530 531 <para> 532 For bind expressions, the return type can be defined as a template argument of the bind function as well: 533 <programlisting><![CDATA[bind<int>(foo, _1, _2);]]></programlisting> 534 535<!-- 536 A rare case, where the <literal><![CDATA[ret<type>(bind(...))]]></literal> syntax does not work, but 537 <literal><![CDATA[bind<type>(...)]]></literal> does, is explained in <xref linkend="sect:nullary_functors_and_ret"/>. 538--> 539 </para> 540 </section> 541 542 <section id="sect:actual_arguments_to_lambda_functors"> 543 <title>About actual arguments to lambda functors</title> 544 545 <para><emphasis>This section is no longer (or currently) relevant; 546 acual arguments can be non-const rvalues. 547 The section can, however, become relevant again, if in the future BLL will support 548 lambda functors with higher arities than 3.</emphasis></para> 549 550 <para>A general restriction for the actual arguments is that they cannot be non-const rvalues. 551 For example: 552 553<programlisting> 554int i = 1; int j = 2; 555(_1 + _2)(i, j); // ok 556(_1 + _2)(1, 2); // error (!) 557</programlisting> 558 559 This restriction is not as bad as it may look. 560 Since the lambda functors are most often called inside STL-algorithms, 561 the arguments originate from dereferencing iterators and the dereferencing operators seldom return rvalues. 562 And for the cases where they do, there are workarounds discussed in 563<xref linkend="sect:rvalues_as_actual_arguments"/>. 564 565 566 </para> 567 568 </section> 569 570 571<section id="sect:storing_bound_arguments"> 572 573<title>Storing bound arguments in lambda functions</title> 574 575<para> 576 577By default, temporary const copies of the bound arguments are stored 578in the lambda functor. 579 580This means that the value of a bound argument is fixed at the time of the 581creation of the lambda function and remains constant during the lifetime 582of the lambda function object. 583For example: 584<programlisting> 585int i = 1; 586(_1 = 2, _1 + i)(i); 587</programlisting> 588The comma operator is overloaded to combine lambda expressions into a sequence; 589the resulting unary lambda functor first assigns 2 to its argument, 590then adds the value of <literal>i</literal> to it. 591The value of the expression in the last line is 3, not 4. 592In other words, the lambda expression that is created is 593<literal>lambda x.(x = 2, x + 1)</literal> rather than 594<literal>lambda x.(x = 2, x + i)</literal>. 595 596</para> 597 598<para> 599 600As said, this is the default behavior for which there are exceptions. 601The exact rules are as follows: 602 603<itemizedlist> 604 605<listitem> 606 607<para> 608 609The programmer can control the storing mechanism with <literal>ref</literal> 610and <literal>cref</literal> wrappers <xref linkend="cit:boost::ref"/>. 611 612Wrapping an argument with <literal>ref</literal>, or <literal>cref</literal>, 613instructs the library to store the argument as a reference, 614or as a reference to const respectively. 615 616For example, if we rewrite the previous example and wrap the variable 617<literal>i</literal> with <literal>ref</literal>, 618we are creating the lambda expression <literal>lambda x.(x = 2, x + i)</literal> 619and the value of the expression in the last line will be 4: 620 621<programlisting> 622i = 1; 623(_1 = 2, _1 + ref(i))(i); 624</programlisting> 625 626Note that <literal>ref</literal> and <literal>cref</literal> are different 627from <literal>var</literal> and <literal>constant</literal>. 628 629While the latter ones create lambda functors, the former do not. 630For example: 631 632<programlisting> 633int i; 634var(i) = 1; // ok 635ref(i) = 1; // not ok, ref(i) is not a lambda functor 636</programlisting> 637 638The functions <literal>ref</literal> and <literal>cref</literal> mostly 639exist for historical reasons, 640and <literal>ref</literal> can always 641be replaced with <literal>var</literal>, and <literal>cref</literal> with 642<literal>constant_ref</literal>. 643See <xref linkend="sect:delaying_constants_and_variables"/> for details. 644The <literal>ref</literal> and <literal>cref</literal> functions are 645general purpose utility functions in Boost, and hence defined directly 646in the <literal moreinfo="none">boost</literal> namespace. 647 648</para> 649</listitem> 650 651<listitem> 652<para> 653Array types cannot be copied, they are thus stored as const reference by default. 654</para> 655</listitem> 656 657<listitem> 658 659<para> 660For some expressions it makes more sense to store the arguments as references. 661 662For example, the obvious intention of the lambda expression 663<literal>i += _1</literal> is that calls to the lambda functor affect the 664value of the variable <literal>i</literal>, 665rather than some temporary copy of it. 666 667As another example, the streaming operators take their leftmost argument 668as non-const references. 669 670The exact rules are: 671 672<itemizedlist> 673<listitem> 674<para>The left argument of compound assignment operators (<literal>+=</literal>, <literal>*=</literal>, etc.) are stored as references to non-const.</para> 675</listitem> 676 677<listitem> 678<para>If the left argument of <literal><![CDATA[<<]]></literal> or <literal><![CDATA[>>]]></literal> operator is derived from an instantiation of <literal>basic_ostream</literal> or respectively from <literal>basic_istream</literal>, the argument is stored as a reference to non-const. 679For all other types, the argument is stored as a copy. 680</para> 681</listitem> 682 683<listitem> 684<para> 685In pointer arithmetic expressions, non-const array types are stored as non-const references. 686This is to prevent pointer arithmetic making non-const arrays const. 687 688</para> 689</listitem> 690 691</itemizedlist> 692 693</para> 694</listitem> 695 696</itemizedlist> 697</para> 698 699</section> 700 701</section> 702 703<section id="sect:lambda_expressions_in_details"> 704<title>Lambda expressions in details</title> 705 706<para> 707This section describes different categories of lambda expressions in details. 708We devote a separate section for each of the possible forms of a lambda expression. 709 710 711</para> 712 713<section id="sect:placeholders"> 714<title>Placeholders</title> 715 716<para> 717The BLL defines three placeholder types: <literal>placeholder1_type</literal>, <literal>placeholder2_type</literal> and <literal>placeholder3_type</literal>. 718BLL has a predefined placeholder variable for each placeholder type: <literal>_1</literal>, <literal>_2</literal> and <literal>_3</literal>. 719However, the user is not forced to use these placeholders. 720It is easy to define placeholders with alternative names. 721This is done by defining new variables of placeholder types. 722For example: 723 724<programlisting>boost::lambda::placeholder1_type X; 725boost::lambda::placeholder2_type Y; 726boost::lambda::placeholder3_type Z; 727</programlisting> 728 729With these variables defined, <literal>X += Y * Z</literal> is equivalent to <literal>_1 += _2 * _3</literal>. 730</para> 731 732<para> 733The use of placeholders in the lambda expression determines whether the resulting function is nullary, unary, binary or 3-ary. 734The highest placeholder index is decisive. For example: 735 736<programlisting> 737_1 + 5 // unary 738_1 * _1 + _1 // unary 739_1 + _2 // binary 740bind(f, _1, _2, _3) // 3-ary 741_3 + 10 // 3-ary 742</programlisting> 743 744Note that the last line creates a 3-ary function, which adds <literal>10</literal> to its <emphasis>third</emphasis> argument. 745The first two arguments are discarded. 746Furthermore, lambda functors only have a minimum arity. 747One can always provide more arguments (up the number of supported placeholders) 748that is really needed. 749The remaining arguments are just discarded. 750For example: 751 752<programlisting> 753int i, j, k; 754_1(i, j, k) // returns i, discards j and k 755(_2 + _2)(i, j, k) // returns j+j, discards i and k 756</programlisting> 757 758See 759<xref linkend="sect:why_weak_arity"/> for the design rationale behind this 760functionality. 761 762</para> 763 764<para> 765In addition to these three placeholder types, there is also a fourth placeholder type <literal>placeholderE_type</literal>. 766The use of this placeholder is defined in <xref linkend="sect:exceptions"/> describing exception handling in lambda expressions. 767</para> 768 769<para>When an actual argument is supplied for a placeholder, the parameter passing mode is always by reference. 770This means that any side-effects to the placeholder are reflected to the actual argument. 771For example: 772 773 774<programlisting> 775<![CDATA[int i = 1; 776(_1 += 2)(i); // i is now 3 777(++_1, cout << _1)(i) // i is now 4, outputs 4]]> 778</programlisting> 779</para> 780 781</section> 782 783<section id="sect:operator_expressions"> 784<title>Operator expressions</title> 785 786<para> 787The basic rule is that any C++ operator invocation with at least one argument being a lambda expression is itself a lambda expression. 788Almost all overloadable operators are supported. 789For example, the following is a valid lambda expression: 790 791<programlisting><![CDATA[cout << _1, _2[_3] = _1 && false]]></programlisting> 792</para> 793 794<para> 795However, there are some restrictions that originate from the C++ operator overloading rules, and some special cases. 796</para> 797 798 799<section> 800<title>Operators that cannot be overloaded</title> 801 802<para> 803Some operators cannot be overloaded at all (<literal>::</literal>, <literal>.</literal>, <literal>.*</literal>). 804For some operators, the requirements on return types prevent them to be overloaded to create lambda functors. 805These operators are <literal>->.</literal>, <literal>-></literal>, <literal>new</literal>, <literal>new[]</literal>, <literal>delete</literal>, <literal>delete[]</literal> and <literal>?:</literal> (the conditional operator). 806</para> 807 808</section> 809 810<section id="sect:assignment_and_subscript"> 811<title>Assignment and subscript operators</title> 812 813<para> 814These operators must be implemented as class members. 815Consequently, the left operand must be a lambda expression. For example: 816 817<programlisting> 818int i; 819_1 = i; // ok 820i = _1; // not ok. i is not a lambda expression 821</programlisting> 822 823There is a simple solution around this limitation, described in <xref linkend="sect:delaying_constants_and_variables"/>. 824In short, 825the left hand argument can be explicitly turned into a lambda functor by wrapping it with a special <literal>var</literal> function: 826<programlisting> 827var(i) = _1; // ok 828</programlisting> 829 830</para> 831</section> 832 833<section id="sect:logical_operators"> 834<title>Logical operators</title> 835 836<para> 837Logical operators obey the short-circuiting evaluation rules. For example, in the following code, <literal>i</literal> is never incremented: 838<programlisting> 839bool flag = true; int i = 0; 840(_1 || ++_2)(flag, i); 841</programlisting> 842</para> 843</section> 844 845<section id="sect:comma_operator"> 846<title>Comma operator</title> 847 848<para> 849Comma operator is the <quote>statement separator</quote> in lambda expressions. 850Since comma is also the separator between arguments in a function call, extra parenthesis are sometimes needed: 851 852<programlisting> 853for_each(a.begin(), a.end(), (++_1, cout << _1)); 854</programlisting> 855 856Without the extra parenthesis around <literal>++_1, cout << _1</literal>, the code would be interpreted as an attempt to call <literal>for_each</literal> with four arguments. 857</para> 858<para> 859The lambda functor created by the comma operator adheres to the C++ rule of always evaluating the left operand before the right one. 860In the above example, each element of <literal>a</literal> is first incremented, then written to the stream. 861</para> 862</section> 863 864<section id="sect:function_call_operator"> 865<title>Function call operator</title> 866 867<para> 868The function call operators have the effect of evaluating the lambda 869functor. 870Calls with too few arguments lead to a compile time error. 871</para> 872</section> 873 874<section id="sect:member_pointer_operator"> 875<title>Member pointer operator</title> 876 877<para> 878The member pointer operator <literal>operator->*</literal> can be overloaded freely. 879Hence, for user defined types, member pointer operator is no special case. 880The built-in meaning, however, is a somewhat more complicated case. 881The built-in member pointer operator is applied if the left argument is a pointer to an object of some class <literal>A</literal>, and the right hand argument is a pointer to a member of <literal>A</literal>, or a pointer to a member of a class from which <literal>A</literal> derives. 882We must separate two cases: 883 884<itemizedlist> 885 886<listitem> 887<para>The right hand argument is a pointer to a data member. 888In this case the lambda functor simply performs the argument substitution and calls the built-in member pointer operator, which returns a reference to the member pointed to. 889For example: 890<programlisting> 891<![CDATA[struct A { int d; }; 892A* a = new A(); 893 ... 894(a ->* &A::d); // returns a reference to a->d 895(_1 ->* &A::d)(a); // likewise]]> 896</programlisting> 897</para> 898</listitem> 899 900<listitem> 901<para> 902The right hand argument is a pointer to a member function. 903For a built-in call like this, the result is kind of a delayed member function call. 904Such an expression must be followed by a function argument list, with which the delayed member function call is performed. 905For example: 906<programlisting> 907<![CDATA[struct B { int foo(int); }; 908B* b = new B(); 909 ... 910(b ->* &B::foo) // returns a delayed call to b->foo 911 // a function argument list must follow 912(b ->* &B::foo)(1) // ok, calls b->foo(1) 913 914(_1 ->* &B::foo)(b); // returns a delayed call to b->foo, 915 // no effect as such 916(_1 ->* &B::foo)(b)(1); // calls b->foo(1)]]> 917</programlisting> 918</para> 919</listitem> 920</itemizedlist> 921</para> 922</section> 923 924</section> 925 926<section id="sect:bind_expressions"> 927<title>Bind expressions</title> 928 929<para> 930Bind expressions can have two forms: 931 932<!-- TODO: shouldn't really be emphasis, but a variable or something--> 933<programlisting> 934bind(<parameter>target-function</parameter>, <parameter>bind-argument-list</parameter>) 935bind(<parameter>target-member-function</parameter>, <parameter>object-argument</parameter>, <parameter>bind-argument-list</parameter>) 936</programlisting> 937 938A bind expression delays the call of a function. 939If this <emphasis>target function</emphasis> is <emphasis>n</emphasis>-ary, then the <literal><emphasis>bind-argument-list</emphasis></literal> must contain <emphasis>n</emphasis> arguments as well. 940In the current version of the BLL, <inlineequation>0 <= n <= 9</inlineequation> must hold. 941For member functions, the number of arguments must be at most <inlineequation>8</inlineequation>, as the object argument takes one argument position. 942 943Basically, the 944<emphasis><literal>bind-argument-list</literal></emphasis> must be a valid argument list for the target function, except that any argument can be replaced with a placeholder, or more generally, with a lambda expression. 945Note that also the target function can be a lambda expression. 946 947The result of a bind expression is either a nullary, unary, binary or 3-ary function object depending on the use of placeholders in the <emphasis><literal>bind-argument-list</literal></emphasis> (see <xref linkend="sect:placeholders"/>). 948</para> 949 950<para> 951The return type of the lambda functor created by the bind expression can be given as an explicitly specified template parameter, as in the following example: 952<programlisting> 953bind<<emphasis>RET</emphasis>>(<emphasis>target-function</emphasis>, <emphasis>bind-argument-list</emphasis>) 954</programlisting> 955This is only necessary if the return type of the target function cannot be deduced. 956</para> 957 958<para> 959The following sections describe the different types of bind expressions. 960</para> 961 962<section id="sect:function_pointers_as_targets"> 963<title>Function pointers or references as targets</title> 964 965<para>The target function can be a pointer or a reference to a function and it can be either bound or unbound. For example: 966<programlisting> 967<![CDATA[X foo(A, B, C); A a; B b; C c; 968bind(foo, _1, _2, c)(a, b); 969bind(&foo, _1, _2, c)(a, b); 970bind(_1, a, b, c)(foo);]]> 971</programlisting> 972 973The return type deduction always succeeds with this type of bind expressions. 974</para> 975 976<para> 977Note, that in C++ it is possible to take the address of an overloaded function only if the address is assigned to, or used as an initializer of, a variable, the type of which solves the amibiguity, or if an explicit cast expression is used. 978This means that overloaded functions cannot be used in bind expressions directly, e.g.: 979<programlisting> 980<![CDATA[void foo(int); 981void foo(float); 982int i; 983 ... 984bind(&foo, _1)(i); // error 985 ... 986void (*pf1)(int) = &foo; 987bind(pf1, _1)(i); // ok 988bind(static_cast<void(*)(int)>(&foo), _1)(i); // ok]]> 989</programlisting> 990</para> 991</section> 992 993<section id="member_functions_as_targets"> 994<title>Member functions as targets</title> 995 996<para> 997The syntax for using pointers to member function in bind expression is: 998<programlisting> 999bind(<parameter>target-member-function</parameter>, <parameter>object-argument</parameter>, <parameter>bind-argument-list</parameter>) 1000</programlisting> 1001 1002The object argument can be a reference or pointer to the object, the BLL supports both cases with a uniform interface: 1003 1004<programlisting> 1005<![CDATA[bool A::foo(int) const; 1006A a; 1007vector<int> ints; 1008 ... 1009find_if(ints.begin(), ints.end(), bind(&A::foo, a, _1)); 1010find_if(ints.begin(), ints.end(), bind(&A::foo, &a, _1));]]> 1011</programlisting> 1012 1013Similarly, if the object argument is unbound, the resulting lambda functor can be called both via a pointer or a reference: 1014 1015<programlisting> 1016<![CDATA[bool A::foo(int); 1017list<A> refs; 1018list<A*> pointers; 1019 ... 1020find_if(refs.begin(), refs.end(), bind(&A::foo, _1, 1)); 1021find_if(pointers.begin(), pointers.end(), bind(&A::foo, _1, 1));]]> 1022</programlisting> 1023 1024</para> 1025 1026<!--%The exact rules for the object argument (whether it is bound, or supplied in the lambda function invoction) are as follows: 1027%If the target function is a pointer to a member function of some class \snip{A}, then the object argument must be an expression of type \snip{B}, where either 1028%\begin{itemize} 1029%\item \snip{B} = \snip{A} or there is an implicit conversion from \snip{B} to \snip{A}. 1030%\item \snip{B} = \snip{A*}. 1031%\item \snip{B} = \snip{C*}, where \snip{C} is any class derived form \snip{A}. 1032%\end{itemize} 1033%For example: 1034%\begin{alltt} 1035%struct A \{ 1036% virtual void f(); 1037% void fc() const; 1038%\}; 1039% 1040%struct B : public A \{ 1041% virtual void f(); 1042%\}; 1043% 1044%struct C \{ 1045% operator A const() \{ return A(); \} 1046%\}; 1047% 1048% A a; B b; C c; 1049% ... 1050% bind(&A::f, a)(); 1051% bind(&A::f, b)(); // calls B::f 1052% bind(&A::fc, c)(); 1053% 1054% bind(&A::f, &a)(); 1055% bind(&A::f, &b)(); // calls B::f 1056% bind(&A::f, &c)(); // error: no conversion from C* \(\rightarrow\) A, 1057%\end{alltt} 1058--> 1059 1060<para> 1061Even though the interfaces are the same, there are important semantic differences between using a pointer or a reference as the object argument. 1062The differences stem from the way <literal>bind</literal>-functions take their parameters, and how the bound parameters are stored within the lambda functor. 1063The object argument has the same parameter passing and storing mechanism as any other bind argument slot (see <xref linkend="sect:storing_bound_arguments"/>); it is passed as a const reference and stored as a const copy in the lambda functor. 1064This creates some asymmetry between the lambda functor and the original member function, and between seemingly similar lambda functors. For example: 1065<programlisting> 1066class A { 1067 int i; mutable int j; 1068public: 1069 1070 A(int ii, int jj) : i(ii), j(jj) {}; 1071 void set_i(int x) { i = x; }; 1072 void set_j(int x) const { j = x; }; 1073}; 1074</programlisting> 1075 1076When a pointer is used, the behavior is what the programmer might expect: 1077 1078<programlisting> 1079<![CDATA[A a(0,0); int k = 1; 1080bind(&A::set_i, &a, _1)(k); // a.i == 1 1081bind(&A::set_j, &a, _1)(k); // a.j == 1]]> 1082</programlisting> 1083 1084Even though a const copy of the object argument is stored, the original object <literal>a</literal> is still modified. 1085This is since the object argument is a pointer, and the pointer is copied, not the object it points to. 1086When we use a reference, the behaviour is different: 1087 1088<programlisting> 1089<![CDATA[A a(0,0); int k = 1; 1090bind(&A::set_i, a, _1)(k); // error; a const copy of a is stored. 1091 // Cannot call a non-const function set_i 1092bind(&A::set_j, a, _1)(k); // a.j == 0, as a copy of a is modified]]> 1093</programlisting> 1094</para> 1095 1096<para> 1097To prevent the copying from taking place, one can use the <literal>ref</literal> or <literal>cref</literal> wrappers (<literal>var</literal> and <literal>constant_ref</literal> would do as well): 1098<programlisting> 1099<![CDATA[bind(&A::set_i, ref(a), _1)(k); // a.j == 1 1100bind(&A::set_j, cref(a), _1)(k); // a.j == 1]]> 1101</programlisting> 1102</para> 1103 1104<para>Note that the preceding discussion is relevant only for bound arguments. 1105If the object argument is unbound, the parameter passing mode is always by reference. 1106Hence, the argument <literal>a</literal> is not copied in the calls to the two lambda functors below: 1107<programlisting> 1108<![CDATA[A a(0,0); 1109bind(&A::set_i, _1, 1)(a); // a.i == 1 1110bind(&A::set_j, _1, 1)(a); // a.j == 1]]> 1111</programlisting> 1112</para> 1113</section> 1114 1115<section id="sect:members_variables_as_targets"> 1116<title>Member variables as targets</title> 1117 1118<para> 1119A pointer to a member variable is not really a function, but 1120the first argument to the <literal>bind</literal> function can nevertheless 1121be a pointer to a member variable. 1122Invoking such a bind expression returns a reference to the data member. 1123For example: 1124 1125<programlisting> 1126<![CDATA[struct A { int data; }; 1127A a; 1128bind(&A::data, _1)(a) = 1; // a.data == 1]]> 1129</programlisting> 1130 1131The cv-qualifiers of the object whose member is accessed are respected. 1132For example, the following tries to write into a const location: 1133<programlisting> 1134<![CDATA[const A ca = a; 1135bind(&A::data, _1)(ca) = 1; // error]]> 1136</programlisting> 1137 1138</para> 1139</section> 1140 1141<section id="sect:function_objects_as_targets"> 1142<title>Function objects as targets</title> 1143 1144<para> 1145 1146Function objects, that is, class objects which have the function call 1147operator defined, can be used as target functions. 1148 1149In general, BLL cannot deduce the return type of an arbitrary function object. 1150 1151However, there are two methods for giving BLL this capability for a certain 1152function object class. 1153 1154</para> 1155 1156<simplesect> 1157 1158<title>The result_type typedef</title> 1159 1160<para> 1161 1162The BLL supports the standard library convention of declaring the return type 1163of a function object with a member typedef named <literal>result_type</literal> in the 1164function object class. 1165 1166Here is a simple example: 1167<programlisting> 1168<![CDATA[struct A { 1169 typedef B result_type; 1170 B operator()(X, Y, Z); 1171};]]> 1172</programlisting> 1173 1174If a function object does not define a <literal>result_type</literal> typedef, 1175the method described below (<literal>sig</literal> template) 1176is attempted to resolve the return type of the 1177function object. If a function object defines both <literal>result_type</literal> 1178and <literal>sig</literal>, <literal>result_type</literal> takes precedence. 1179 1180</para> 1181 1182</simplesect> 1183 1184<simplesect> 1185 1186<title>The sig template</title> 1187 1188<para> 1189Another mechanism that make BLL aware of the return type(s) of a function object is defining 1190member template struct 1191<literal><![CDATA[sig<Args>]]></literal> with a typedef 1192<literal>type</literal> that specifies the return type. 1193 1194Here is a simple example: 1195<programlisting> 1196<![CDATA[struct A { 1197 template <class Args> struct sig { typedef B type; } 1198 B operator()(X, Y, Z); 1199};]]> 1200</programlisting> 1201 1202The template argument <literal>Args</literal> is a 1203<literal>tuple</literal> (or more precisely a <literal>cons</literal> list) 1204type <xref linkend="cit:boost::tuple"/>, where the first element 1205is the function 1206object type itself, and the remaining elements are the types of 1207the arguments, with which the function object is being called. 1208 1209This may seem overly complex compared to defining the <literal>result_type</literal> typedef. 1210Howver, there are two significant restrictions with using just a simple 1211typedef to express the return type: 1212<orderedlist> 1213<listitem> 1214<para> 1215If the function object defines several function call operators, there is no way to specify different result types for them. 1216</para> 1217</listitem> 1218<listitem> 1219<para> 1220If the function call operator is a template, the result type may 1221depend on the template parameters. 1222Hence, the typedef ought to be a template too, which the C++ language 1223does not support. 1224</para> 1225</listitem> 1226</orderedlist> 1227 1228The following code shows an example, where the return type depends on the type 1229of one of the arguments, and how that dependency can be expressed with the 1230<literal>sig</literal> template: 1231 1232<programlisting> 1233<![CDATA[struct A { 1234 1235 // the return type equals the third argument type: 1236 template<class T1, T2, T3> 1237 T3 operator()(const T1& t1, const T2& t2, const T3& t3); 1238 1239 template <class Args> 1240 class sig { 1241 // get the third argument type (4th element) 1242 typedef typename 1243 boost::tuples::element<3, Args>::type T3; 1244 public: 1245 typedef typename 1246 boost::remove_cv<T3>::type type; 1247 } 1248};]]> 1249</programlisting> 1250 1251 1252The elements of the <literal>Args</literal> tuple are always 1253non-reference types. 1254 1255Moreover, the element types can have a const or volatile qualifier 1256(jointly referred to as <emphasis>cv-qualifiers</emphasis>), or both. 1257This is since the cv-qualifiers in the arguments can affect the return type. 1258The reason for including the potentially cv-qualified function object 1259type itself into the <literal>Args</literal> tuple, is that the function 1260object class can contain both const and non-const (or volatile, even 1261const volatile) function call operators, and they can each have a different 1262return type. 1263</para> 1264 1265<para> 1266The <literal>sig</literal> template can be seen as a 1267<emphasis>meta-function</emphasis> that maps the argument type tuple to 1268the result type of the call made with arguments of the types in the tuple. 1269 1270As the example above demonstrates, the template can end up being somewhat 1271complex. 1272Typical tasks to be performed are the extraction of the relevant types 1273from the tuple, removing cv-qualifiers etc. 1274See the Boost type_traits <xref linkend="cit:boost::type_traits"/> and 1275Tuple <xref linkend="cit:boost::type_traits"/> libraries 1276for tools that can aid in these tasks. 1277The <literal>sig</literal> templates are a refined version of a similar 1278mechanism first introduced in the FC++ library 1279<xref linkend="cit:fc++"/>. 1280</para> 1281 1282</simplesect> 1283 1284</section> 1285 1286 1287 1288</section> 1289 1290<section id="sect:overriding_deduced_return_type"> 1291<title>Overriding the deduced return type</title> 1292 1293<para> 1294The return type deduction system may not be able to deduce the return types of some user defined operators or bind expressions with class objects. 1295<!-- (see the example in <xref linkend="sect:parameter_and_return_types"/>).--> 1296A special lambda expression type is provided for stating the return type explicitly and overriding the deduction system. 1297To state that the return type of the lambda functor defined by the lambda expression <literal>e</literal> is <literal>T</literal>, you can write: 1298 1299<programlisting><![CDATA[ret<T>(e);]]></programlisting> 1300 1301The effect is that the return type deduction is not performed for the lambda expression <literal>e</literal> at all, but instead, <literal>T</literal> is used as the return type. 1302Obviously <literal>T</literal> cannot be an arbitrary type, the true result of the lambda functor must be implicitly convertible to <literal>T</literal>. 1303For example: 1304 1305<programlisting> 1306<![CDATA[A a; B b; 1307C operator+(A, B); 1308int operator*(A, B); 1309 ... 1310ret<D>(_1 + _2)(a, b); // error (C cannot be converted to D) 1311ret<C>(_1 + _2)(a, b); // ok 1312ret<float>(_1 * _2)(a, b); // ok (int can be converted to float) 1313 ... 1314struct X { 1315 Y operator(int)(); 1316}; 1317 ... 1318X x; int i; 1319bind(x, _1)(i); // error, return type cannot be deduced 1320ret<Y>(bind(x, _1))(i); // ok]]> 1321</programlisting> 1322For bind expressions, there is a short-hand notation that can be used instead of <literal>ret</literal>. 1323The last line could alternatively be written as: 1324 1325<programlisting><![CDATA[bind<Z>(x, _1)(i);]]></programlisting> 1326This feature is modeled after the Boost Bind library <xref linkend="cit:boost::bind"/>. 1327 1328</para> 1329 1330<para>Note that within nested lambda expressions, 1331the <literal>ret</literal> must be used at each subexpression where 1332the deduction would otherwise fail. 1333For example: 1334<programlisting> 1335<![CDATA[A a; B b; 1336C operator+(A, B); D operator-(C); 1337 ... 1338ret<D>( - (_1 + _2))(a, b); // error 1339ret<D>( - ret<C>(_1 + _2))(a, b); // ok]]> 1340</programlisting> 1341</para> 1342 1343<para>If you find yourself using <literal>ret</literal> repeatedly with the same types, it is worth while extending the return type deduction (see <xref linkend="sect:extending_return_type_system"/>). 1344</para> 1345 1346<section id="sect:nullary_functors_and_ret"> 1347<title>Nullary lambda functors and ret</title> 1348 1349<para> 1350As stated above, the effect of <literal>ret</literal> is to prevent the return type deduction to be performed. 1351However, there is an exception. 1352Due to the way the C++ template instantiation works, the compiler is always forced to instantiate the return type deduction templates for zero-argument lambda functors. 1353This introduces a slight problem with <literal>ret</literal>, best described with an example: 1354 1355<programlisting> 1356<![CDATA[struct F { int operator()(int i) const; }; 1357F f; 1358 ... 1359bind(f, _1); // fails, cannot deduce the return type 1360ret<int>(bind(f, _1)); // ok 1361 ... 1362bind(f, 1); // fails, cannot deduce the return type 1363ret<int>(bind(f, 1)); // fails as well!]]> 1364</programlisting> 1365The BLL cannot deduce the return types of the above bind calls, as <literal>F</literal> does not define the typedef <literal>result_type</literal>. 1366One would expect <literal>ret</literal> to fix this, but for the nullary lambda functor that results from a bind expression (last line above) this does not work. 1367The return type deduction templates are instantiated, even though it would not be necessary and the result is a compilation error. 1368</para> 1369 1370<para>The solution to this is not to use the <literal>ret</literal> function, but rather define the return type as an explicitly specified template parameter in the <literal>bind</literal> call: 1371<programlisting> 1372<![CDATA[bind<int>(f, 1); // ok]]> 1373</programlisting> 1374 1375The lambda functors created with 1376<literal>ret<<parameter>T</parameter>>(bind(<parameter>arg-list</parameter>))</literal> and 1377<literal>bind<<parameter>T</parameter>>(<parameter>arg-list</parameter>)</literal> have the exact same functionality — 1378apart from the fact that for some nullary lambda functors the former does not work while the latter does. 1379</para> 1380</section> 1381</section> 1382 1383 1384<section id="sect:delaying_constants_and_variables"> 1385<title>Delaying constants and variables</title> 1386 1387<para> 1388The unary functions <literal>constant</literal>, 1389<literal>constant_ref</literal> and <literal>var</literal> turn their argument into a lambda functor, that implements an identity mapping. 1390The former two are for constants, the latter for variables. 1391The use of these <emphasis>delayed</emphasis> constants and variables is sometimes necessary due to the lack of explicit syntax for lambda expressions. 1392For example: 1393<programlisting> 1394<![CDATA[for_each(a.begin(), a.end(), cout << _1 << ' '); 1395for_each(a.begin(), a.end(), cout << ' ' << _1);]]> 1396</programlisting> 1397The first line outputs the elements of <literal>a</literal> separated by spaces, while the second line outputs a space followed by the elements of <literal>a</literal> without any separators. 1398The reason for this is that neither of the operands of 1399<literal><![CDATA[cout << ' ']]></literal> is a lambda expression, hence <literal><![CDATA[cout << ' ']]></literal> is evaluated immediately. 1400 1401To delay the evaluation of <literal><![CDATA[cout << ' ']]></literal>, one of the operands must be explicitly marked as a lambda expression. 1402This is accomplished with the <literal>constant</literal> function: 1403<programlisting> 1404<![CDATA[for_each(a.begin(), a.end(), cout << constant(' ') << _1);]]> 1405</programlisting> 1406 1407The call <literal>constant(' ')</literal> creates a nullary lambda functor which stores the character constant <literal>' '</literal> 1408and returns a reference to it when invoked. 1409The function <literal>constant_ref</literal> is similar, except that it 1410stores a constant reference to its argument. 1411 1412The <literal>constant</literal> and <literal>consant_ref</literal> are only 1413needed when the operator call has side effects, like in the above example. 1414</para> 1415 1416<para> 1417Sometimes we need to delay the evaluation of a variable. 1418Suppose we wanted to output the elements of a container in a numbered list: 1419 1420<programlisting> 1421<![CDATA[int index = 0; 1422for_each(a.begin(), a.end(), cout << ++index << ':' << _1 << '\n'); 1423for_each(a.begin(), a.end(), cout << ++var(index) << ':' << _1 << '\n');]]> 1424</programlisting> 1425 1426The first <literal>for_each</literal> invocation does not do what we want; <literal>index</literal> is incremented only once, and its value is written into the output stream only once. 1427By using <literal>var</literal> to make <literal>index</literal> a lambda expression, we get the desired effect. 1428<!-- Note that <literal>var</literal> accepts const objects as well, in which case 1429calling <literal>var</literal> equals calling <literal>constant_ref</literal>.--> 1430</para> 1431 1432<para> 1433In sum, <literal>var(x)</literal> creates a nullary lambda functor, 1434which stores a reference to the variable <literal>x</literal>. 1435When the lambda functor is invoked, a reference to <literal>x</literal> is returned. 1436</para> 1437 1438<simplesect> 1439<title>Naming delayed constants and variables</title> 1440 1441<para> 1442It is possible to predefine and name a delayed variable or constant outside a lambda expression. 1443The templates <literal>var_type</literal>, <literal>constant_type</literal> 1444and <literal>constant_ref_type</literal> serve for this purpose. 1445They are used as: 1446<programlisting> 1447<![CDATA[var_type<T>::type delayed_i(var(i)); 1448constant_type<T>::type delayed_c(constant(c));]]> 1449</programlisting> 1450The first line defines the variable <literal>delayed_i</literal> which is a delayed version of the variable <literal>i</literal> of type <literal>T</literal>. 1451Analogously, the second line defines the constant <literal>delayed_c</literal> as a delayed version of the constant <literal>c</literal>. 1452For example: 1453 1454<programlisting> 1455int i = 0; int j; 1456for_each(a.begin(), a.end(), (var(j) = _1, _1 = var(i), var(i) = var(j))); 1457</programlisting> 1458is equivalent to: 1459<programlisting> 1460<![CDATA[int i = 0; int j; 1461var_type<int>::type vi(var(i)), vj(var(j)); 1462for_each(a.begin(), a.end(), (vj = _1, _1 = vi, vi = vj));]]> 1463</programlisting> 1464</para> 1465<para> 1466Here is an example of naming a delayed constant: 1467<programlisting> 1468<![CDATA[constant_type<char>::type space(constant(' ')); 1469for_each(a.begin(),a.end(), cout << space << _1);]]> 1470</programlisting> 1471</para> 1472 1473</simplesect> 1474 1475<simplesect> 1476<title>About assignment and subscript operators</title> 1477 1478<para> 1479As described in <xref linkend="sect:assignment_and_subscript"/>, assignment and subscripting operators are always defined as member functions. 1480This means, that for expressions of the form 1481<literal>x = y</literal> or <literal>x[y]</literal> to be interpreted as lambda expressions, the left-hand operand <literal>x</literal> must be a lambda expression. 1482Consequently, it is sometimes necessary to use <literal>var</literal> for this purpose. 1483We repeat the example from <xref linkend="sect:assignment_and_subscript"/>: 1484 1485<programlisting> 1486int i; 1487i = _1; // error 1488var(i) = _1; // ok 1489</programlisting> 1490</para> 1491 1492<para> 1493 1494Note that the compound assignment operators <literal>+=</literal>, <literal>-=</literal> etc. can be defined as non-member functions, and thus they are interpreted as lambda expressions even if only the right-hand operand is a lambda expression. 1495Nevertheless, it is perfectly ok to delay the left operand explicitly. 1496For example, <literal>i += _1</literal> is equivalent to <literal>var(i) += _1</literal>. 1497</para> 1498</simplesect> 1499 1500</section> 1501 1502<section id="sect:lambda_expressions_for_control_structures"> 1503<title>Lambda expressions for control structures</title> 1504 1505<para> 1506BLL defines several functions to create lambda functors that represent control structures. 1507They all take lambda functors as parameters and return <literal>void</literal>. 1508To start with an example, the following code outputs all even elements of some container <literal>a</literal>: 1509 1510<programlisting> 1511<![CDATA[for_each(a.begin(), a.end(), 1512 if_then(_1 % 2 == 0, cout << _1));]]> 1513</programlisting> 1514</para> 1515 1516<para> 1517The BLL supports the following function templates for control structures: 1518 1519<programlisting> 1520if_then(condition, then_part) 1521if_then_else(condition, then_part, else_part) 1522if_then_else_return(condition, then_part, else_part) 1523while_loop(condition, body) 1524while_loop(condition) // no body case 1525do_while_loop(condition, body) 1526do_while_loop(condition) // no body case 1527for_loop(init, condition, increment, body) 1528for_loop(init, condition, increment) // no body case 1529switch_statement(...) 1530</programlisting> 1531 1532The return types of all control construct lambda functor is 1533<literal>void</literal>, except for <literal>if_then_else_return</literal>, 1534which wraps a call to the conditional operator 1535<programlisting> 1536condition ? then_part : else_part 1537</programlisting> 1538The return type rules for this operator are somewhat complex. 1539Basically, if the branches have the same type, this type is the return type. 1540If the type of the branches differ, one branch, say of type 1541<literal>A</literal>, must be convertible to the other branch, 1542say of type <literal>B</literal>. 1543In this situation, the result type is <literal>B</literal>. 1544Further, if the common type is an lvalue, the return type will be an lvalue 1545too. 1546</para> 1547 1548 1549<para> 1550Delayed variables tend to be commonplace in control structure lambda expressions. 1551For instance, here we use the <literal>var</literal> function to turn the arguments of <literal>for_loop</literal> into lambda expressions. 1552The effect of the code is to add 1 to each element of a two-dimensional array: 1553 1554<programlisting> 1555<![CDATA[int a[5][10]; int i; 1556for_each(a, a+5, 1557 for_loop(var(i)=0, var(i)<10, ++var(i), 1558 _1[var(i)] += 1));]]> 1559</programlisting> 1560 1561<!-- 1562As explained in <xref linkend="sect:delaying_constants_and_variables"/>, we can avoid the repeated use of wrapping of <literal>var</literal> if we define it beforehand: 1563 1564<programlisting> 1565<![CDATA[int i; 1566var_type<int>::type vi(var(i)); 1567for_each(a, a+5, 1568 for_loop(vi=0, vi<10, ++vi, _1[vi] += 6));]]> 1569</programlisting> 1570 1571--> 1572</para> 1573 1574<para> 1575The BLL supports an alternative syntax for control expressions, suggested 1576by Joel de Guzmann. 1577By overloading the <literal>operator[]</literal> we can 1578get a closer resemblance with the built-in control structures: 1579 1580<programlisting> 1581<![CDATA[if_(condition)[then_part] 1582if_(condition)[then_part].else_[else_part] 1583while_(condition)[body] 1584do_[body].while_(condition) 1585for_(init, condition, increment)[body]]]> 1586</programlisting> 1587 1588For example, using this syntax the <literal>if_then</literal> example above 1589can be written as: 1590<programlisting> 1591<![CDATA[for_each(a.begin(), a.end(), 1592 if_(_1 % 2 == 0)[ cout << _1 ])]]> 1593</programlisting> 1594 1595As more experience is gained, we may end up deprecating one or the other 1596of these syntaces. 1597 1598</para> 1599 1600 1601 1602<section id="sect:switch_statement"> 1603<title>Switch statement</title> 1604</section> 1605 1606<para> 1607The lambda expressions for <literal>switch</literal> control structures are more complex since the number of cases may vary. 1608The general form of a switch lambda expression is: 1609 1610<programlisting> 1611switch_statement(<parameter>condition</parameter>, 1612 case_statement<<parameter>label</parameter>>(<parameter>lambda expression</parameter>), 1613 case_statement<<parameter>label</parameter>>(<parameter>lambda expression</parameter>), 1614 ... 1615 default_statement(<parameter>lambda expression</parameter>) 1616) 1617</programlisting> 1618 1619The <literal><parameter>condition</parameter></literal> argument must be a lambda expression that creates a lambda functor with an integral return type. 1620The different cases are created with the <literal>case_statement</literal> functions, and the optional default case with the <literal>default_statement</literal> function. 1621The case labels are given as explicitly specified template arguments to <literal>case_statement</literal> functions and 1622<literal>break</literal> statements are implicitly part of each case. 1623For example, <literal><![CDATA[case_statement<1>(a)]]></literal>, where <literal>a</literal> is some lambda functor, generates the code: 1624 1625<programlisting> 1626case 1: 1627 <parameter>evaluate lambda functor</parameter> a; 1628 break; 1629</programlisting> 1630The <literal>switch_statement</literal> function is specialized for up to 9 case statements. 1631 1632</para> 1633 1634<para> 1635As a concrete example, the following code iterates over some container <literal>v</literal> and ouptuts <quote>zero</quote> for each <literal>0</literal>, <quote>one</quote> for each <literal>1</literal>, and <quote>other: <parameter>n</parameter></quote> for any other value <parameter>n</parameter>. 1636Note that another lambda expression is sequenced after the <literal>switch_statement</literal> to output a line break after each element: 1637 1638<programlisting> 1639<![CDATA[std::for_each(v.begin(), v.end(), 1640 ( 1641 switch_statement( 1642 _1, 1643 case_statement<0>(std::cout << constant("zero")), 1644 case_statement<1>(std::cout << constant("one")), 1645 default_statement(cout << constant("other: ") << _1) 1646 ), 1647 cout << constant("\n") 1648 ) 1649);]]> 1650</programlisting> 1651</para> 1652 1653</section> 1654 1655<section id="sect:exceptions"> 1656<title>Exceptions</title> 1657 1658<para> 1659The BLL provides lambda functors that throw and catch exceptions. 1660Lambda functors for throwing exceptions are created with the unary function <literal>throw_exception</literal>. 1661The argument to this function is the exception to be thrown, or a lambda functor which creates the exception to be thrown. 1662A lambda functor for rethrowing exceptions is created with the nullary <literal>rethrow</literal> function. 1663</para> 1664 1665<para> 1666Lambda expressions for handling exceptions are somewhat more complex. 1667The general form of a lambda expression for try catch blocks is as follows: 1668 1669<programlisting> 1670try_catch( 1671 <parameter>lambda expression</parameter>, 1672 catch_exception<<parameter>type</parameter>>(<parameter>lambda expression</parameter>), 1673 catch_exception<<parameter>type</parameter>>(<parameter>lambda expression</parameter>), 1674 ... 1675 catch_all(<parameter>lambda expression</parameter>) 1676) 1677</programlisting> 1678 1679The first lambda expression is the try block. 1680Each <literal>catch_exception</literal> defines a catch block where the 1681explicitly specified template argument defines the type of the exception 1682to catch. 1683 1684The lambda expression within the <literal>catch_exception</literal> defines 1685the actions to take if the exception is caught. 1686 1687Note that the resulting exception handlers catch the exceptions as 1688references, i.e., <literal>catch_exception<T>(...)</literal> 1689results in the catch block: 1690 1691<programlisting> 1692catch(T& e) { ... } 1693</programlisting> 1694 1695The last catch block can alternatively be a call to 1696<literal>catch_exception<<parameter>type</parameter>></literal> 1697or to 1698<literal>catch_all</literal>, which is the lambda expression equivalent to 1699<literal>catch(...)</literal>. 1700 1701</para> 1702 1703<para> 1704 1705The <xref linkend="ex:exceptions"/> demonstrates the use of the BLL 1706exception handling tools. 1707The first handler catches exceptions of type <literal>foo_exception</literal>. 1708Note the use of <literal>_1</literal> placeholder in the body of the handler. 1709</para> 1710 1711<para> 1712The second handler shows how to throw exceptions, and demonstrates the 1713use of the <emphasis>exception placeholder</emphasis> <literal>_e</literal>. 1714 1715It is a special placeholder, which refers to the caught exception object 1716within the handler body. 1717 1718Here we are handling an exception of type <literal>std::exception</literal>, 1719which carries a string explaining the cause of the exception. 1720 1721This explanation can be queried with the zero-argument member 1722function <literal>what</literal>. 1723 1724The expression 1725<literal>bind(&std::exception::what, _e)</literal> creates the lambda 1726function for making that call. 1727 1728Note that <literal>_e</literal> cannot be used outside of an exception handler lambda expression. 1729<!--Violating this rule is caught by the compiler.--> 1730 1731The last line of the second handler constructs a new exception object and 1732throws that with <literal>throw exception</literal>. 1733 1734Constructing and destructing objects within lambda expressions is 1735explained in <xref linkend="sect:construction_and_destruction"/> 1736</para> 1737 1738<para> 1739Finally, the third handler (<literal>catch_all</literal>) demonstrates 1740rethrowing exceptions. 1741</para> 1742 1743<example id="ex:exceptions"> 1744<title>Throwing and handling exceptions in lambda expressions.</title> 1745<programlisting> 1746<![CDATA[for_each( 1747 a.begin(), a.end(), 1748 try_catch( 1749 bind(foo, _1), // foo may throw 1750 catch_exception<foo_exception>( 1751 cout << constant("Caught foo_exception: ") 1752 << "foo was called with argument = " << _1 1753 ), 1754 catch_exception<std::exception>( 1755 cout << constant("Caught std::exception: ") 1756 << bind(&std::exception::what, _e), 1757 throw_exception(bind(constructor<bar_exception>(), _1))) 1758 ), 1759 catch_all( 1760 (cout << constant("Unknown"), rethrow()) 1761 ) 1762 ) 1763);]]> 1764</programlisting> 1765</example> 1766 1767</section> 1768 1769<section id="sect:construction_and_destruction"> 1770<title>Construction and destruction</title> 1771 1772 1773<para> 1774Operators <literal>new</literal> and <literal>delete</literal> can be 1775overloaded, but their return types are fixed. 1776 1777Particularly, the return types cannot be lambda functors, 1778which prevents them to be overloaded for lambda expressions. 1779 1780It is not possible to take the address of a constructor, 1781hence constructors cannot be used as target functions in bind expressions. 1782 1783The same is true for destructors. 1784 1785As a way around these constraints, BLL defines wrapper classes for 1786<literal>new</literal> and <literal>delete</literal> calls, 1787as well as for constructors and destructors. 1788 1789Instances of these classes are function objects, that can be used as 1790target functions of bind expressions. 1791 1792For example: 1793 1794<programlisting> 1795<![CDATA[int* a[10]; 1796for_each(a, a+10, _1 = bind(new_ptr<int>())); 1797for_each(a, a+10, bind(delete_ptr(), _1));]]> 1798</programlisting> 1799 1800The <literal>new_ptr<int>()</literal> expression creates 1801a function object that calls <literal>new int()</literal> when invoked, 1802and wrapping that inside <literal>bind</literal> makes it a lambda functor. 1803 1804In the same way, the expression <literal>delete_ptr()</literal> creates 1805a function object that invokes <literal>delete</literal> on its argument. 1806 1807Note that <literal>new_ptr<<parameter>T</parameter>>()</literal> 1808can take arguments as well. 1809 1810They are passed directly to the constructor invocation and thus allow 1811calls to constructors which take arguments. 1812 1813</para> 1814 1815<para> 1816 1817As an example of constructor calls in lambda expressions, 1818the following code reads integers from two containers <literal>x</literal> 1819and <literal>y</literal>, 1820constructs pairs out of them and inserts them into a third container: 1821 1822<programlisting> 1823<![CDATA[vector<pair<int, int> > v; 1824transform(x.begin(), x.end(), y.begin(), back_inserter(v), 1825 bind(constructor<pair<int, int> >(), _1, _2));]]> 1826</programlisting> 1827 1828<xref linkend="table:constructor_destructor_fos"/> lists all the function 1829objects related to creating and destroying objects, 1830 showing the expression to create and call the function object, 1831and the effect of evaluating that expression. 1832 1833</para> 1834 1835 1836 1837<table id="table:constructor_destructor_fos"> 1838<title>Construction and destruction related function objects.</title> 1839<tgroup cols="2"> 1840<thead> 1841<row> 1842<entry>Function object call</entry> 1843<entry>Wrapped expression</entry> 1844</row> 1845</thead> 1846<tbody> 1847<row> 1848<entry><literal>constructor<T>()(<parameter>arg_list</parameter>)</literal></entry> 1849<entry>T(<parameter>arg_list</parameter>)</entry> 1850</row> 1851<row> 1852<entry><literal>destructor()(a)</literal></entry> 1853<entry><literal>a.~A()</literal>, where <literal>a</literal> is of type <literal>A</literal></entry> 1854</row> 1855<row> 1856<entry><literal>destructor()(pa)</literal></entry> 1857<entry><literal>pa->~A()</literal>, where <literal>pa</literal> is of type <literal>A*</literal></entry> 1858</row> 1859<row> 1860<entry><literal>new_ptr<T>()(<parameter>arg_list</parameter>)</literal></entry> 1861<entry><literal>new T(<parameter>arg_list</parameter>)</literal></entry> 1862</row> 1863<row> 1864<entry><literal>new_array<T>()(sz)</literal></entry> 1865<entry><literal>new T[sz]</literal></entry> 1866</row> 1867<row> 1868<entry><literal>delete_ptr()(p)</literal></entry> 1869<entry><literal>delete p</literal></entry> 1870</row> 1871<row> 1872<entry><literal>delete_array()(p)</literal></entry> 1873<entry><literal>delete p[]</literal></entry> 1874</row> 1875 1876 1877</tbody> 1878</tgroup> 1879</table> 1880 1881</section> 1882 1883 1884<section> 1885<title>Special lambda expressions</title> 1886 1887<section> 1888<title>Preventing argument substitution</title> 1889 1890<para> 1891When a lambda functor is called, the default behavior is to substitute 1892the actual arguments for the placeholders within all subexpressions. 1893 1894This section describes the tools to prevent the substitution and 1895evaluation of a subexpression, and explains when these tools should be used. 1896</para> 1897 1898 1899<para> 1900The arguments to a bind expression can be arbitrary lambda expressions, 1901e.g., other bind expressions. 1902 1903For example: 1904 1905<programlisting> 1906int foo(int); int bar(int); 1907... 1908int i; 1909bind(foo, bind(bar, _1)(i); 1910</programlisting> 1911 1912The last line makes the call <literal>foo(bar(i));</literal> 1913 1914Note that the first argument in a bind expression, the target function, 1915is no exception, and can thus be a bind expression too. 1916 1917The innermost lambda functor just has to return something that can be used 1918as a target function: another lambda functor, function pointer, 1919pointer to member function etc. 1920 1921For example, in the following code the innermost lambda functor makes 1922a selection between two functions, and returns a pointer to one of them: 1923 1924<programlisting> 1925int add(int a, int b) { return a+b; } 1926int mul(int a, int b) { return a*b; } 1927 1928int(*)(int, int) add_or_mul(bool x) { 1929 return x ? add : mul; 1930} 1931 1932bool condition; int i; int j; 1933... 1934bind(bind(&add_or_mul, _1), _2, _3)(condition, i, j); 1935</programlisting> 1936 1937</para> 1938 1939 1940 1941<section id="sect:unlambda"> 1942<title>Unlambda</title> 1943 1944<para>A nested bind expression may occur inadvertently, 1945if the target function is a variable with a type that depends on a 1946template parameter. 1947 1948Typically the target function could be a formal parameter of a 1949function template. 1950 1951In such a case, the programmer may not know whether the target function is a lambda functor or not. 1952</para> 1953 1954<para>Consider the following function template: 1955 1956<programlisting> 1957<![CDATA[template<class F> 1958int nested(const F& f) { 1959 int x; 1960 ... 1961 bind(f, _1)(x); 1962 ... 1963}]]> 1964</programlisting> 1965 1966Somewhere inside the function the formal parameter 1967<literal>f</literal> is used as a target function in a bind expression. 1968 1969In order for this <literal>bind</literal> call to be valid, 1970<literal>f</literal> must be a unary function. 1971 1972Suppose the following two calls to <literal>nested</literal> are made: 1973 1974<programlisting> 1975<![CDATA[int foo(int); 1976int bar(int, int); 1977nested(&foo); 1978nested(bind(bar, 1, _1));]]> 1979</programlisting> 1980 1981Both are unary functions, or function objects, with appropriate argument 1982and return types, but the latter will not compile. 1983 1984In the latter call, the bind expression inside <literal>nested</literal> 1985will become: 1986 1987<programlisting> 1988bind(bind(bar, 1, _1), _1) 1989</programlisting> 1990 1991When this is invoked with <literal>x</literal>, 1992after substituitions we end up trying to call 1993 1994<programlisting> 1995bar(1, x)(x) 1996</programlisting> 1997 1998which is an error. 1999 2000The call to <literal>bar</literal> returns int, 2001not a unary function or function object. 2002</para> 2003 2004<para> 2005In the example above, the intent of the bind expression in the 2006<literal>nested</literal> function is to treat <literal>f</literal> 2007as an ordinary function object, instead of a lambda functor. 2008 2009The BLL provides the function template <literal>unlambda</literal> to 2010express this: a lambda functor wrapped inside <literal>unlambda</literal> 2011is not a lambda functor anymore, and does not take part into the 2012argument substitution process. 2013 2014Note that for all other argument types <literal>unlambda</literal> is 2015an identity operation, except for making non-const objects const. 2016</para> 2017 2018<para> 2019Using <literal>unlambda</literal>, the <literal>nested</literal> 2020function is written as: 2021 2022<programlisting> 2023<![CDATA[template<class F> 2024int nested(const F& f) { 2025 int x; 2026 ... 2027 bind(unlambda(f), _1)(x); 2028 ... 2029}]]> 2030</programlisting> 2031 2032</para> 2033 2034</section> 2035 2036<section> 2037<title>Protect</title> 2038 2039<para> 2040The <literal>protect</literal> function is related to unlambda. 2041 2042It is also used to prevent the argument substitution taking place, 2043but whereas <literal>unlambda</literal> turns a lambda functor into 2044an ordinary function object for good, <literal>protect</literal> does 2045this temporarily, for just one evaluation round. 2046 2047For example: 2048 2049<programlisting> 2050int x = 1, y = 10; 2051(_1 + protect(_1 + 2))(x)(y); 2052</programlisting> 2053 2054The first call substitutes <literal>x</literal> for the leftmost 2055<literal>_1</literal>, and results in another lambda functor 2056<literal>x + (_1 + 2)</literal>, which after the call with 2057<literal>y</literal> becomes <literal>x + (y + 2)</literal>, 2058and thus finally 13. 2059</para> 2060 2061<para> 2062Primary motivation for including <literal>protect</literal> into the library, 2063was to allow nested STL algorithm invocations 2064(<xref linkend="sect:nested_stl_algorithms"/>). 2065</para> 2066 2067</section> 2068 2069</section> 2070 2071<section id="sect:rvalues_as_actual_arguments"> 2072<title>Rvalues as actual arguments to lambda functors</title> 2073 2074 <para><emphasis>This section and all of its subsections 2075 are no longer (or currently) relevant; 2076 acual arguments can be non-const rvalues and these workarounds are thus 2077 not needed. 2078 The section can, however, become relevant again, if in the future BLL will support 2079 lambda functors with higher arities than 3.</emphasis></para> 2080 2081<para> 2082Actual arguments to the lambda functors cannot be non-const rvalues. 2083This is due to a deliberate design decision: either we have this restriction, 2084or there can be no side-effects to the actual arguments. 2085 2086There are ways around this limitation. 2087 2088We repeat the example from section 2089<xref linkend="sect:actual_arguments_to_lambda_functors"/> and list the 2090different solutions: 2091 2092<programlisting> 2093int i = 1; int j = 2; 2094(_1 + _2)(i, j); // ok 2095(_1 + _2)(1, 2); // error (!) 2096</programlisting> 2097 2098<orderedlist> 2099<listitem> 2100<para> 2101If the rvalue is of a class type, the return type of the function that 2102creates the rvalue should be defined as const. 2103Due to an unfortunate language restriction this does not work for 2104built-in types, as built-in rvalues cannot be const qualified. 2105</para> 2106</listitem> 2107 2108<listitem> 2109<para> 2110If the lambda function call is accessible, the <literal>make_const</literal> 2111function can be used to <emphasis>constify</emphasis> the rvalue. E.g.: 2112 2113<programlisting> 2114(_1 + _2)(make_const(1), make_const(2)); // ok 2115</programlisting> 2116 2117Commonly the lambda function call site is inside a standard algorithm 2118function template, preventing this solution to be used. 2119 2120</para> 2121</listitem> 2122 2123<listitem> 2124<para> 2125If neither of the above is possible, the lambda expression can be wrapped 2126in a <literal>const_parameters</literal> function. 2127It creates another type of lambda functor, which takes its arguments as 2128const references. For example: 2129 2130<programlisting> 2131const_parameters(_1 + _2)(1, 2); // ok 2132</programlisting> 2133 2134Note that <literal>const_parameters</literal> makes all arguments const. 2135Hence, in the case were one of the arguments is a non-const rvalue, 2136and another argument needs to be passed as a non-const reference, 2137this approach cannot be used. 2138</para> 2139 2140</listitem> 2141 2142<listitem> 2143<para>If none of the above is possible, there is still one solution, 2144which unfortunately can break const correctness. 2145 2146The solution is yet another lambda functor wrapper, which we have named 2147<literal>break_const</literal> to alert the user of the potential dangers 2148of this function. 2149 2150The <literal>break_const</literal> function creates a lambda functor that 2151takes its arguments as const, and casts away constness prior to the call 2152to the original wrapped lambda functor. 2153 2154For example: 2155<programlisting> 2156int i; 2157... 2158(_1 += _2)(i, 2); // error, 2 is a non-const rvalue 2159const_parameters(_1 += _2)(i, 2); // error, i becomes const 2160break_const(_1 += _2)(i, 2); // ok, but dangerous 2161</programlisting> 2162 2163Note, that the results of <literal> break_const</literal> or 2164<literal>const_parameters</literal> are not lambda functors, 2165so they cannot be used as subexpressions of lambda expressions. For instance: 2166 2167<programlisting> 2168break_const(_1 + _2) + _3; // fails. 2169const_parameters(_1 + _2) + _3; // fails. 2170</programlisting> 2171 2172However, this kind of code should never be necessary, 2173since calls to sub lambda functors are made inside the BLL, 2174and are not affected by the non-const rvalue problem. 2175</para> 2176</listitem> 2177 2178</orderedlist> 2179 2180</para> 2181</section> 2182 2183</section> 2184 2185 2186<section> 2187<title>Casts, sizeof and typeid</title> 2188 2189<section id="sect:cast_expressions"> 2190<title> 2191Cast expressions 2192</title> 2193<para> 2194The BLL defines its counterparts for the four cast expressions 2195<literal>static_cast</literal>, <literal>dynamic_cast</literal>, 2196<literal>const_cast</literal> and <literal>reinterpret_cast</literal>. 2197 2198The BLL versions of the cast expressions have the prefix 2199<literal>ll_</literal>. 2200 2201The type to cast to is given as an explicitly specified template argument, 2202and the sole argument is the expression from which to perform the cast. 2203 2204If the argument is a lambda functor, the lambda functor is evaluated first. 2205 2206For example, the following code uses <literal>ll_dynamic_cast</literal> 2207to count the number of <literal>derived</literal> instances in the container 2208<literal>a</literal>: 2209 2210<programlisting> 2211<![CDATA[class base {}; 2212class derived : public base {}; 2213 2214vector<base*> a; 2215... 2216int count = 0; 2217for_each(a.begin(), a.end(), 2218 if_then(ll_dynamic_cast<derived*>(_1), ++var(count)));]]> 2219</programlisting> 2220</para> 2221</section> 2222 2223<section> 2224<title>Sizeof and typeid</title> 2225<para> 2226The BLL counterparts for these expressions are named 2227<literal>ll_sizeof</literal> and <literal>ll_typeid</literal>. 2228 2229Both take one argument, which can be a lambda expression. 2230The lambda functor created wraps the <literal>sizeof</literal> or 2231<literal>typeid</literal> call, and when the lambda functor is called 2232the wrapped operation is performed. 2233 2234For example: 2235 2236<programlisting> 2237<![CDATA[vector<base*> a; 2238... 2239for_each(a.begin(), a.end(), 2240 cout << bind(&type_info::name, ll_typeid(*_1)));]]> 2241</programlisting> 2242 2243Here <literal>ll_typeid</literal> creates a lambda functor for 2244calling <literal>typeid</literal> for each element. 2245 2246The result of a <literal>typeid</literal> call is an instance of 2247the <literal>type_info</literal> class, and the bind expression creates 2248a lambda functor for calling the <literal>name</literal> member 2249function of that class. 2250 2251</para> 2252</section> 2253 2254 2255 2256</section> 2257 2258<section id="sect:nested_stl_algorithms"> 2259<title>Nesting STL algorithm invocations</title> 2260 2261<para> 2262The BLL defines common STL algorithms as function object classes, 2263instances of which can be used as target functions in bind expressions. 2264For example, the following code iterates over the elements of a 2265two-dimensional array, and computes their sum. 2266 2267<programlisting> 2268int a[100][200]; 2269int sum = 0; 2270 2271std::for_each(a, a + 100, 2272 bind(ll::for_each(), _1, _1 + 200, protect(sum += _1))); 2273</programlisting> 2274 2275The BLL versions of the STL algorithms are classes, which define the function call operator (or several overloaded ones) to call the corresponding function templates in the <literal>std</literal> namespace. 2276All these structs are placed in the subnamespace <literal>boost::lambda:ll</literal>. 2277<!--The supported algorithms are listed in <xref linkend="table:nested_algorithms"/>.--> 2278</para> 2279 2280<para> 2281Note that there is no easy way to express an overloaded member function 2282call in a lambda expression. 2283 2284This limits the usefulness of nested STL algorithms, as for instance 2285the <literal>begin</literal> function has more than one overloaded 2286definitions in container templates. 2287 2288In general, something analogous to the pseudo-code below cannot be written: 2289 2290<programlisting> 2291std::for_each(a.begin(), a.end(), 2292 bind(ll::for_each(), _1.begin(), _1.end(), protect(sum += _1))); 2293</programlisting> 2294 2295Some aid for common special cases can be provided though. 2296 2297The BLL defines two helper function object classes, 2298<literal>call_begin</literal> and <literal>call_end</literal>, 2299which wrap a call to the <literal>begin</literal> and, respectively, 2300<literal>end</literal> functions of a container, and return the 2301<literal>const_iterator</literal> type of the container. 2302 2303With these helper templates, the above code becomes: 2304<programlisting> 2305std::for_each(a.begin(), a.end(), 2306 bind(ll::for_each(), 2307 bind(call_begin(), _1), bind(call_end(), _1), 2308 protect(sum += _1))); 2309</programlisting> 2310 2311</para> 2312 2313<!-- 2314<table id="table:nested_algorithms"> 2315<title>The nested STL algorithms.</title> 2316<tgroup cols="1"> 2317<thead> 2318<trow><entry>Otsikko</entry></trow> 2319</thead> 2320<tbody> 2321<row><entry><literal>for_each</literal></entry></row> 2322<row><entry><literal>find</literal></entry></row> 2323<row><entry><literal>find_if</literal></entry></row> 2324<row><entry><literal>find_end</literal></entry></row> 2325<row><entry><literal>find_first_of</literal></entry></row> 2326<row><entry><literal>transform</literal></entry></row> 2327</tbody> 2328</tgroup> 2329 2330</table> 2331 2332--> 2333 2334</section> 2335 2336 2337</section> 2338 2339 2340<!-- 2341<section> 2342<title>Common gothcas</title> 2343 2344calling member functions a.begin() 2345 2346calling templated functions ... 2347 2348</section> 2349 2350--> 2351 2352<section id="sect:extending_return_type_system"> 2353<title>Extending return type deduction system</title> 2354 2355<para> 2356<!--The <xref linkend = "sect:overriding_deduced_return_type"/> showed how to make BLL aware of the return type of a function object in bind expressions.--> 2357 2358In this section, we explain how to extend the return type deduction system 2359to cover user defined operators. 2360 2361In many cases this is not necessary, 2362as the BLL defines default return types for operators. 2363 2364For example, the default return type for all comparison operators is 2365<literal>bool</literal>, and as long as the user defined comparison operators 2366have a bool return type, there is no need to write new specializations 2367for the return type deduction classes. 2368 2369Sometimes this cannot be avoided, though. 2370 2371</para> 2372 2373<para> 2374The overloadable user defined operators are either unary or binary. 2375 2376For each arity, there are two traits templates that define the 2377return types of the different operators. 2378 2379Hence, the return type system can be extended by providing more 2380specializations for these templates. 2381 2382The templates for unary functors are 2383 2384<literal> 2385<![CDATA[plain_return_type_1<Action, A>]]> 2386</literal> 2387 2388and 2389 2390<literal> 2391<![CDATA[return_type_1<Action, A>]]> 2392</literal>, and 2393 2394<literal> 2395<![CDATA[plain_return_type_2<Action, A, B>]]> 2396</literal> 2397 2398and 2399 2400<literal> 2401<![CDATA[return_type_2<Action, A, B>]]> 2402</literal> 2403 2404respectively for binary functors. 2405 2406</para> 2407 2408<para> 2409The first parameter (<literal>Action</literal>) to all these templates 2410is the <emphasis>action</emphasis> class, which specifies the operator. 2411 2412Operators with similar return type rules are grouped together into 2413<emphasis>action groups</emphasis>, 2414and only the action class and action group together define the operator 2415unambiguously. 2416 2417As an example, the action type 2418<literal><![CDATA[arithmetic_action<plus_action>]]></literal> stands for 2419<literal>operator+</literal>. 2420 2421The complete listing of different action types is shown in 2422<xref linkend="table:actions"/>. 2423</para> 2424 2425<para> 2426The latter parameters, <literal>A</literal> in the unary case, 2427or <literal>A</literal> and <literal>B</literal> in the binary case, 2428stand for the argument types of the operator call. 2429 2430The two sets of templates, 2431<literal>plain_return_type_<parameter>n</parameter></literal> and 2432<literal>return_type_<parameter>n</parameter></literal> 2433(<parameter>n</parameter> is 1 or 2) differ in the way how parameter types 2434are presented to them. 2435 2436For the former templates, the parameter types are always provided as 2437non-reference types, and do not have const or volatile qualifiers. 2438 2439This makes specializing easy, as commonly one specialization for each 2440user defined operator, or operator group, is enough. 2441 2442On the other hand, if a particular operator is overloaded for different 2443cv-qualifications of the same argument types, 2444and the return types of these overloaded versions differ, a more fine-grained control is needed. 2445 2446Hence, for the latter templates, the parameter types preserve the 2447cv-qualifiers, and are non-reference types as well. 2448 2449The downside is, that for an overloaded set of operators of the 2450kind described above, one may end up needing up to 245116 <literal>return_type_2</literal> specializations. 2452</para> 2453 2454<para> 2455Suppose the user has overloaded the following operators for some user defined 2456types <literal>X</literal>, <literal>Y</literal> and <literal>Z</literal>: 2457 2458<programlisting> 2459<![CDATA[Z operator+(const X&, const Y&); 2460Z operator-(const X&, const Y&);]]> 2461</programlisting> 2462 2463Now, one can add a specialization stating, that if the left hand argument 2464is of type <literal>X</literal>, and the right hand one of type 2465<literal>Y</literal>, the return type of all such binary arithmetic 2466operators is <literal>Z</literal>: 2467 2468<programlisting> 2469<![CDATA[namespace boost { 2470namespace lambda { 2471 2472template<class Act> 2473struct plain_return_type_2<arithmetic_action<Act>, X, Y> { 2474 typedef Z type; 2475}; 2476 2477} 2478}]]> 2479</programlisting> 2480 2481Having this specialization defined, BLL is capable of correctly 2482deducing the return type of the above two operators. 2483 2484Note, that the specializations must be in the same namespace, 2485<literal>::boost::lambda</literal>, with the primary template. 2486 2487For brevity, we do not show the namespace definitions in the examples below. 2488</para> 2489 2490<para> 2491It is possible to specialize on the level of an individual operator as well, 2492in addition to providing a specialization for a group of operators. 2493Say, we add a new arithmetic operator for argument types <literal>X</literal> 2494and <literal>Y</literal>: 2495 2496<programlisting> 2497<![CDATA[X operator*(const X&, const Y&);]]> 2498</programlisting> 2499 2500Our first rule for all arithmetic operators specifies that the return 2501type of this operator is <literal>Z</literal>, 2502which obviously is not the case. 2503Hence, we provide a new rule for the multiplication operator: 2504 2505<programlisting> 2506<![CDATA[template<> 2507struct plain_return_type_2<arithmetic_action<multiply_action>, X, Y> { 2508 typedef X type; 2509};]]> 2510</programlisting> 2511</para> 2512 2513<para> 2514The specializations can define arbitrary mappings from the argument types 2515to the return type. 2516 2517Suppose we have some mathematical vector type, templated on the element type: 2518 2519<programlisting> 2520<![CDATA[template <class T> class my_vector;]]> 2521</programlisting> 2522 2523Suppose the addition operator is defined between any two 2524<literal>my_vector</literal> instantiations, 2525as long as the addition operator is defined between their element types. 2526 2527Furthermore, the element type of the resulting <literal>my_vector</literal> 2528is the same as the result type of the addition between the element types. 2529 2530E.g., adding <literal><![CDATA[my_vector<int>]]></literal> and 2531<literal><![CDATA[my_vector<double>]]></literal> results in 2532<literal><![CDATA[my_vector<double>]]></literal>. 2533 2534The BLL has traits classes to perform the implicit built-in and standard 2535type conversions between integral, floating point, and complex classes. 2536 2537Using BLL tools, the addition operator described above can be defined as: 2538 2539<programlisting> 2540<![CDATA[template<class A, class B> 2541my_vector<typename return_type_2<arithmetic_action<plus_action>, A, B>::type> 2542operator+(const my_vector<A>& a, const my_vector<B>& b) 2543{ 2544 typedef typename 2545 return_type_2<arithmetic_action<plus_action>, A, B>::type res_type; 2546 return my_vector<res_type>(); 2547}]]> 2548</programlisting> 2549</para> 2550 2551<para> 2552To allow BLL to deduce the type of <literal>my_vector</literal> 2553additions correctly, we can define: 2554 2555<programlisting> 2556<![CDATA[template<class A, class B> 2557class plain_return_type_2<arithmetic_action<plus_action>, 2558 my_vector<A>, my_vector<B> > { 2559 typedef typename 2560 return_type_2<arithmetic_action<plus_action>, A, B>::type res_type; 2561public: 2562 typedef my_vector<res_type> type; 2563};]]> 2564</programlisting> 2565Note, that we are reusing the existing specializations for the 2566BLL <literal>return_type_2</literal> template, 2567which require that the argument types are references. 2568</para> 2569 2570<!-- TODO: is an example of specifying the other level needed at all --> 2571<!-- TODO: comma operator is a special case for that --> 2572 2573<table id = "table:actions"> 2574<title>Action types</title> 2575<tgroup cols="2"> 2576<tbody> 2577 2578<row><entry><literal><![CDATA[+]]></literal></entry><entry><literal><![CDATA[arithmetic_action<plus_action>]]></literal></entry></row> 2579<row><entry><literal><![CDATA[-]]></literal></entry><entry><literal><![CDATA[arithmetic_action<minus_action>]]></literal></entry></row> 2580<row><entry><literal><![CDATA[*]]></literal></entry><entry><literal><![CDATA[arithmetic_action<multiply_action>]]></literal></entry></row> 2581<row><entry><literal><![CDATA[/]]></literal></entry><entry><literal><![CDATA[arithmetic_action<divide_action>]]></literal></entry></row> 2582<row><entry><literal><![CDATA[%]]></literal></entry><entry><literal><![CDATA[arithmetic_action<remainder_action>]]></literal></entry></row> 2583 2584 2585 2586<row><entry><literal><![CDATA[+]]></literal></entry><entry><literal><![CDATA[unary_arithmetic_action<plus_action>]]></literal></entry></row> 2587<row><entry><literal><![CDATA[-]]></literal></entry><entry><literal><![CDATA[unary_arithmetic_action<minus_action>]]></literal></entry></row> 2588 2589 2590 2591<row><entry><literal><![CDATA[&]]></literal></entry><entry><literal><![CDATA[bitwise_action<and_action>]]></literal></entry></row> 2592<row><entry><literal><![CDATA[|]]></literal></entry><entry><literal><![CDATA[bitwise_action<or_action>]]></literal></entry></row> 2593<row><entry><literal><![CDATA[~]]></literal></entry><entry><literal><![CDATA[bitwise_action<not_action>]]></literal></entry></row> 2594<row><entry><literal><![CDATA[^]]></literal></entry><entry><literal><![CDATA[bitwise_action<xor_action>]]></literal></entry></row> 2595<row><entry><literal><![CDATA[<<]]></literal></entry><entry><literal><![CDATA[bitwise_action<leftshift_action_no_stream>]]></literal></entry></row> 2596<row><entry><literal><![CDATA[>>]]></literal></entry><entry><literal><![CDATA[bitwise_action<rightshift_action_no_stream>]]></literal></entry></row> 2597 2598 2599 2600<row><entry><literal><![CDATA[&&]]></literal></entry><entry><literal><![CDATA[logical_action<and_action>]]></literal></entry></row> 2601<row><entry><literal><![CDATA[||]]></literal></entry><entry><literal><![CDATA[logical_action<or_action>]]></literal></entry></row> 2602<row><entry><literal><![CDATA[!]]></literal></entry><entry><literal><![CDATA[logical_action<not_action>]]></literal></entry></row> 2603 2604 2605 2606<row><entry><literal><![CDATA[<]]></literal></entry><entry><literal><![CDATA[relational_action<less_action>]]></literal></entry></row> 2607<row><entry><literal><![CDATA[>]]></literal></entry><entry><literal><![CDATA[relational_action<greater_action>]]></literal></entry></row> 2608<row><entry><literal><![CDATA[<=]]></literal></entry><entry><literal><![CDATA[relational_action<lessorequal_action>]]></literal></entry></row> 2609<row><entry><literal><![CDATA[>=]]></literal></entry><entry><literal><![CDATA[relational_action<greaterorequal_action>]]></literal></entry></row> 2610<row><entry><literal><![CDATA[==]]></literal></entry><entry><literal><![CDATA[relational_action<equal_action>]]></literal></entry></row> 2611<row><entry><literal><![CDATA[!=]]></literal></entry><entry><literal><![CDATA[relational_action<notequal_action>]]></literal></entry></row> 2612 2613 2614 2615<row><entry><literal><![CDATA[+=]]></literal></entry><entry><literal><![CDATA[arithmetic_assignment_action<plus_action>]]></literal></entry></row> 2616<row><entry><literal><![CDATA[-=]]></literal></entry><entry><literal><![CDATA[arithmetic_assignment_action<minus_action>]]></literal></entry></row> 2617<row><entry><literal><![CDATA[*=]]></literal></entry><entry><literal><![CDATA[arithmetic_assignment_action<multiply_action>]]></literal></entry></row> 2618<row><entry><literal><![CDATA[/=]]></literal></entry><entry><literal><![CDATA[arithmetic_assignment_action<divide_action>]]></literal></entry></row> 2619<row><entry><literal><![CDATA[%=]]></literal></entry><entry><literal><![CDATA[arithmetic_assignment_action<remainder_action>]]></literal></entry></row> 2620 2621 2622 2623<row><entry><literal><![CDATA[&=]]></literal></entry><entry><literal><![CDATA[bitwise_assignment_action<and_action>]]></literal></entry></row> 2624<row><entry><literal><![CDATA[=|]]></literal></entry><entry><literal><![CDATA[bitwise_assignment_action<or_action>]]></literal></entry></row> 2625<row><entry><literal><![CDATA[^=]]></literal></entry><entry><literal><![CDATA[bitwise_assignment_action<xor_action>]]></literal></entry></row> 2626<row><entry><literal><![CDATA[<<=]]></literal></entry><entry><literal><![CDATA[bitwise_assignment_action<leftshift_action>]]></literal></entry></row> 2627<row><entry><literal><![CDATA[>>=]]></literal></entry><entry><literal><![CDATA[bitwise_assignment_action<rightshift_action>]]></literal></entry></row> 2628 2629 2630 2631<row><entry><literal><![CDATA[++]]></literal></entry><entry><literal><![CDATA[pre_increment_decrement_action<increment_action>]]></literal></entry></row> 2632<row><entry><literal><![CDATA[--]]></literal></entry><entry><literal><![CDATA[pre_increment_decrement_action<decrement_action>]]></literal></entry></row> 2633<row><entry><literal><![CDATA[++]]></literal></entry><entry><literal><![CDATA[post_increment_decrement_action<increment_action>]]></literal></entry></row> 2634<row><entry><literal><![CDATA[--]]></literal></entry><entry><literal><![CDATA[post_increment_decrement_action<decrement_action>]]></literal></entry></row> 2635 2636 2637 2638<row><entry><literal><![CDATA[&]]></literal></entry><entry><literal><![CDATA[other_action<address_of_action>]]></literal></entry></row> 2639<row><entry><literal><![CDATA[*]]></literal></entry><entry><literal><![CDATA[other_action<contents_of_action>]]></literal></entry></row> 2640<row><entry><literal><![CDATA[,]]></literal></entry><entry><literal><![CDATA[other_action<comma_action>]]></literal></entry></row> 2641 2642</tbody> 2643</tgroup> 2644</table> 2645 2646</section> 2647 2648 2649<section> 2650<title>Practical considerations</title> 2651 2652 2653<section> 2654<title>Performance</title> 2655 2656<para>In theory, all overhead of using STL algorithms and lambda functors 2657compared to hand written loops can be optimized away, just as the overhead 2658from standard STL function objects and binders can. 2659 2660Depending on the compiler, this can also be true in practice. 2661We ran two tests with the GCC 3.0.4 compiler on 1.5 GHz Intel Pentium 4. 2662The optimization flag -03 was used. 2663</para> 2664 2665<para> 2666In the first test we compared lambda functors against explicitly written 2667function objects. 2668We used both of these styles to define unary functions which multiply the 2669argument repeatedly by itself. 2670We started with the identity function, going up to 2671x<superscript>5</superscript>. 2672The expressions were called inside a <literal>std::transform</literal> loop, 2673reading the argument from one <literal><![CDATA[std::vector<int>]]></literal> 2674and placing the result into another. 2675The length of the vectors was 100 elements. 2676The running times are listed in 2677<xref linkend="table:increasing_arithmetic_test"/>. 2678 2679We can observe that there is no significant difference between the 2680two approaches. 2681</para> 2682 2683<para> 2684In the second test we again used <literal>std::transform</literal> to 2685perform an operation to each element in a 100-element long vector. 2686This time the element type of the vectors was <literal>double</literal> 2687and we started with very simple arithmetic expressions and moved to 2688more complex ones. 2689The running times are listed in <xref linkend="table:ll_vs_stl_test"/>. 2690 2691Here, we also included classic STL style unnamed functions into tests. 2692We do not show these expressions, as they get rather complex. 2693For example, the 2694last expression in <xref linkend="table:ll_vs_stl_test"/> written with 2695classic STL tools contains 7 calls to <literal>compose2</literal>, 26968 calls to <literal>bind1st</literal> 2697and altogether 14 constructor invocations for creating 2698<literal>multiplies</literal>, <literal>minus</literal> 2699and <literal>plus</literal> objects. 2700 2701In this test the BLL expressions are a little slower (roughly 10% on average, 2702less than 14% in all cases) 2703than the corresponding hand-written function objects. 2704The performance hit is a bit greater with classic STL expressions, 2705up to 27% for the simplest expressios. 2706</para> 2707 2708<para> 2709The tests suggest that the BLL does not introduce a loss of performance 2710compared to STL function objects. 2711With a reasonable optimizing compiler, one should expect the performance characteristics be comparable to using classic STL. 2712Moreover, with simple expressions the performance can be expected to be close 2713to that of explicitly written function objects. 2714 2715<!-- We repeated both tests with the KAI C++ 4.0f compiler (using +K2 -O3 flags), 2716generally considered a good optimizing compiler. 2717We do not list the results here, since the running times for the two alternatives in the first test were essentially the same, just as the running times 2718for the three different alternatives in the second test. 2719These tests suggest there to be no performance penalty at all 2720with a good optimizing compiler. 2721--> 2722 2723Note however, that evaluating a lambda functor consist of a sequence of calls to small functions that are declared inline. 2724If the compiler fails to actually expand these functions inline, 2725the performance can suffer. 2726The running time can more than double if this happens. 2727Although the above tests do not include such an expression, we have experienced 2728this for some seemingly simple expressions. 2729 2730 2731<table id = "table:increasing_arithmetic_test"> 2732<title>Test 1. CPU time of expressions with integer multiplication written as a lambda expression and as a traditional hand-coded function object class. 2733The running times are expressed in arbitrary units.</title> 2734<tgroup cols="3"> 2735<thead> 2736<row> 2737<entry>expression</entry><entry>lambda expression</entry><entry>hand-coded function object</entry></row> 2738</thead> 2739 2740<tbody> 2741 2742<row> 2743<entry>x</entry><entry>240</entry><entry>230</entry> 2744</row> 2745 2746<row> 2747<entry>x*x</entry><entry>340</entry><entry>350</entry> 2748</row> 2749 2750<row> 2751<entry>x*x*x</entry><entry>770</entry><entry>760</entry> 2752</row> 2753 2754<row> 2755<entry>x*x*x*x</entry><entry>1180</entry><entry>1210</entry> 2756</row> 2757 2758<row> 2759<entry>x*x*x*x*x</entry><entry>1950</entry><entry>1910</entry> 2760</row> 2761 2762</tbody> 2763</tgroup> 2764</table> 2765</para> 2766 2767<!-- 276816:19:49 bench [601] ./arith.out 100 1000000 2769 2770Number of elements = 100 2771L1 : 240 2772L2 : 340 2773L3 : 770 2774L4 : 1180 2775L5 : 1950 2776 2777P2 : 1700 2778P3 : 2130 2779P4 : 2530 2780P5 : 3000 2781 2782F1 : 230 2783F2 : 350 2784F3 : 760 2785F4 : 1210 2786F5 : 1910 2787 2788 2789Number of elements = 100 2790Number of outer_iters = 1000000 2791L1 : 330 2792L2 : 350 2793L3 : 470 2794L4 : 620 2795L5 : 1660 2796LP : 1230 2797C1 : 370 2798C2 : 370 2799C3 : 500 2800C4 : 670 2801C5 : 1660 2802CP : 1770 2803F1 : 290 2804F2 : 310 2805F3 : 420 2806F4 : 600 2807F5 : 1460 2808FP : 1040 2809 2810--> 2811 2812 2813<para> 2814<table id = "table:ll_vs_stl_test"> 2815<title>Test 2. CPU time of arithmetic expressions written as lambda 2816expressions, as classic STL unnamed functions (using <literal>compose2</literal>, <literal>bind1st</literal> etc.) and as traditional hand-coded function object classes. 2817Using BLL terminology, 2818<literal>a</literal> and <literal>b</literal> are bound arguments in the expressions, and <literal>x</literal> is open. 2819All variables were of types <literal>double</literal>. 2820The running times are expressed in arbitrary units.</title> 2821<tgroup cols="4"> 2822<thead> 2823<row> 2824<entry>expression</entry><entry>lambda expression</entry><entry>classic STL expression</entry><entry>hand-coded function object</entry></row> 2825</thead> 2826 2827<tbody> 2828 2829<row> 2830<entry>ax</entry><entry>330</entry><entry>370</entry><entry>290</entry> 2831</row> 2832 2833<row> 2834<entry>-ax</entry><entry>350</entry><entry>370</entry><entry>310</entry> 2835</row> 2836 2837<row> 2838<entry>ax-(a+x)</entry><entry>470</entry><entry>500</entry><entry>420</entry> 2839</row> 2840 2841<row> 2842<entry>(ax-(a+x))(a+x)</entry><entry>620</entry><entry>670</entry><entry>600</entry> 2843</row> 2844 2845<row> 2846<entry>((ax) - (a+x))(bx - (b+x))(ax - (b+x))(bx - (a+x))</entry><entry>1660</entry><entry>1660</entry><entry>1460</entry> 2847</row> 2848 2849</tbody> 2850</tgroup> 2851 2852</table> 2853</para> 2854 2855 2856<para>Some additional performance testing with an earlier version of the 2857library is described 2858<xref linkend="cit:jarvi:00"/>. 2859</para> 2860 2861</section> 2862 <section> 2863 <title>About compiling</title> 2864 2865 <para>The BLL uses templates rather heavily, performing numerous recursive instantiations of the same templates. 2866This has (at least) three implications: 2867<itemizedlist> 2868 2869<listitem> 2870<para> 2871While it is possible to write incredibly complex lambda expressions, it probably isn't a good idea. 2872Compiling such expressions may end up requiring a lot of memory 2873at compile time, and being slow to compile. 2874</para> 2875</listitem> 2876 2877 2878<listitem> 2879<para> 2880The types of lambda functors that result from even the simplest lambda expressions are cryptic. 2881Usually the programmer doesn't need to deal with the lambda functor types at all, but in the case of an error in a lambda expression, the compiler usually outputs the types of the lambda functors involved. 2882This can make the error messages very long and difficult to interpret, particularly if the compiler outputs the whole chain of template instantiations. 2883</para> 2884</listitem> 2885 2886<listitem> 2887<para> 2888The C++ Standard suggests a template nesting level of 17 to help detect infinite recursion. 2889Complex lambda templates can easily exceed this limit. 2890Most compilers allow a greater number of nested templates, but commonly require the limit explicitly increased with a command line argument. 2891</para> 2892</listitem> 2893</itemizedlist></para> 2894 2895 </section> 2896 2897 <section> 2898 <title>Portability</title> 2899 <para> 2900The BLL works with the following compilers, that is, the compilers are capable of compiling the test cases that are included with the BLL: 2901 2902 <itemizedlist> 2903 <listitem>GCC 3.0.4 2904 </listitem> 2905 <listitem>KCC 4.0f with EDG 2.43.1 2906 </listitem> 2907 <listitem>GCC 2.96 (fails with one test case, the <filename>exception_test.cpp</filename> results in an internal compiler error. 2908) 2909 2910 </listitem> 2911 </itemizedlist> 2912</para> 2913 2914 <section> 2915 <title>Test coverage</title> 2916 2917<para>The following list describes the test files included and the features that each file covers: 2918 2919<itemizedlist> 2920<listitem> 2921<para> 2922<filename>bind_tests_simple.cpp</filename> : Bind expressions of different arities and types of target functions: function pointers, function objects and member functions. 2923Function composition with bind expressions.</para> 2924</listitem> 2925 2926<listitem> 2927<para><filename>bind_tests_simple_function_references.cpp</filename> : 2928Repeats all tests from <filename moreinfo="none">bind_tests_simple.cpp</filename> where the target function is a function pointer, but uses function references instead. 2929</para></listitem> 2930 2931 2932<listitem> 2933<para><filename>bind_tests_advanced.cpp</filename> : Contains tests for nested bind expressions, <literal>unlambda</literal>, <literal>protect</literal>, <literal>const_parameters</literal> and <literal>break_const</literal>. 2934Tests passing lambda functors as actual arguments to other lambda functors, currying, and using the <literal>sig</literal> template to specify the return type of a function object. 2935</para> 2936</listitem> 2937 2938<listitem> 2939<para> 2940<filename>operator_tests_simple.cpp</filename> : 2941Tests using all operators that are overloaded for lambda expressions, that is, unary and binary arithmetic, 2942bitwise, 2943comparison, 2944logical, 2945increment and decrement, 2946compound, 2947assignment, 2948subscrict, 2949address of, 2950dereference, and comma operators. 2951The streaming nature of shift operators is tested, as well as pointer arithmetic with plus and minus operators. 2952</para> 2953</listitem> 2954 2955<listitem> 2956<para><filename>member_pointer_test.cpp</filename> : The pointer to member operator is complex enough to warrant a separate test file. 2957</para> 2958</listitem> 2959 2960<listitem> 2961<para> 2962<filename>control_structures.cpp</filename> : 2963Tests for the looping and if constructs. 2964</para></listitem> 2965 2966<listitem> 2967<para> 2968<filename>switch_construct.cpp</filename> : 2969Includes tests for all supported arities of the switch statement, both with and without the default case. 2970</para> 2971</listitem> 2972 2973<listitem> 2974<para> 2975<filename>exception_test.cpp</filename> : 2976Includes tests for throwing exceptions and for try/catch constructs with varying number of catch blocks. 2977</para> 2978</listitem> 2979 2980<listitem> 2981<para> 2982<filename>constructor_tests.cpp</filename> : 2983Contains tests for <literal>constructor</literal>, <literal>destructor</literal>, <literal>new_ptr</literal>, <literal>delete_ptr</literal>, <literal>new_array</literal> and <literal>delete_array</literal>. 2984</para> 2985</listitem> 2986 2987<listitem> 2988<para> 2989<filename>cast_test.cpp</filename> : Tests for the four cast expressions, as well as <filename>typeid</filename> and <literal>sizeof</literal>. 2990</para> 2991</listitem> 2992 2993<listitem> 2994<para> 2995<filename>extending_return_type_traits.cpp</filename> : Tests extending the return type deduction system for user defined types. 2996Contains several user defined operators and the corresponding specializations for the return type deduction templates. 2997</para> 2998</listitem> 2999 3000<listitem> 3001<para> 3002<filename>is_instance_of_test.cpp</filename> : Includes tests for an internally used traits template, which can detect whether a given type is an instance of a certain template or not. 3003</para></listitem> 3004 3005<listitem> 3006<para> 3007<filename>bll_and_function.cpp</filename> : 3008Contains tests for using <literal>boost::function</literal> together with lambda functors. 3009</para></listitem> 3010 3011 </itemizedlist> 3012 3013</para> 3014 3015 </section> 3016 3017 </section> 3018 3019 3020</section> 3021 3022 3023<section> 3024<title>Relation to other Boost libraries</title> 3025 3026<section> 3027<title>Boost Function</title> 3028 3029<para>Sometimes it is convenient to store lambda functors in variables. 3030However, the types of even the simplest lambda functors are long and unwieldy, and it is in general unfeasible to declare variables with lambda functor types. 3031<emphasis>The Boost Function library</emphasis> <xref linkend="cit:boost::function"/> defines wrappers for arbitrary function objects, for example 3032lambda functors; and these wrappers have types that are easy to type out. 3033 3034For example: 3035 3036<programlisting> 3037<![CDATA[boost::function<int(int, int)> f = _1 + _2; 3038boost::function<int&(int&)> g = (_1 += 10); 3039int i = 1, j = 2; 3040f(i, j); // returns 3 3041g(i); // sets i to = 11;]]> 3042</programlisting> 3043 3044The return and parameter types of the wrapped function object must be written explicilty as the template argument to the wrapper template <literal>boost::function</literal>; even when lambda functors, which otherwise have generic parameters, are wrapped. 3045Wrapping a function object with <literal>boost::function</literal> introduces a performance cost comparable to virtual function dispatch, though virtual functions are not actually used. 3046 3047Note that storing lambda functors inside <literal>boost::function</literal> 3048introduces a danger. 3049Certain types of lambda functors may store references to the bound 3050arguments, instead as taking copies of the arguments of the lambda expression. 3051When temporary lambda functor objects are used 3052in STL algorithm invocations this is always safe, as the lambda functor gets 3053destructed immediately after the STL algortihm invocation is completed. 3054 3055However, a lambda functor wrapped inside <literal>boost::function</literal> 3056may continue to exist longer, creating the possibility of dangling references. 3057For example: 3058 3059<programlisting> 3060<![CDATA[int* sum = new int(); 3061*sum = 0; 3062boost::function<int&(int)> counter = *sum += _1; 3063counter(5); // ok, *sum = 5; 3064delete sum; 3065counter(3); // error, *sum does not exist anymore]]> 3066</programlisting> 3067 3068</para> 3069 3070</section> 3071 3072<section> 3073<title>Boost Bind</title> 3074<para> 3075<emphasis>The Boost Bind</emphasis> <xref linkend="cit:boost::bind"/> library has partially overlapping functionality with the BLL. 3076Basically, the Boost Bind library (BB in the sequel) implements the bind expression part of BLL. 3077There are, however, some semantical differerences. 3078</para> 3079<para> 3080The BLL and BB evolved separately, and have different implementations. 3081This means that the bind expressions from the BB cannot be used within 3082bind expressions, or within other type of lambda expressions, of the BLL. 3083The same holds for using BLL bind expressions in the BB. 3084The libraries can coexist, however, as 3085the names of the BB library are in <literal>boost</literal> namespace, 3086whereas the BLL names are in <literal>boost::lambda</literal> namespace. 3087</para> 3088 3089<para> 3090The BLL requires a compiler that is reasonably conformant to the 3091C++ standard, whereas the BB library is more portable, and works with 3092a larger set of compilers. 3093</para> 3094 3095<para> 3096The following two sections describe what are the semantic differences 3097between the bind expressions in BB and BLL. 3098</para> 3099 3100 3101 3102 3103<section> 3104<title>First argument of bind expression</title> 3105 3106In BB the first argument of the bind expression, the target function, 3107is treated differently from the other arguments, 3108as no argument substitution takes place within that argument. 3109In BLL the first argument is not a special case in this respect. 3110 3111For example: 3112 3113<programlisting> 3114<![CDATA[template<class F> 3115int foo(const F& f) { 3116 int x; 3117 .. 3118 bind(f, _1)(x); 3119 ... 3120}]]> 3121</programlisting> 3122 3123<programlisting> 3124<![CDATA[int bar(int, int); 3125nested(bind(bar, 1, _1));]]> 3126</programlisting> 3127 3128The bind expression inside <literal>foo</literal> becomes: 3129<programlisting> 3130bind(bind(bar, 1, _1), _1)(x) 3131</programlisting> 3132 3133The BLL interpretes this as: 3134<programlisting> 3135bar(1, x)(x) 3136</programlisting> 3137whereas the BB library as 3138<programlisting> 3139bar(1, x) 3140</programlisting> 3141 3142To get this functionality in BLL, the bind expression inside the <literal moreinfo="none">foo</literal> function can be written as: 3143<programlisting> 3144bind(unlambda(f), _1)(x); 3145</programlisting> 3146as explained in <xref linkend = "sect:unlambda"/>. 3147 3148</section> 3149 3150 3151 3152 3153<para> 3154The BB library supports up to nine placeholders, while the BLL 3155defines only three placeholders. 3156The rationale for not providing more, is that the highest arity of the 3157function objects accepted by any STL algorithm is two. 3158The placeholder count is easy to increase in the BB library. 3159In BLL it is possible, but more laborous. 3160The BLL currently passes the actual arguments to the lambda functors 3161internally just as they are and does not wrap them inside a tuple object. 3162The reason for this is that some widely used compilers are not capable 3163of optimizing the intermediate tuple objects away. 3164The creation of the intermediate tuples would cause a significant 3165performance hit, particularly for the simplest (and thus the most common) 3166lambda functors. 3167We are working on a hybrid approach, which will allow more placeholders 3168but not compromise the performance of simple lambda functors. 3169</para> 3170 3171</section> 3172 3173 </section> 3174 3175 3176<section> 3177<title>Contributors</title> 3178 3179The main body of the library was written by Jaakko J�rvi and Gary Powell. 3180We've got outside help, suggestions and ideas from Jeremy Siek, Peter Higley, Peter Dimov, Valentin Bonnard, William Kempf. 3181We would particularly like to mention Joel de Guzmann and his work with 3182Phoenix which has influenced BLL significantly, making it considerably simpler 3183to extend the library with new features. 3184 3185</section> 3186 3187 3188 3189<appendix> 3190<title>Rationale for some of the design decisions</title> 3191 3192<section id="sect:why_weak_arity"> 3193<title> 3194Lambda functor arity 3195</title> 3196 3197<para> 3198The highest placeholder index in a lambda expression determines the arity of the resulting function object. 3199However, this is just the minimal arity, as the function object can take arbitrarily many arguments; those not needed are discarded. 3200Consider the two bind expressions and their invocations below: 3201 3202<programlisting> 3203bind(g, _3, _3, _3)(x, y, z); 3204bind(g, _1, _1, _1)(x, y, z); 3205</programlisting> 3206 3207This first line discards arguments <literal>x</literal> and 3208<literal>y</literal>, and makes the call: 3209<programlisting> 3210g(z, z, z) 3211</programlisting> 3212whereas the second line discards arguments <literal>y</literal> and 3213<literal>z</literal>, and calls: 3214<programlisting> 3215g(x, x, x) 3216</programlisting> 3217In earlier versions of the library, the latter line resulted in a compile 3218time error. 3219 3220This is basically a tradeoff between safety and flexibility, and the issue 3221was extensively discussed during the Boost review period of the library. 3222The main points for the <emphasis>strict arity</emphasis> checking 3223was that it might 3224catch a programming error at an earlier time and that a lambda expression that 3225explicitly discards its arguments is easy to write: 3226<programlisting> 3227(_3, bind(g, _1, _1, _1))(x, y, z); 3228</programlisting> 3229This lambda expression takes three arguments. 3230The left-hand argument of the comma operator does nothing, and as comma 3231returns the result of evaluating the right-hand argument we end up with 3232the call 3233<literal>g(x, x, x)</literal> 3234even with the strict arity. 3235</para> 3236 3237<para> 3238The main points against the strict arity checking were that the need to 3239discard arguments is commonplace, and should therefore be straightforward, 3240and that strict arity checking does not really buy that much more safety, 3241particularly as it is not symmetric. 3242For example, if the programmer wanted to write the expression 3243<literal>_1 + _2</literal> but mistakenly wrote <literal>_1 + 2</literal>, 3244with strict arity checking, the complier would spot the error. 3245However, if the erroneous expression was <literal>1 + _2</literal> instead, 3246the error would go unnoticed. 3247Furthermore, weak arity checking simplifies the implementation a bit. 3248Following the recommendation of the Boost review, strict arity checking 3249was dropped. 3250</para> 3251 3252</section> 3253 3254</appendix> 3255 3256 3257 3258<bibliography> 3259 3260<biblioentry id="cit:stepanov:94"> 3261<abbrev>STL94</abbrev> 3262<authorgroup> 3263<author> 3264<surname>Stepanov</surname> 3265<firstname>A. A.</firstname> 3266</author> 3267<author> 3268<surname>Lee</surname> 3269<firstname>M.</firstname> 3270</author> 3271</authorgroup> 3272<title>The Standard Template Library</title> 3273<orgname>Hewlett-Packard Laboratories</orgname> 3274<pubdate>1994</pubdate> 3275<bibliomisc> 3276<ulink url="http://www.hpl.hp.com/techreports">www.hpl.hp.com/techreports</ulink> 3277</bibliomisc> 3278</biblioentry> 3279 3280<biblioentry id="cit:sgi:02"> 3281<abbrev>SGI02</abbrev> 3282<title>The SGI Standard Template Library</title> 3283<pubdate>2002</pubdate> 3284<bibliomisc><ulink url="http://www.sgi.com/tech/stl/">www.sgi.com/tech/stl/</ulink></bibliomisc> 3285 3286</biblioentry> 3287 3288<biblioentry id="cit:c++:98"> 3289<abbrev>C++98</abbrev> 3290<title>International Standard, Programming Languages – C++</title> 3291<subtitle>ISO/IEC:14882</subtitle> 3292<pubdate>1998</pubdate> 3293</biblioentry> 3294 3295 3296<biblioentry id="cit:jarvi:99"> 3297<abbrev>J�r99</abbrev> 3298 3299<articleinfo> 3300<author> 3301<surname>J�rvi</surname> 3302<firstname>Jaakko</firstname> 3303</author> 3304<title>C++ Function Object Binders Made Easy</title> 3305</articleinfo> 3306 3307<title>Lecture Notes in Computer Science</title> 3308<volumenum>1977</volumenum> 3309<publishername>Springer</publishername> 3310 3311<pubdate>2000</pubdate> 3312</biblioentry> 3313 3314 3315 3316<biblioentry id="cit:jarvi:00"> 3317<abbrev>J�r00</abbrev> 3318<author> 3319<surname>J�rvi</surname> 3320<firstname>Jaakko</firstname> 3321</author> 3322<author> 3323<firstname>Gary</firstname> 3324<surname>Powell</surname> 3325</author> 3326<title>The Lambda Library : Lambda Abstraction in C++</title> 3327 <orgname>Turku Centre for Computer Science</orgname> 3328<bibliomisc>Technical Report </bibliomisc> 3329 <issuenum>378</issuenum> 3330<pubdate>2000</pubdate> 3331<bibliomisc><ulink url="http://www.tucs.fi/Publications/techreports/TR378.php">www.tucs.fi/publications</ulink></bibliomisc> 3332 3333 3334</biblioentry> 3335 3336 3337<biblioentry id="cit:jarvi:01"> 3338<abbrev>J�r01</abbrev> 3339<author> 3340<surname>J�rvi</surname> 3341<firstname>Jaakko</firstname> 3342</author> 3343<author> 3344<firstname>Gary</firstname> 3345<surname>Powell</surname> 3346</author> 3347<title>The Lambda Library : Lambda Abstraction in C++</title> 3348 <confgroup> 3349 <conftitle>Second Workshop on C++ Template Programming</conftitle> 3350 <address>Tampa Bay, OOPSLA'01</address> 3351 </confgroup> 3352<pubdate>2001</pubdate> 3353<bibliomisc><ulink url="http://www.oonumerics.org/tmpw01/">www.oonumerics.org/tmpw01/</ulink></bibliomisc> 3354</biblioentry> 3355 3356<biblioentry id="cit:jarvi:03"> 3357<abbrev>J�r03</abbrev> 3358 3359<articleinfo> 3360 3361<author> 3362<surname>J�rvi</surname> 3363<firstname>Jaakko</firstname> 3364</author> 3365 3366<author> 3367<firstname>Gary</firstname> 3368<surname>Powell</surname> 3369</author> 3370 3371<author> 3372<firstname>Andrew</firstname> 3373<surname>Lumsdaine</surname> 3374</author> 3375<title>The Lambda Library : unnamed functions in C++</title> 3376 3377</articleinfo> 3378 3379<title>Software - Practice and Expreience</title> 3380<volumenum>33:259-291</volumenum> 3381 3382 3383<pubdate>2003</pubdate> 3384</biblioentry> 3385 3386 3387<biblioentry id="cit:boost::tuple"> 3388<abbrev>tuple</abbrev> 3389<title>The Boost Tuple Library</title> 3390<bibliomisc><ulink url="http://www.boost.org/libs/tuple/doc/tuple_users_guide.html">www.boost.org/libs/tuple/doc/tuple_users_guide.html</ulink> 3391</bibliomisc> 3392<pubdate>2002</pubdate> 3393</biblioentry> 3394 3395<biblioentry id="cit:boost::type_traits"> 3396<abbrev>type_traits</abbrev> 3397<title>The Boost type_traits</title> 3398<bibliomisc><ulink url="http://www.boost.org/libs/type_traits/index.htm">www.boost.org/libs/type_traits/</ulink> 3399</bibliomisc> 3400<pubdate>2002</pubdate> 3401</biblioentry> 3402 3403<biblioentry id="cit:boost::ref"> 3404<abbrev>ref</abbrev> 3405<title>Boost ref</title> 3406<bibliomisc><ulink url="http://www.boost.org/libs/bind/ref.html">www.boost.org/libs/bind/ref.html</ulink> 3407</bibliomisc> 3408<pubdate>2002</pubdate> 3409</biblioentry> 3410 3411<biblioentry id="cit:boost::bind"> 3412<abbrev>bind</abbrev> 3413<title>Boost Bind Library</title> 3414<bibliomisc><ulink url="http://www.boost.org/libs/bind/bind.html">www.boost.org/libs/bind/bind.html</ulink> 3415</bibliomisc> 3416<pubdate>2002</pubdate> 3417</biblioentry> 3418 3419<biblioentry id="cit:boost::function"> 3420<abbrev>function</abbrev> 3421<title>Boost Function Library</title> 3422<bibliomisc><ulink url="http://www.boost.org/libs/function/">www.boost.org/libs/function/</ulink> 3423</bibliomisc> 3424<pubdate>2002</pubdate> 3425</biblioentry> 3426 3427<biblioentry id="cit:fc++"> 3428<abbrev>fc++</abbrev> 3429<title>The FC++ library: Functional Programming in C++</title> 3430<author> 3431<surname>Smaragdakis</surname> 3432<firstname>Yannis</firstname> 3433</author> 3434<author> 3435<firstname>Brian</firstname> 3436<surname>McNamara</surname> 3437</author> 3438<bibliomisc><ulink url="http://yanniss.github.io/fc++/">yanniss.github.io/fc++/ </ulink> 3439</bibliomisc> 3440<pubdate>2002</pubdate> 3441</biblioentry> 3442 3443 3444 3445 3446</bibliography> 3447 3448 3449 3450</library> 3451 3452 3453 3454 3455 3456 3457