• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- LazyCallGraph.h - Analysis of a Module's call graph ------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// Implements a lazy call graph analysis and related passes for the new pass
11 /// manager.
12 ///
13 /// NB: This is *not* a traditional call graph! It is a graph which models both
14 /// the current calls and potential calls. As a consequence there are many
15 /// edges in this call graph that do not correspond to a 'call' or 'invoke'
16 /// instruction.
17 ///
18 /// The primary use cases of this graph analysis is to facilitate iterating
19 /// across the functions of a module in ways that ensure all callees are
20 /// visited prior to a caller (given any SCC constraints), or vice versa. As
21 /// such is it particularly well suited to organizing CGSCC optimizations such
22 /// as inlining, outlining, argument promotion, etc. That is its primary use
23 /// case and motivates the design. It may not be appropriate for other
24 /// purposes. The use graph of functions or some other conservative analysis of
25 /// call instructions may be interesting for optimizations and subsequent
26 /// analyses which don't work in the context of an overly specified
27 /// potential-call-edge graph.
28 ///
29 /// To understand the specific rules and nature of this call graph analysis,
30 /// see the documentation of the \c LazyCallGraph below.
31 ///
32 //===----------------------------------------------------------------------===//
33 
34 #ifndef LLVM_ANALYSIS_LAZYCALLGRAPH_H
35 #define LLVM_ANALYSIS_LAZYCALLGRAPH_H
36 
37 #include "llvm/ADT/ArrayRef.h"
38 #include "llvm/ADT/DenseMap.h"
39 #include "llvm/ADT/Optional.h"
40 #include "llvm/ADT/PointerIntPair.h"
41 #include "llvm/ADT/STLExtras.h"
42 #include "llvm/ADT/SetVector.h"
43 #include "llvm/ADT/SmallPtrSet.h"
44 #include "llvm/ADT/SmallVector.h"
45 #include "llvm/ADT/StringRef.h"
46 #include "llvm/ADT/iterator.h"
47 #include "llvm/ADT/iterator_range.h"
48 #include "llvm/Analysis/TargetLibraryInfo.h"
49 #include "llvm/IR/Constant.h"
50 #include "llvm/IR/Constants.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/PassManager.h"
53 #include "llvm/Support/Allocator.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include <cassert>
57 #include <iterator>
58 #include <string>
59 #include <utility>
60 
61 namespace llvm {
62 
63 class Module;
64 class Value;
65 
66 /// A lazily constructed view of the call graph of a module.
67 ///
68 /// With the edges of this graph, the motivating constraint that we are
69 /// attempting to maintain is that function-local optimization, CGSCC-local
70 /// optimizations, and optimizations transforming a pair of functions connected
71 /// by an edge in the graph, do not invalidate a bottom-up traversal of the SCC
72 /// DAG. That is, no optimizations will delete, remove, or add an edge such
73 /// that functions already visited in a bottom-up order of the SCC DAG are no
74 /// longer valid to have visited, or such that functions not yet visited in
75 /// a bottom-up order of the SCC DAG are not required to have already been
76 /// visited.
77 ///
78 /// Within this constraint, the desire is to minimize the merge points of the
79 /// SCC DAG. The greater the fanout of the SCC DAG and the fewer merge points
80 /// in the SCC DAG, the more independence there is in optimizing within it.
81 /// There is a strong desire to enable parallelization of optimizations over
82 /// the call graph, and both limited fanout and merge points will (artificially
83 /// in some cases) limit the scaling of such an effort.
84 ///
85 /// To this end, graph represents both direct and any potential resolution to
86 /// an indirect call edge. Another way to think about it is that it represents
87 /// both the direct call edges and any direct call edges that might be formed
88 /// through static optimizations. Specifically, it considers taking the address
89 /// of a function to be an edge in the call graph because this might be
90 /// forwarded to become a direct call by some subsequent function-local
91 /// optimization. The result is that the graph closely follows the use-def
92 /// edges for functions. Walking "up" the graph can be done by looking at all
93 /// of the uses of a function.
94 ///
95 /// The roots of the call graph are the external functions and functions
96 /// escaped into global variables. Those functions can be called from outside
97 /// of the module or via unknowable means in the IR -- we may not be able to
98 /// form even a potential call edge from a function body which may dynamically
99 /// load the function and call it.
100 ///
101 /// This analysis still requires updates to remain valid after optimizations
102 /// which could potentially change the set of potential callees. The
103 /// constraints it operates under only make the traversal order remain valid.
104 ///
105 /// The entire analysis must be re-computed if full interprocedural
106 /// optimizations run at any point. For example, globalopt completely
107 /// invalidates the information in this analysis.
108 ///
109 /// FIXME: This class is named LazyCallGraph in a lame attempt to distinguish
110 /// it from the existing CallGraph. At some point, it is expected that this
111 /// will be the only call graph and it will be renamed accordingly.
112 class LazyCallGraph {
113 public:
114   class Node;
115   class EdgeSequence;
116   class SCC;
117   class RefSCC;
118   class edge_iterator;
119   class call_edge_iterator;
120 
121   /// A class used to represent edges in the call graph.
122   ///
123   /// The lazy call graph models both *call* edges and *reference* edges. Call
124   /// edges are much what you would expect, and exist when there is a 'call' or
125   /// 'invoke' instruction of some function. Reference edges are also tracked
126   /// along side these, and exist whenever any instruction (transitively
127   /// through its operands) references a function. All call edges are
128   /// inherently reference edges, and so the reference graph forms a superset
129   /// of the formal call graph.
130   ///
131   /// All of these forms of edges are fundamentally represented as outgoing
132   /// edges. The edges are stored in the source node and point at the target
133   /// node. This allows the edge structure itself to be a very compact data
134   /// structure: essentially a tagged pointer.
135   class Edge {
136   public:
137     /// The kind of edge in the graph.
138     enum Kind : bool { Ref = false, Call = true };
139 
140     Edge();
141     explicit Edge(Node &N, Kind K);
142 
143     /// Test whether the edge is null.
144     ///
145     /// This happens when an edge has been deleted. We leave the edge objects
146     /// around but clear them.
147     explicit operator bool() const;
148 
149     /// Returnss the \c Kind of the edge.
150     Kind getKind() const;
151 
152     /// Test whether the edge represents a direct call to a function.
153     ///
154     /// This requires that the edge is not null.
155     bool isCall() const;
156 
157     /// Get the call graph node referenced by this edge.
158     ///
159     /// This requires that the edge is not null.
160     Node &getNode() const;
161 
162     /// Get the function referenced by this edge.
163     ///
164     /// This requires that the edge is not null.
165     Function &getFunction() const;
166 
167   private:
168     friend class LazyCallGraph::EdgeSequence;
169     friend class LazyCallGraph::RefSCC;
170 
171     PointerIntPair<Node *, 1, Kind> Value;
172 
setKind(Kind K)173     void setKind(Kind K) { Value.setInt(K); }
174   };
175 
176   /// The edge sequence object.
177   ///
178   /// This typically exists entirely within the node but is exposed as
179   /// a separate type because a node doesn't initially have edges. An explicit
180   /// population step is required to produce this sequence at first and it is
181   /// then cached in the node. It is also used to represent edges entering the
182   /// graph from outside the module to model the graph's roots.
183   ///
184   /// The sequence itself both iterable and indexable. The indexes remain
185   /// stable even as the sequence mutates (including removal).
186   class EdgeSequence {
187     friend class LazyCallGraph;
188     friend class LazyCallGraph::Node;
189     friend class LazyCallGraph::RefSCC;
190 
191     using VectorT = SmallVector<Edge, 4>;
192     using VectorImplT = SmallVectorImpl<Edge>;
193 
194   public:
195     /// An iterator used for the edges to both entry nodes and child nodes.
196     class iterator
197         : public iterator_adaptor_base<iterator, VectorImplT::iterator,
198                                        std::forward_iterator_tag> {
199       friend class LazyCallGraph;
200       friend class LazyCallGraph::Node;
201 
202       VectorImplT::iterator E;
203 
204       // Build the iterator for a specific position in the edge list.
iterator(VectorImplT::iterator BaseI,VectorImplT::iterator E)205       iterator(VectorImplT::iterator BaseI, VectorImplT::iterator E)
206           : iterator_adaptor_base(BaseI), E(E) {
207         while (I != E && !*I)
208           ++I;
209       }
210 
211     public:
212       iterator() = default;
213 
214       using iterator_adaptor_base::operator++;
215       iterator &operator++() {
216         do {
217           ++I;
218         } while (I != E && !*I);
219         return *this;
220       }
221     };
222 
223     /// An iterator over specifically call edges.
224     ///
225     /// This has the same iteration properties as the \c iterator, but
226     /// restricts itself to edges which represent actual calls.
227     class call_iterator
228         : public iterator_adaptor_base<call_iterator, VectorImplT::iterator,
229                                        std::forward_iterator_tag> {
230       friend class LazyCallGraph;
231       friend class LazyCallGraph::Node;
232 
233       VectorImplT::iterator E;
234 
235       /// Advance the iterator to the next valid, call edge.
advanceToNextEdge()236       void advanceToNextEdge() {
237         while (I != E && (!*I || !I->isCall()))
238           ++I;
239       }
240 
241       // Build the iterator for a specific position in the edge list.
call_iterator(VectorImplT::iterator BaseI,VectorImplT::iterator E)242       call_iterator(VectorImplT::iterator BaseI, VectorImplT::iterator E)
243           : iterator_adaptor_base(BaseI), E(E) {
244         advanceToNextEdge();
245       }
246 
247     public:
248       call_iterator() = default;
249 
250       using iterator_adaptor_base::operator++;
251       call_iterator &operator++() {
252         ++I;
253         advanceToNextEdge();
254         return *this;
255       }
256     };
257 
begin()258     iterator begin() { return iterator(Edges.begin(), Edges.end()); }
end()259     iterator end() { return iterator(Edges.end(), Edges.end()); }
260 
261     Edge &operator[](int i) { return Edges[i]; }
262     Edge &operator[](Node &N) {
263       assert(EdgeIndexMap.find(&N) != EdgeIndexMap.end() && "No such edge!");
264       auto &E = Edges[EdgeIndexMap.find(&N)->second];
265       assert(E && "Dead or null edge!");
266       return E;
267     }
268 
lookup(Node & N)269     Edge *lookup(Node &N) {
270       auto EI = EdgeIndexMap.find(&N);
271       if (EI == EdgeIndexMap.end())
272         return nullptr;
273       auto &E = Edges[EI->second];
274       return E ? &E : nullptr;
275     }
276 
call_begin()277     call_iterator call_begin() {
278       return call_iterator(Edges.begin(), Edges.end());
279     }
call_end()280     call_iterator call_end() { return call_iterator(Edges.end(), Edges.end()); }
281 
calls()282     iterator_range<call_iterator> calls() {
283       return make_range(call_begin(), call_end());
284     }
285 
empty()286     bool empty() {
287       for (auto &E : Edges)
288         if (E)
289           return false;
290 
291       return true;
292     }
293 
294   private:
295     VectorT Edges;
296     DenseMap<Node *, int> EdgeIndexMap;
297 
298     EdgeSequence() = default;
299 
300     /// Internal helper to insert an edge to a node.
301     void insertEdgeInternal(Node &ChildN, Edge::Kind EK);
302 
303     /// Internal helper to change an edge kind.
304     void setEdgeKind(Node &ChildN, Edge::Kind EK);
305 
306     /// Internal helper to remove the edge to the given function.
307     bool removeEdgeInternal(Node &ChildN);
308 
309     /// Internal helper to replace an edge key with a new one.
310     ///
311     /// This should be used when the function for a particular node in the
312     /// graph gets replaced and we are updating all of the edges to that node
313     /// to use the new function as the key.
314     void replaceEdgeKey(Function &OldTarget, Function &NewTarget);
315   };
316 
317   /// A node in the call graph.
318   ///
319   /// This represents a single node. It's primary roles are to cache the list of
320   /// callees, de-duplicate and provide fast testing of whether a function is
321   /// a callee, and facilitate iteration of child nodes in the graph.
322   ///
323   /// The node works much like an optional in order to lazily populate the
324   /// edges of each node. Until populated, there are no edges. Once populated,
325   /// you can access the edges by dereferencing the node or using the `->`
326   /// operator as if the node was an `Optional<EdgeSequence>`.
327   class Node {
328     friend class LazyCallGraph;
329     friend class LazyCallGraph::RefSCC;
330 
331   public:
getGraph()332     LazyCallGraph &getGraph() const { return *G; }
333 
getFunction()334     Function &getFunction() const { return *F; }
335 
getName()336     StringRef getName() const { return F->getName(); }
337 
338     /// Equality is defined as address equality.
339     bool operator==(const Node &N) const { return this == &N; }
340     bool operator!=(const Node &N) const { return !operator==(N); }
341 
342     /// Tests whether the node has been populated with edges.
isPopulated()343     bool isPopulated() const { return Edges.hasValue(); }
344 
345     /// Tests whether this is actually a dead node and no longer valid.
346     ///
347     /// Users rarely interact with nodes in this state and other methods are
348     /// invalid. This is used to model a node in an edge list where the
349     /// function has been completely removed.
isDead()350     bool isDead() const {
351       assert(!G == !F &&
352              "Both graph and function pointers should be null or non-null.");
353       return !G;
354     }
355 
356     // We allow accessing the edges by dereferencing or using the arrow
357     // operator, essentially wrapping the internal optional.
358     EdgeSequence &operator*() const {
359       // Rip const off because the node itself isn't changing here.
360       return const_cast<EdgeSequence &>(*Edges);
361     }
362     EdgeSequence *operator->() const { return &**this; }
363 
364     /// Populate the edges of this node if necessary.
365     ///
366     /// The first time this is called it will populate the edges for this node
367     /// in the graph. It does this by scanning the underlying function, so once
368     /// this is done, any changes to that function must be explicitly reflected
369     /// in updates to the graph.
370     ///
371     /// \returns the populated \c EdgeSequence to simplify walking it.
372     ///
373     /// This will not update or re-scan anything if called repeatedly. Instead,
374     /// the edge sequence is cached and returned immediately on subsequent
375     /// calls.
populate()376     EdgeSequence &populate() {
377       if (Edges)
378         return *Edges;
379 
380       return populateSlow();
381     }
382 
383   private:
384     LazyCallGraph *G;
385     Function *F;
386 
387     // We provide for the DFS numbering and Tarjan walk lowlink numbers to be
388     // stored directly within the node. These are both '-1' when nodes are part
389     // of an SCC (or RefSCC), or '0' when not yet reached in a DFS walk.
390     int DFSNumber = 0;
391     int LowLink = 0;
392 
393     Optional<EdgeSequence> Edges;
394 
395     /// Basic constructor implements the scanning of F into Edges and
396     /// EdgeIndexMap.
Node(LazyCallGraph & G,Function & F)397     Node(LazyCallGraph &G, Function &F) : G(&G), F(&F) {}
398 
399     /// Implementation of the scan when populating.
400     EdgeSequence &populateSlow();
401 
402     /// Internal helper to directly replace the function with a new one.
403     ///
404     /// This is used to facilitate tranfsormations which need to replace the
405     /// formal Function object but directly move the body and users from one to
406     /// the other.
407     void replaceFunction(Function &NewF);
408 
clear()409     void clear() { Edges.reset(); }
410 
411     /// Print the name of this node's function.
412     friend raw_ostream &operator<<(raw_ostream &OS, const Node &N) {
413       return OS << N.F->getName();
414     }
415 
416     /// Dump the name of this node's function to stderr.
417     void dump() const;
418   };
419 
420   /// An SCC of the call graph.
421   ///
422   /// This represents a Strongly Connected Component of the direct call graph
423   /// -- ignoring indirect calls and function references. It stores this as
424   /// a collection of call graph nodes. While the order of nodes in the SCC is
425   /// stable, it is not any particular order.
426   ///
427   /// The SCCs are nested within a \c RefSCC, see below for details about that
428   /// outer structure. SCCs do not support mutation of the call graph, that
429   /// must be done through the containing \c RefSCC in order to fully reason
430   /// about the ordering and connections of the graph.
431   class SCC {
432     friend class LazyCallGraph;
433     friend class LazyCallGraph::Node;
434 
435     RefSCC *OuterRefSCC;
436     SmallVector<Node *, 1> Nodes;
437 
438     template <typename NodeRangeT>
SCC(RefSCC & OuterRefSCC,NodeRangeT && Nodes)439     SCC(RefSCC &OuterRefSCC, NodeRangeT &&Nodes)
440         : OuterRefSCC(&OuterRefSCC), Nodes(std::forward<NodeRangeT>(Nodes)) {}
441 
clear()442     void clear() {
443       OuterRefSCC = nullptr;
444       Nodes.clear();
445     }
446 
447     /// Print a short descrtiption useful for debugging or logging.
448     ///
449     /// We print the function names in the SCC wrapped in '()'s and skipping
450     /// the middle functions if there are a large number.
451     //
452     // Note: this is defined inline to dodge issues with GCC's interpretation
453     // of enclosing namespaces for friend function declarations.
454     friend raw_ostream &operator<<(raw_ostream &OS, const SCC &C) {
455       OS << '(';
456       int i = 0;
457       for (LazyCallGraph::Node &N : C) {
458         if (i > 0)
459           OS << ", ";
460         // Elide the inner elements if there are too many.
461         if (i > 8) {
462           OS << "..., " << *C.Nodes.back();
463           break;
464         }
465         OS << N;
466         ++i;
467       }
468       OS << ')';
469       return OS;
470     }
471 
472     /// Dump a short description of this SCC to stderr.
473     void dump() const;
474 
475 #ifndef NDEBUG
476     /// Verify invariants about the SCC.
477     ///
478     /// This will attempt to validate all of the basic invariants within an
479     /// SCC, but not that it is a strongly connected componet per-se. Primarily
480     /// useful while building and updating the graph to check that basic
481     /// properties are in place rather than having inexplicable crashes later.
482     void verify();
483 #endif
484 
485   public:
486     using iterator = pointee_iterator<SmallVectorImpl<Node *>::const_iterator>;
487 
begin()488     iterator begin() const { return Nodes.begin(); }
end()489     iterator end() const { return Nodes.end(); }
490 
size()491     int size() const { return Nodes.size(); }
492 
getOuterRefSCC()493     RefSCC &getOuterRefSCC() const { return *OuterRefSCC; }
494 
495     /// Test if this SCC is a parent of \a C.
496     ///
497     /// Note that this is linear in the number of edges departing the current
498     /// SCC.
499     bool isParentOf(const SCC &C) const;
500 
501     /// Test if this SCC is an ancestor of \a C.
502     ///
503     /// Note that in the worst case this is linear in the number of edges
504     /// departing the current SCC and every SCC in the entire graph reachable
505     /// from this SCC. Thus this very well may walk every edge in the entire
506     /// call graph! Do not call this in a tight loop!
507     bool isAncestorOf(const SCC &C) const;
508 
509     /// Test if this SCC is a child of \a C.
510     ///
511     /// See the comments for \c isParentOf for detailed notes about the
512     /// complexity of this routine.
isChildOf(const SCC & C)513     bool isChildOf(const SCC &C) const { return C.isParentOf(*this); }
514 
515     /// Test if this SCC is a descendant of \a C.
516     ///
517     /// See the comments for \c isParentOf for detailed notes about the
518     /// complexity of this routine.
isDescendantOf(const SCC & C)519     bool isDescendantOf(const SCC &C) const { return C.isAncestorOf(*this); }
520 
521     /// Provide a short name by printing this SCC to a std::string.
522     ///
523     /// This copes with the fact that we don't have a name per-se for an SCC
524     /// while still making the use of this in debugging and logging useful.
getName()525     std::string getName() const {
526       std::string Name;
527       raw_string_ostream OS(Name);
528       OS << *this;
529       OS.flush();
530       return Name;
531     }
532   };
533 
534   /// A RefSCC of the call graph.
535   ///
536   /// This models a Strongly Connected Component of function reference edges in
537   /// the call graph. As opposed to actual SCCs, these can be used to scope
538   /// subgraphs of the module which are independent from other subgraphs of the
539   /// module because they do not reference it in any way. This is also the unit
540   /// where we do mutation of the graph in order to restrict mutations to those
541   /// which don't violate this independence.
542   ///
543   /// A RefSCC contains a DAG of actual SCCs. All the nodes within the RefSCC
544   /// are necessarily within some actual SCC that nests within it. Since
545   /// a direct call *is* a reference, there will always be at least one RefSCC
546   /// around any SCC.
547   class RefSCC {
548     friend class LazyCallGraph;
549     friend class LazyCallGraph::Node;
550 
551     LazyCallGraph *G;
552 
553     /// A postorder list of the inner SCCs.
554     SmallVector<SCC *, 4> SCCs;
555 
556     /// A map from SCC to index in the postorder list.
557     SmallDenseMap<SCC *, int, 4> SCCIndices;
558 
559     /// Fast-path constructor. RefSCCs should instead be constructed by calling
560     /// formRefSCCFast on the graph itself.
561     RefSCC(LazyCallGraph &G);
562 
clear()563     void clear() {
564       SCCs.clear();
565       SCCIndices.clear();
566     }
567 
568     /// Print a short description useful for debugging or logging.
569     ///
570     /// We print the SCCs wrapped in '[]'s and skipping the middle SCCs if
571     /// there are a large number.
572     //
573     // Note: this is defined inline to dodge issues with GCC's interpretation
574     // of enclosing namespaces for friend function declarations.
575     friend raw_ostream &operator<<(raw_ostream &OS, const RefSCC &RC) {
576       OS << '[';
577       int i = 0;
578       for (LazyCallGraph::SCC &C : RC) {
579         if (i > 0)
580           OS << ", ";
581         // Elide the inner elements if there are too many.
582         if (i > 4) {
583           OS << "..., " << *RC.SCCs.back();
584           break;
585         }
586         OS << C;
587         ++i;
588       }
589       OS << ']';
590       return OS;
591     }
592 
593     /// Dump a short description of this RefSCC to stderr.
594     void dump() const;
595 
596 #ifndef NDEBUG
597     /// Verify invariants about the RefSCC and all its SCCs.
598     ///
599     /// This will attempt to validate all of the invariants *within* the
600     /// RefSCC, but not that it is a strongly connected component of the larger
601     /// graph. This makes it useful even when partially through an update.
602     ///
603     /// Invariants checked:
604     /// - SCCs and their indices match.
605     /// - The SCCs list is in fact in post-order.
606     void verify();
607 #endif
608 
609     /// Handle any necessary parent set updates after inserting a trivial ref
610     /// or call edge.
611     void handleTrivialEdgeInsertion(Node &SourceN, Node &TargetN);
612 
613   public:
614     using iterator = pointee_iterator<SmallVectorImpl<SCC *>::const_iterator>;
615     using range = iterator_range<iterator>;
616     using parent_iterator =
617         pointee_iterator<SmallPtrSetImpl<RefSCC *>::const_iterator>;
618 
begin()619     iterator begin() const { return SCCs.begin(); }
end()620     iterator end() const { return SCCs.end(); }
621 
size()622     ssize_t size() const { return SCCs.size(); }
623 
624     SCC &operator[](int Idx) { return *SCCs[Idx]; }
625 
find(SCC & C)626     iterator find(SCC &C) const {
627       return SCCs.begin() + SCCIndices.find(&C)->second;
628     }
629 
630     /// Test if this RefSCC is a parent of \a RC.
631     ///
632     /// CAUTION: This method walks every edge in the \c RefSCC, it can be very
633     /// expensive.
634     bool isParentOf(const RefSCC &RC) const;
635 
636     /// Test if this RefSCC is an ancestor of \a RC.
637     ///
638     /// CAUTION: This method walks the directed graph of edges as far as
639     /// necessary to find a possible path to the argument. In the worst case
640     /// this may walk the entire graph and can be extremely expensive.
641     bool isAncestorOf(const RefSCC &RC) const;
642 
643     /// Test if this RefSCC is a child of \a RC.
644     ///
645     /// CAUTION: This method walks every edge in the argument \c RefSCC, it can
646     /// be very expensive.
isChildOf(const RefSCC & RC)647     bool isChildOf(const RefSCC &RC) const { return RC.isParentOf(*this); }
648 
649     /// Test if this RefSCC is a descendant of \a RC.
650     ///
651     /// CAUTION: This method walks the directed graph of edges as far as
652     /// necessary to find a possible path from the argument. In the worst case
653     /// this may walk the entire graph and can be extremely expensive.
isDescendantOf(const RefSCC & RC)654     bool isDescendantOf(const RefSCC &RC) const {
655       return RC.isAncestorOf(*this);
656     }
657 
658     /// Provide a short name by printing this RefSCC to a std::string.
659     ///
660     /// This copes with the fact that we don't have a name per-se for an RefSCC
661     /// while still making the use of this in debugging and logging useful.
getName()662     std::string getName() const {
663       std::string Name;
664       raw_string_ostream OS(Name);
665       OS << *this;
666       OS.flush();
667       return Name;
668     }
669 
670     ///@{
671     /// \name Mutation API
672     ///
673     /// These methods provide the core API for updating the call graph in the
674     /// presence of (potentially still in-flight) DFS-found RefSCCs and SCCs.
675     ///
676     /// Note that these methods sometimes have complex runtimes, so be careful
677     /// how you call them.
678 
679     /// Make an existing internal ref edge into a call edge.
680     ///
681     /// This may form a larger cycle and thus collapse SCCs into TargetN's SCC.
682     /// If that happens, the optional callback \p MergedCB will be invoked (if
683     /// provided) on the SCCs being merged away prior to actually performing
684     /// the merge. Note that this will never include the target SCC as that
685     /// will be the SCC functions are merged into to resolve the cycle. Once
686     /// this function returns, these merged SCCs are not in a valid state but
687     /// the pointers will remain valid until destruction of the parent graph
688     /// instance for the purpose of clearing cached information. This function
689     /// also returns 'true' if a cycle was formed and some SCCs merged away as
690     /// a convenience.
691     ///
692     /// After this operation, both SourceN's SCC and TargetN's SCC may move
693     /// position within this RefSCC's postorder list. Any SCCs merged are
694     /// merged into the TargetN's SCC in order to preserve reachability analyses
695     /// which took place on that SCC.
696     bool switchInternalEdgeToCall(
697         Node &SourceN, Node &TargetN,
698         function_ref<void(ArrayRef<SCC *> MergedSCCs)> MergeCB = {});
699 
700     /// Make an existing internal call edge between separate SCCs into a ref
701     /// edge.
702     ///
703     /// If SourceN and TargetN in separate SCCs within this RefSCC, changing
704     /// the call edge between them to a ref edge is a trivial operation that
705     /// does not require any structural changes to the call graph.
706     void switchTrivialInternalEdgeToRef(Node &SourceN, Node &TargetN);
707 
708     /// Make an existing internal call edge within a single SCC into a ref
709     /// edge.
710     ///
711     /// Since SourceN and TargetN are part of a single SCC, this SCC may be
712     /// split up due to breaking a cycle in the call edges that formed it. If
713     /// that happens, then this routine will insert new SCCs into the postorder
714     /// list *before* the SCC of TargetN (previously the SCC of both). This
715     /// preserves postorder as the TargetN can reach all of the other nodes by
716     /// definition of previously being in a single SCC formed by the cycle from
717     /// SourceN to TargetN.
718     ///
719     /// The newly added SCCs are added *immediately* and contiguously
720     /// prior to the TargetN SCC and return the range covering the new SCCs in
721     /// the RefSCC's postorder sequence. You can directly iterate the returned
722     /// range to observe all of the new SCCs in postorder.
723     ///
724     /// Note that if SourceN and TargetN are in separate SCCs, the simpler
725     /// routine `switchTrivialInternalEdgeToRef` should be used instead.
726     iterator_range<iterator> switchInternalEdgeToRef(Node &SourceN,
727                                                      Node &TargetN);
728 
729     /// Make an existing outgoing ref edge into a call edge.
730     ///
731     /// Note that this is trivial as there are no cyclic impacts and there
732     /// remains a reference edge.
733     void switchOutgoingEdgeToCall(Node &SourceN, Node &TargetN);
734 
735     /// Make an existing outgoing call edge into a ref edge.
736     ///
737     /// This is trivial as there are no cyclic impacts and there remains
738     /// a reference edge.
739     void switchOutgoingEdgeToRef(Node &SourceN, Node &TargetN);
740 
741     /// Insert a ref edge from one node in this RefSCC to another in this
742     /// RefSCC.
743     ///
744     /// This is always a trivial operation as it doesn't change any part of the
745     /// graph structure besides connecting the two nodes.
746     ///
747     /// Note that we don't support directly inserting internal *call* edges
748     /// because that could change the graph structure and requires returning
749     /// information about what became invalid. As a consequence, the pattern
750     /// should be to first insert the necessary ref edge, and then to switch it
751     /// to a call edge if needed and handle any invalidation that results. See
752     /// the \c switchInternalEdgeToCall routine for details.
753     void insertInternalRefEdge(Node &SourceN, Node &TargetN);
754 
755     /// Insert an edge whose parent is in this RefSCC and child is in some
756     /// child RefSCC.
757     ///
758     /// There must be an existing path from the \p SourceN to the \p TargetN.
759     /// This operation is inexpensive and does not change the set of SCCs and
760     /// RefSCCs in the graph.
761     void insertOutgoingEdge(Node &SourceN, Node &TargetN, Edge::Kind EK);
762 
763     /// Insert an edge whose source is in a descendant RefSCC and target is in
764     /// this RefSCC.
765     ///
766     /// There must be an existing path from the target to the source in this
767     /// case.
768     ///
769     /// NB! This is has the potential to be a very expensive function. It
770     /// inherently forms a cycle in the prior RefSCC DAG and we have to merge
771     /// RefSCCs to resolve that cycle. But finding all of the RefSCCs which
772     /// participate in the cycle can in the worst case require traversing every
773     /// RefSCC in the graph. Every attempt is made to avoid that, but passes
774     /// must still exercise caution calling this routine repeatedly.
775     ///
776     /// Also note that this can only insert ref edges. In order to insert
777     /// a call edge, first insert a ref edge and then switch it to a call edge.
778     /// These are intentionally kept as separate interfaces because each step
779     /// of the operation invalidates a different set of data structures.
780     ///
781     /// This returns all the RefSCCs which were merged into the this RefSCC
782     /// (the target's). This allows callers to invalidate any cached
783     /// information.
784     ///
785     /// FIXME: We could possibly optimize this quite a bit for cases where the
786     /// caller and callee are very nearby in the graph. See comments in the
787     /// implementation for details, but that use case might impact users.
788     SmallVector<RefSCC *, 1> insertIncomingRefEdge(Node &SourceN,
789                                                    Node &TargetN);
790 
791     /// Remove an edge whose source is in this RefSCC and target is *not*.
792     ///
793     /// This removes an inter-RefSCC edge. All inter-RefSCC edges originating
794     /// from this SCC have been fully explored by any in-flight DFS graph
795     /// formation, so this is always safe to call once you have the source
796     /// RefSCC.
797     ///
798     /// This operation does not change the cyclic structure of the graph and so
799     /// is very inexpensive. It may change the connectivity graph of the SCCs
800     /// though, so be careful calling this while iterating over them.
801     void removeOutgoingEdge(Node &SourceN, Node &TargetN);
802 
803     /// Remove a list of ref edges which are entirely within this RefSCC.
804     ///
805     /// Both the \a SourceN and all of the \a TargetNs must be within this
806     /// RefSCC. Removing these edges may break cycles that form this RefSCC and
807     /// thus this operation may change the RefSCC graph significantly. In
808     /// particular, this operation will re-form new RefSCCs based on the
809     /// remaining connectivity of the graph. The following invariants are
810     /// guaranteed to hold after calling this method:
811     ///
812     /// 1) If a ref-cycle remains after removal, it leaves this RefSCC intact
813     ///    and in the graph. No new RefSCCs are built.
814     /// 2) Otherwise, this RefSCC will be dead after this call and no longer in
815     ///    the graph or the postorder traversal of the call graph. Any iterator
816     ///    pointing at this RefSCC will become invalid.
817     /// 3) All newly formed RefSCCs will be returned and the order of the
818     ///    RefSCCs returned will be a valid postorder traversal of the new
819     ///    RefSCCs.
820     /// 4) No RefSCC other than this RefSCC has its member set changed (this is
821     ///    inherent in the definition of removing such an edge).
822     ///
823     /// These invariants are very important to ensure that we can build
824     /// optimization pipelines on top of the CGSCC pass manager which
825     /// intelligently update the RefSCC graph without invalidating other parts
826     /// of the RefSCC graph.
827     ///
828     /// Note that we provide no routine to remove a *call* edge. Instead, you
829     /// must first switch it to a ref edge using \c switchInternalEdgeToRef.
830     /// This split API is intentional as each of these two steps can invalidate
831     /// a different aspect of the graph structure and needs to have the
832     /// invalidation handled independently.
833     ///
834     /// The runtime complexity of this method is, in the worst case, O(V+E)
835     /// where V is the number of nodes in this RefSCC and E is the number of
836     /// edges leaving the nodes in this RefSCC. Note that E includes both edges
837     /// within this RefSCC and edges from this RefSCC to child RefSCCs. Some
838     /// effort has been made to minimize the overhead of common cases such as
839     /// self-edges and edge removals which result in a spanning tree with no
840     /// more cycles.
841     SmallVector<RefSCC *, 1> removeInternalRefEdge(Node &SourceN,
842                                                    ArrayRef<Node *> TargetNs);
843 
844     /// A convenience wrapper around the above to handle trivial cases of
845     /// inserting a new call edge.
846     ///
847     /// This is trivial whenever the target is in the same SCC as the source or
848     /// the edge is an outgoing edge to some descendant SCC. In these cases
849     /// there is no change to the cyclic structure of SCCs or RefSCCs.
850     ///
851     /// To further make calling this convenient, it also handles inserting
852     /// already existing edges.
853     void insertTrivialCallEdge(Node &SourceN, Node &TargetN);
854 
855     /// A convenience wrapper around the above to handle trivial cases of
856     /// inserting a new ref edge.
857     ///
858     /// This is trivial whenever the target is in the same RefSCC as the source
859     /// or the edge is an outgoing edge to some descendant RefSCC. In these
860     /// cases there is no change to the cyclic structure of the RefSCCs.
861     ///
862     /// To further make calling this convenient, it also handles inserting
863     /// already existing edges.
864     void insertTrivialRefEdge(Node &SourceN, Node &TargetN);
865 
866     /// Directly replace a node's function with a new function.
867     ///
868     /// This should be used when moving the body and users of a function to
869     /// a new formal function object but not otherwise changing the call graph
870     /// structure in any way.
871     ///
872     /// It requires that the old function in the provided node have zero uses
873     /// and the new function must have calls and references to it establishing
874     /// an equivalent graph.
875     void replaceNodeFunction(Node &N, Function &NewF);
876 
877     ///@}
878   };
879 
880   /// A post-order depth-first RefSCC iterator over the call graph.
881   ///
882   /// This iterator walks the cached post-order sequence of RefSCCs. However,
883   /// it trades stability for flexibility. It is restricted to a forward
884   /// iterator but will survive mutations which insert new RefSCCs and continue
885   /// to point to the same RefSCC even if it moves in the post-order sequence.
886   class postorder_ref_scc_iterator
887       : public iterator_facade_base<postorder_ref_scc_iterator,
888                                     std::forward_iterator_tag, RefSCC> {
889     friend class LazyCallGraph;
890     friend class LazyCallGraph::Node;
891 
892     /// Nonce type to select the constructor for the end iterator.
893     struct IsAtEndT {};
894 
895     LazyCallGraph *G;
896     RefSCC *RC = nullptr;
897 
898     /// Build the begin iterator for a node.
postorder_ref_scc_iterator(LazyCallGraph & G)899     postorder_ref_scc_iterator(LazyCallGraph &G) : G(&G), RC(getRC(G, 0)) {}
900 
901     /// Build the end iterator for a node. This is selected purely by overload.
postorder_ref_scc_iterator(LazyCallGraph & G,IsAtEndT)902     postorder_ref_scc_iterator(LazyCallGraph &G, IsAtEndT /*Nonce*/) : G(&G) {}
903 
904     /// Get the post-order RefSCC at the given index of the postorder walk,
905     /// populating it if necessary.
getRC(LazyCallGraph & G,int Index)906     static RefSCC *getRC(LazyCallGraph &G, int Index) {
907       if (Index == (int)G.PostOrderRefSCCs.size())
908         // We're at the end.
909         return nullptr;
910 
911       return G.PostOrderRefSCCs[Index];
912     }
913 
914   public:
915     bool operator==(const postorder_ref_scc_iterator &Arg) const {
916       return G == Arg.G && RC == Arg.RC;
917     }
918 
919     reference operator*() const { return *RC; }
920 
921     using iterator_facade_base::operator++;
922     postorder_ref_scc_iterator &operator++() {
923       assert(RC && "Cannot increment the end iterator!");
924       RC = getRC(*G, G->RefSCCIndices.find(RC)->second + 1);
925       return *this;
926     }
927   };
928 
929   /// Construct a graph for the given module.
930   ///
931   /// This sets up the graph and computes all of the entry points of the graph.
932   /// No function definitions are scanned until their nodes in the graph are
933   /// requested during traversal.
934   LazyCallGraph(Module &M,
935                 function_ref<TargetLibraryInfo &(Function &)> GetTLI);
936 
937   LazyCallGraph(LazyCallGraph &&G);
938   LazyCallGraph &operator=(LazyCallGraph &&RHS);
939 
begin()940   EdgeSequence::iterator begin() { return EntryEdges.begin(); }
end()941   EdgeSequence::iterator end() { return EntryEdges.end(); }
942 
943   void buildRefSCCs();
944 
postorder_ref_scc_begin()945   postorder_ref_scc_iterator postorder_ref_scc_begin() {
946     if (!EntryEdges.empty())
947       assert(!PostOrderRefSCCs.empty() &&
948              "Must form RefSCCs before iterating them!");
949     return postorder_ref_scc_iterator(*this);
950   }
postorder_ref_scc_end()951   postorder_ref_scc_iterator postorder_ref_scc_end() {
952     if (!EntryEdges.empty())
953       assert(!PostOrderRefSCCs.empty() &&
954              "Must form RefSCCs before iterating them!");
955     return postorder_ref_scc_iterator(*this,
956                                       postorder_ref_scc_iterator::IsAtEndT());
957   }
958 
postorder_ref_sccs()959   iterator_range<postorder_ref_scc_iterator> postorder_ref_sccs() {
960     return make_range(postorder_ref_scc_begin(), postorder_ref_scc_end());
961   }
962 
963   /// Lookup a function in the graph which has already been scanned and added.
lookup(const Function & F)964   Node *lookup(const Function &F) const { return NodeMap.lookup(&F); }
965 
966   /// Lookup a function's SCC in the graph.
967   ///
968   /// \returns null if the function hasn't been assigned an SCC via the RefSCC
969   /// iterator walk.
lookupSCC(Node & N)970   SCC *lookupSCC(Node &N) const { return SCCMap.lookup(&N); }
971 
972   /// Lookup a function's RefSCC in the graph.
973   ///
974   /// \returns null if the function hasn't been assigned a RefSCC via the
975   /// RefSCC iterator walk.
lookupRefSCC(Node & N)976   RefSCC *lookupRefSCC(Node &N) const {
977     if (SCC *C = lookupSCC(N))
978       return &C->getOuterRefSCC();
979 
980     return nullptr;
981   }
982 
983   /// Get a graph node for a given function, scanning it to populate the graph
984   /// data as necessary.
get(Function & F)985   Node &get(Function &F) {
986     Node *&N = NodeMap[&F];
987     if (N)
988       return *N;
989 
990     return insertInto(F, N);
991   }
992 
993   /// Get the sequence of known and defined library functions.
994   ///
995   /// These functions, because they are known to LLVM, can have calls
996   /// introduced out of thin air from arbitrary IR.
getLibFunctions()997   ArrayRef<Function *> getLibFunctions() const {
998     return LibFunctions.getArrayRef();
999   }
1000 
1001   /// Test whether a function is a known and defined library function tracked by
1002   /// the call graph.
1003   ///
1004   /// Because these functions are known to LLVM they are specially modeled in
1005   /// the call graph and even when all IR-level references have been removed
1006   /// remain active and reachable.
isLibFunction(Function & F)1007   bool isLibFunction(Function &F) const { return LibFunctions.count(&F); }
1008 
1009   ///@{
1010   /// \name Pre-SCC Mutation API
1011   ///
1012   /// These methods are only valid to call prior to forming any SCCs for this
1013   /// call graph. They can be used to update the core node-graph during
1014   /// a node-based inorder traversal that precedes any SCC-based traversal.
1015   ///
1016   /// Once you begin manipulating a call graph's SCCs, most mutation of the
1017   /// graph must be performed via a RefSCC method. There are some exceptions
1018   /// below.
1019 
1020   /// Update the call graph after inserting a new edge.
1021   void insertEdge(Node &SourceN, Node &TargetN, Edge::Kind EK);
1022 
1023   /// Update the call graph after inserting a new edge.
insertEdge(Function & Source,Function & Target,Edge::Kind EK)1024   void insertEdge(Function &Source, Function &Target, Edge::Kind EK) {
1025     return insertEdge(get(Source), get(Target), EK);
1026   }
1027 
1028   /// Update the call graph after deleting an edge.
1029   void removeEdge(Node &SourceN, Node &TargetN);
1030 
1031   /// Update the call graph after deleting an edge.
removeEdge(Function & Source,Function & Target)1032   void removeEdge(Function &Source, Function &Target) {
1033     return removeEdge(get(Source), get(Target));
1034   }
1035 
1036   ///@}
1037 
1038   ///@{
1039   /// \name General Mutation API
1040   ///
1041   /// There are a very limited set of mutations allowed on the graph as a whole
1042   /// once SCCs have started to be formed. These routines have strict contracts
1043   /// but may be called at any point.
1044 
1045   /// Remove a dead function from the call graph (typically to delete it).
1046   ///
1047   /// Note that the function must have an empty use list, and the call graph
1048   /// must be up-to-date prior to calling this. That means it is by itself in
1049   /// a maximal SCC which is by itself in a maximal RefSCC, etc. No structural
1050   /// changes result from calling this routine other than potentially removing
1051   /// entry points into the call graph.
1052   ///
1053   /// If SCC formation has begun, this function must not be part of the current
1054   /// DFS in order to call this safely. Typically, the function will have been
1055   /// fully visited by the DFS prior to calling this routine.
1056   void removeDeadFunction(Function &F);
1057 
1058   ///@}
1059 
1060   ///@{
1061   /// \name Static helpers for code doing updates to the call graph.
1062   ///
1063   /// These helpers are used to implement parts of the call graph but are also
1064   /// useful to code doing updates or otherwise wanting to walk the IR in the
1065   /// same patterns as when we build the call graph.
1066 
1067   /// Recursively visits the defined functions whose address is reachable from
1068   /// every constant in the \p Worklist.
1069   ///
1070   /// Doesn't recurse through any constants already in the \p Visited set, and
1071   /// updates that set with every constant visited.
1072   ///
1073   /// For each defined function, calls \p Callback with that function.
1074   template <typename CallbackT>
visitReferences(SmallVectorImpl<Constant * > & Worklist,SmallPtrSetImpl<Constant * > & Visited,CallbackT Callback)1075   static void visitReferences(SmallVectorImpl<Constant *> &Worklist,
1076                               SmallPtrSetImpl<Constant *> &Visited,
1077                               CallbackT Callback) {
1078     while (!Worklist.empty()) {
1079       Constant *C = Worklist.pop_back_val();
1080 
1081       if (Function *F = dyn_cast<Function>(C)) {
1082         if (!F->isDeclaration())
1083           Callback(*F);
1084         continue;
1085       }
1086 
1087       // The blockaddress constant expression is a weird special case, we can't
1088       // generically walk its operands the way we do for all other constants.
1089       if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
1090         // If we've already visited the function referred to by the block
1091         // address, we don't need to revisit it.
1092         if (Visited.count(BA->getFunction()))
1093           continue;
1094 
1095         // If all of the blockaddress' users are instructions within the
1096         // referred to function, we don't need to insert a cycle.
1097         if (llvm::all_of(BA->users(), [&](User *U) {
1098               if (Instruction *I = dyn_cast<Instruction>(U))
1099                 return I->getFunction() == BA->getFunction();
1100               return false;
1101             }))
1102           continue;
1103 
1104         // Otherwise we should go visit the referred to function.
1105         Visited.insert(BA->getFunction());
1106         Worklist.push_back(BA->getFunction());
1107         continue;
1108       }
1109 
1110       for (Value *Op : C->operand_values())
1111         if (Visited.insert(cast<Constant>(Op)).second)
1112           Worklist.push_back(cast<Constant>(Op));
1113     }
1114   }
1115 
1116   ///@}
1117 
1118 private:
1119   using node_stack_iterator = SmallVectorImpl<Node *>::reverse_iterator;
1120   using node_stack_range = iterator_range<node_stack_iterator>;
1121 
1122   /// Allocator that holds all the call graph nodes.
1123   SpecificBumpPtrAllocator<Node> BPA;
1124 
1125   /// Maps function->node for fast lookup.
1126   DenseMap<const Function *, Node *> NodeMap;
1127 
1128   /// The entry edges into the graph.
1129   ///
1130   /// These edges are from "external" sources. Put another way, they
1131   /// escape at the module scope.
1132   EdgeSequence EntryEdges;
1133 
1134   /// Allocator that holds all the call graph SCCs.
1135   SpecificBumpPtrAllocator<SCC> SCCBPA;
1136 
1137   /// Maps Function -> SCC for fast lookup.
1138   DenseMap<Node *, SCC *> SCCMap;
1139 
1140   /// Allocator that holds all the call graph RefSCCs.
1141   SpecificBumpPtrAllocator<RefSCC> RefSCCBPA;
1142 
1143   /// The post-order sequence of RefSCCs.
1144   ///
1145   /// This list is lazily formed the first time we walk the graph.
1146   SmallVector<RefSCC *, 16> PostOrderRefSCCs;
1147 
1148   /// A map from RefSCC to the index for it in the postorder sequence of
1149   /// RefSCCs.
1150   DenseMap<RefSCC *, int> RefSCCIndices;
1151 
1152   /// Defined functions that are also known library functions which the
1153   /// optimizer can reason about and therefore might introduce calls to out of
1154   /// thin air.
1155   SmallSetVector<Function *, 4> LibFunctions;
1156 
1157   /// Helper to insert a new function, with an already looked-up entry in
1158   /// the NodeMap.
1159   Node &insertInto(Function &F, Node *&MappedN);
1160 
1161   /// Helper to update pointers back to the graph object during moves.
1162   void updateGraphPtrs();
1163 
1164   /// Allocates an SCC and constructs it using the graph allocator.
1165   ///
1166   /// The arguments are forwarded to the constructor.
createSCC(Ts &&...Args)1167   template <typename... Ts> SCC *createSCC(Ts &&... Args) {
1168     return new (SCCBPA.Allocate()) SCC(std::forward<Ts>(Args)...);
1169   }
1170 
1171   /// Allocates a RefSCC and constructs it using the graph allocator.
1172   ///
1173   /// The arguments are forwarded to the constructor.
createRefSCC(Ts &&...Args)1174   template <typename... Ts> RefSCC *createRefSCC(Ts &&... Args) {
1175     return new (RefSCCBPA.Allocate()) RefSCC(std::forward<Ts>(Args)...);
1176   }
1177 
1178   /// Common logic for building SCCs from a sequence of roots.
1179   ///
1180   /// This is a very generic implementation of the depth-first walk and SCC
1181   /// formation algorithm. It uses a generic sequence of roots and generic
1182   /// callbacks for each step. This is designed to be used to implement both
1183   /// the RefSCC formation and SCC formation with shared logic.
1184   ///
1185   /// Currently this is a relatively naive implementation of Tarjan's DFS
1186   /// algorithm to form the SCCs.
1187   ///
1188   /// FIXME: We should consider newer variants such as Nuutila.
1189   template <typename RootsT, typename GetBeginT, typename GetEndT,
1190             typename GetNodeT, typename FormSCCCallbackT>
1191   static void buildGenericSCCs(RootsT &&Roots, GetBeginT &&GetBegin,
1192                                GetEndT &&GetEnd, GetNodeT &&GetNode,
1193                                FormSCCCallbackT &&FormSCC);
1194 
1195   /// Build the SCCs for a RefSCC out of a list of nodes.
1196   void buildSCCs(RefSCC &RC, node_stack_range Nodes);
1197 
1198   /// Get the index of a RefSCC within the postorder traversal.
1199   ///
1200   /// Requires that this RefSCC is a valid one in the (perhaps partial)
1201   /// postorder traversed part of the graph.
getRefSCCIndex(RefSCC & RC)1202   int getRefSCCIndex(RefSCC &RC) {
1203     auto IndexIt = RefSCCIndices.find(&RC);
1204     assert(IndexIt != RefSCCIndices.end() && "RefSCC doesn't have an index!");
1205     assert(PostOrderRefSCCs[IndexIt->second] == &RC &&
1206            "Index does not point back at RC!");
1207     return IndexIt->second;
1208   }
1209 };
1210 
Edge()1211 inline LazyCallGraph::Edge::Edge() : Value() {}
Edge(Node & N,Kind K)1212 inline LazyCallGraph::Edge::Edge(Node &N, Kind K) : Value(&N, K) {}
1213 
1214 inline LazyCallGraph::Edge::operator bool() const {
1215   return Value.getPointer() && !Value.getPointer()->isDead();
1216 }
1217 
getKind()1218 inline LazyCallGraph::Edge::Kind LazyCallGraph::Edge::getKind() const {
1219   assert(*this && "Queried a null edge!");
1220   return Value.getInt();
1221 }
1222 
isCall()1223 inline bool LazyCallGraph::Edge::isCall() const {
1224   assert(*this && "Queried a null edge!");
1225   return getKind() == Call;
1226 }
1227 
getNode()1228 inline LazyCallGraph::Node &LazyCallGraph::Edge::getNode() const {
1229   assert(*this && "Queried a null edge!");
1230   return *Value.getPointer();
1231 }
1232 
getFunction()1233 inline Function &LazyCallGraph::Edge::getFunction() const {
1234   assert(*this && "Queried a null edge!");
1235   return getNode().getFunction();
1236 }
1237 
1238 // Provide GraphTraits specializations for call graphs.
1239 template <> struct GraphTraits<LazyCallGraph::Node *> {
1240   using NodeRef = LazyCallGraph::Node *;
1241   using ChildIteratorType = LazyCallGraph::EdgeSequence::iterator;
1242 
1243   static NodeRef getEntryNode(NodeRef N) { return N; }
1244   static ChildIteratorType child_begin(NodeRef N) { return (*N)->begin(); }
1245   static ChildIteratorType child_end(NodeRef N) { return (*N)->end(); }
1246 };
1247 template <> struct GraphTraits<LazyCallGraph *> {
1248   using NodeRef = LazyCallGraph::Node *;
1249   using ChildIteratorType = LazyCallGraph::EdgeSequence::iterator;
1250 
1251   static NodeRef getEntryNode(NodeRef N) { return N; }
1252   static ChildIteratorType child_begin(NodeRef N) { return (*N)->begin(); }
1253   static ChildIteratorType child_end(NodeRef N) { return (*N)->end(); }
1254 };
1255 
1256 /// An analysis pass which computes the call graph for a module.
1257 class LazyCallGraphAnalysis : public AnalysisInfoMixin<LazyCallGraphAnalysis> {
1258   friend AnalysisInfoMixin<LazyCallGraphAnalysis>;
1259 
1260   static AnalysisKey Key;
1261 
1262 public:
1263   /// Inform generic clients of the result type.
1264   using Result = LazyCallGraph;
1265 
1266   /// Compute the \c LazyCallGraph for the module \c M.
1267   ///
1268   /// This just builds the set of entry points to the call graph. The rest is
1269   /// built lazily as it is walked.
1270   LazyCallGraph run(Module &M, ModuleAnalysisManager &AM) {
1271     FunctionAnalysisManager &FAM =
1272         AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1273     auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
1274       return FAM.getResult<TargetLibraryAnalysis>(F);
1275     };
1276     return LazyCallGraph(M, GetTLI);
1277   }
1278 };
1279 
1280 /// A pass which prints the call graph to a \c raw_ostream.
1281 ///
1282 /// This is primarily useful for testing the analysis.
1283 class LazyCallGraphPrinterPass
1284     : public PassInfoMixin<LazyCallGraphPrinterPass> {
1285   raw_ostream &OS;
1286 
1287 public:
1288   explicit LazyCallGraphPrinterPass(raw_ostream &OS);
1289 
1290   PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
1291 };
1292 
1293 /// A pass which prints the call graph as a DOT file to a \c raw_ostream.
1294 ///
1295 /// This is primarily useful for visualization purposes.
1296 class LazyCallGraphDOTPrinterPass
1297     : public PassInfoMixin<LazyCallGraphDOTPrinterPass> {
1298   raw_ostream &OS;
1299 
1300 public:
1301   explicit LazyCallGraphDOTPrinterPass(raw_ostream &OS);
1302 
1303   PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
1304 };
1305 
1306 } // end namespace llvm
1307 
1308 #endif // LLVM_ANALYSIS_LAZYCALLGRAPH_H
1309