• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- ReductionRules.h - Reduction Rules -----------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Reduction Rules.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CODEGEN_PBQP_REDUCTIONRULES_H
14 #define LLVM_CODEGEN_PBQP_REDUCTIONRULES_H
15 
16 #include "Graph.h"
17 #include "Math.h"
18 #include "Solution.h"
19 #include <cassert>
20 #include <limits>
21 
22 namespace llvm {
23 namespace PBQP {
24 
25   /// Reduce a node of degree one.
26   ///
27   /// Propagate costs from the given node, which must be of degree one, to its
28   /// neighbor. Notify the problem domain.
29   template <typename GraphT>
applyR1(GraphT & G,typename GraphT::NodeId NId)30   void applyR1(GraphT &G, typename GraphT::NodeId NId) {
31     using NodeId = typename GraphT::NodeId;
32     using EdgeId = typename GraphT::EdgeId;
33     using Vector = typename GraphT::Vector;
34     using Matrix = typename GraphT::Matrix;
35     using RawVector = typename GraphT::RawVector;
36 
37     assert(G.getNodeDegree(NId) == 1 &&
38            "R1 applied to node with degree != 1.");
39 
40     EdgeId EId = *G.adjEdgeIds(NId).begin();
41     NodeId MId = G.getEdgeOtherNodeId(EId, NId);
42 
43     const Matrix &ECosts = G.getEdgeCosts(EId);
44     const Vector &XCosts = G.getNodeCosts(NId);
45     RawVector YCosts = G.getNodeCosts(MId);
46 
47     // Duplicate a little to avoid transposing matrices.
48     if (NId == G.getEdgeNode1Id(EId)) {
49       for (unsigned j = 0; j < YCosts.getLength(); ++j) {
50         PBQPNum Min = ECosts[0][j] + XCosts[0];
51         for (unsigned i = 1; i < XCosts.getLength(); ++i) {
52           PBQPNum C = ECosts[i][j] + XCosts[i];
53           if (C < Min)
54             Min = C;
55         }
56         YCosts[j] += Min;
57       }
58     } else {
59       for (unsigned i = 0; i < YCosts.getLength(); ++i) {
60         PBQPNum Min = ECosts[i][0] + XCosts[0];
61         for (unsigned j = 1; j < XCosts.getLength(); ++j) {
62           PBQPNum C = ECosts[i][j] + XCosts[j];
63           if (C < Min)
64             Min = C;
65         }
66         YCosts[i] += Min;
67       }
68     }
69     G.setNodeCosts(MId, YCosts);
70     G.disconnectEdge(EId, MId);
71   }
72 
73   template <typename GraphT>
applyR2(GraphT & G,typename GraphT::NodeId NId)74   void applyR2(GraphT &G, typename GraphT::NodeId NId) {
75     using NodeId = typename GraphT::NodeId;
76     using EdgeId = typename GraphT::EdgeId;
77     using Vector = typename GraphT::Vector;
78     using Matrix = typename GraphT::Matrix;
79     using RawMatrix = typename GraphT::RawMatrix;
80 
81     assert(G.getNodeDegree(NId) == 2 &&
82            "R2 applied to node with degree != 2.");
83 
84     const Vector &XCosts = G.getNodeCosts(NId);
85 
86     typename GraphT::AdjEdgeItr AEItr = G.adjEdgeIds(NId).begin();
87     EdgeId YXEId = *AEItr,
88            ZXEId = *(++AEItr);
89 
90     NodeId YNId = G.getEdgeOtherNodeId(YXEId, NId),
91            ZNId = G.getEdgeOtherNodeId(ZXEId, NId);
92 
93     bool FlipEdge1 = (G.getEdgeNode1Id(YXEId) == NId),
94          FlipEdge2 = (G.getEdgeNode1Id(ZXEId) == NId);
95 
96     const Matrix *YXECosts = FlipEdge1 ?
97       new Matrix(G.getEdgeCosts(YXEId).transpose()) :
98       &G.getEdgeCosts(YXEId);
99 
100     const Matrix *ZXECosts = FlipEdge2 ?
101       new Matrix(G.getEdgeCosts(ZXEId).transpose()) :
102       &G.getEdgeCosts(ZXEId);
103 
104     unsigned XLen = XCosts.getLength(),
105       YLen = YXECosts->getRows(),
106       ZLen = ZXECosts->getRows();
107 
108     RawMatrix Delta(YLen, ZLen);
109 
110     for (unsigned i = 0; i < YLen; ++i) {
111       for (unsigned j = 0; j < ZLen; ++j) {
112         PBQPNum Min = (*YXECosts)[i][0] + (*ZXECosts)[j][0] + XCosts[0];
113         for (unsigned k = 1; k < XLen; ++k) {
114           PBQPNum C = (*YXECosts)[i][k] + (*ZXECosts)[j][k] + XCosts[k];
115           if (C < Min) {
116             Min = C;
117           }
118         }
119         Delta[i][j] = Min;
120       }
121     }
122 
123     if (FlipEdge1)
124       delete YXECosts;
125 
126     if (FlipEdge2)
127       delete ZXECosts;
128 
129     EdgeId YZEId = G.findEdge(YNId, ZNId);
130 
131     if (YZEId == G.invalidEdgeId()) {
132       YZEId = G.addEdge(YNId, ZNId, Delta);
133     } else {
134       const Matrix &YZECosts = G.getEdgeCosts(YZEId);
135       if (YNId == G.getEdgeNode1Id(YZEId)) {
136         G.updateEdgeCosts(YZEId, Delta + YZECosts);
137       } else {
138         G.updateEdgeCosts(YZEId, Delta.transpose() + YZECosts);
139       }
140     }
141 
142     G.disconnectEdge(YXEId, YNId);
143     G.disconnectEdge(ZXEId, ZNId);
144 
145     // TODO: Try to normalize newly added/modified edge.
146   }
147 
148 #ifndef NDEBUG
149   // Does this Cost vector have any register options ?
150   template <typename VectorT>
hasRegisterOptions(const VectorT & V)151   bool hasRegisterOptions(const VectorT &V) {
152     unsigned VL = V.getLength();
153 
154     // An empty or spill only cost vector does not provide any register option.
155     if (VL <= 1)
156       return false;
157 
158     // If there are registers in the cost vector, but all of them have infinite
159     // costs, then ... there is no available register.
160     for (unsigned i = 1; i < VL; ++i)
161       if (V[i] != std::numeric_limits<PBQP::PBQPNum>::infinity())
162         return true;
163 
164     return false;
165   }
166 #endif
167 
168   // Find a solution to a fully reduced graph by backpropagation.
169   //
170   // Given a graph and a reduction order, pop each node from the reduction
171   // order and greedily compute a minimum solution based on the node costs, and
172   // the dependent costs due to previously solved nodes.
173   //
174   // Note - This does not return the graph to its original (pre-reduction)
175   //        state: the existing solvers destructively alter the node and edge
176   //        costs. Given that, the backpropagate function doesn't attempt to
177   //        replace the edges either, but leaves the graph in its reduced
178   //        state.
179   template <typename GraphT, typename StackT>
backpropagate(GraphT & G,StackT stack)180   Solution backpropagate(GraphT& G, StackT stack) {
181     using NodeId = GraphBase::NodeId;
182     using Matrix = typename GraphT::Matrix;
183     using RawVector = typename GraphT::RawVector;
184 
185     Solution s;
186 
187     while (!stack.empty()) {
188       NodeId NId = stack.back();
189       stack.pop_back();
190 
191       RawVector v = G.getNodeCosts(NId);
192 
193 #ifndef NDEBUG
194       // Although a conservatively allocatable node can be allocated to a register,
195       // spilling it may provide a lower cost solution. Assert here that spilling
196       // is done by choice, not because there were no register available.
197       if (G.getNodeMetadata(NId).wasConservativelyAllocatable())
198         assert(hasRegisterOptions(v) && "A conservatively allocatable node "
199                                         "must have available register options");
200 #endif
201 
202       for (auto EId : G.adjEdgeIds(NId)) {
203         const Matrix& edgeCosts = G.getEdgeCosts(EId);
204         if (NId == G.getEdgeNode1Id(EId)) {
205           NodeId mId = G.getEdgeNode2Id(EId);
206           v += edgeCosts.getColAsVector(s.getSelection(mId));
207         } else {
208           NodeId mId = G.getEdgeNode1Id(EId);
209           v += edgeCosts.getRowAsVector(s.getSelection(mId));
210         }
211       }
212 
213       s.setSelection(NId, v.minIndex());
214     }
215 
216     return s;
217   }
218 
219 } // end namespace PBQP
220 } // end namespace llvm
221 
222 #endif // LLVM_CODEGEN_PBQP_REDUCTIONRULES_H
223