• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2022 Huawei Device Co., Ltd.
3  * Licensed under the Apache License, Version 2.0 (the "License");
4  * you may not use this file except in compliance with the License.
5  * You may obtain a copy of the License at
6  *
7  *     http://www.apache.org/licenses/LICENSE-2.0
8  *
9  * Unless required by applicable law or agreed to in writing, software
10  * distributed under the License is distributed on an "AS IS" BASIS,
11  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12  * See the License for the specific language governing permissions and
13  * limitations under the License.
14  */
15 
16 #include "space_to_batch_nd_builder.h"
17 
18 #include "mindir.h"
19 
20 namespace OHOS {
21 namespace NeuralNetworkRuntime {
22 namespace Ops {
23 static const int INPUT_NUM = 1;
24 static const int OUTPUT_NUM = 1;
25 static const std::string OP_NAME = "SpaceToBatchND";
26 static const int PADDINGS_DATA_SIZE = 2;
27 static const int VECT_DATA_SIZE = 2;
28 static const int BLOCKSHAPE_RANK = 1;
29 static const int PADDINGS_RANK = 2;
30 static const int BLOCK_SIZE = 2;
31 static const int PADDINGS_SIZE = 4;
32 
SpaceToBatchNDBuilder()33 SpaceToBatchNDBuilder::SpaceToBatchNDBuilder() {}
34 
~SpaceToBatchNDBuilder()35 SpaceToBatchNDBuilder::~SpaceToBatchNDBuilder() {}
36 
SetBlockShape(std::shared_ptr<NNTensor> tensor)37 OH_NN_ReturnCode SpaceToBatchNDBuilder::SetBlockShape(std::shared_ptr<NNTensor> tensor)
38 {
39     if (tensor->GetDataType() != OH_NN_INT64) {
40         LOGE("[SpaceToBatchNDBuilder] The 2nd input blockShape should be type OH_NN_INT64.");
41         return OH_NN_INVALID_PARAMETER;
42     }
43 
44     auto blockshape_shape = tensor->GetDimensions();
45     if (blockshape_shape.size() != BLOCKSHAPE_RANK) {
46         LOGE("[SpaceToBatchNDBuilder] Invalid rank of shape of 2nd input blockShape, should be 1 dimensions.");
47         return OH_NN_INVALID_PARAMETER;
48     }
49 
50     if (tensor->GetElementCount() != BLOCK_SIZE) {
51         LOGE("[SpaceToBatchNDBuilder] The 2nd input blockShape size should be 2.");
52         return OH_NN_INVALID_PARAMETER;
53     }
54 
55     void* buffer = tensor->GetBuffer();
56     if (buffer == nullptr) {
57         LOGE("[SpaceToBatchNDBuilder] Tensor buffer is nullptr.");
58         return OH_NN_INVALID_PARAMETER;
59     }
60 
61     const int64_t* blockShapeData = reinterpret_cast<const int64_t*>(buffer);
62     const uint32_t elementSize = tensor->GetElementCount();
63     for (uint32_t i = 0; i < elementSize; ++i) {
64         block_shape.push_back(blockShapeData[i]);
65     }
66 
67     return OH_NN_SUCCESS;
68 }
69 
SetPaddings(std::shared_ptr<NNTensor> tensor)70 OH_NN_ReturnCode SpaceToBatchNDBuilder::SetPaddings(std::shared_ptr<NNTensor> tensor)
71 {
72     if (tensor->GetDataType() != OH_NN_INT64) {
73         LOGE("[SpaceToBatchNDBuilder] The 3rd input paddings should be type OH_NN_INT64.");
74         return OH_NN_INVALID_PARAMETER;
75     }
76 
77     auto paddings_shape = tensor->GetDimensions();
78     if (paddings_shape.size() != PADDINGS_RANK) {
79         LOGE("[SpaceToBatchNDBuilder] Invalid rank of shape of 3rd input paddings, should be 2 dimensions.");
80         return OH_NN_INVALID_PARAMETER;
81     }
82 
83     if (tensor->GetElementCount() != PADDINGS_SIZE) {
84         LOGE("[SpaceToBatchNDBuilder] The 3rd input paddings size should be 4.");
85         return OH_NN_INVALID_PARAMETER;
86     }
87 
88     OH_NN_ReturnCode returnCode = SetPadData(tensor);
89     if (returnCode != OH_NN_SUCCESS) {
90         LOGE("[SpaceToBatchNDBuilder] SetPadData failed.");
91         return returnCode;
92     }
93 
94     return OH_NN_SUCCESS;
95 }
96 /**
97  * Build method.
98  * 1.set attr of ops.
99  * 2.set inputIndex of ops.
100  * 3.set outputIndex of ops.
101  */
Build(const std::vector<uint32_t> & paramsIndex,const std::vector<uint32_t> & inputsIndex,const std::vector<uint32_t> & outputsIndex,const std::vector<std::shared_ptr<NNTensor>> & allTensors)102 OH_NN_ReturnCode SpaceToBatchNDBuilder::Build(const std::vector<uint32_t>& paramsIndex,
103                                               const std::vector<uint32_t>& inputsIndex,
104                                               const std::vector<uint32_t>& outputsIndex,
105                                               const std::vector<std::shared_ptr<NNTensor>>& allTensors)
106 {
107     if (m_isBuild) {
108         LOGE("[SpaceToBatchNDBuilder] SpaceToBatchND operation has been build, cannot build again.");
109         return OH_NN_OPERATION_FORBIDDEN;
110     }
111 
112     OH_NN_ReturnCode returnCode = CheckIOIndex(inputsIndex, outputsIndex, allTensors, INPUT_NUM, OUTPUT_NUM);
113     if (returnCode != OH_NN_SUCCESS) {
114         LOGE("[SpaceToBatchNDBuilder] Passed invalid input or output index.");
115         return returnCode;
116     }
117 
118     m_inputsIndex = inputsIndex;
119     m_outputsIndex = outputsIndex;
120 
121     for (int i : paramsIndex) {
122         std::shared_ptr<NNTensor> tensor = allTensors[i];
123         tensor->IdentifyOpParameter();
124         switch (tensor->GetType()) {
125             case OH_NN_SPACE_TO_BATCH_ND_BLOCK_SHAPE:
126                 returnCode = SetBlockShape(tensor);
127                 break;
128             case OH_NN_SPACE_TO_BATCH_ND_PADDINGS:
129                 returnCode = SetPaddings(tensor);
130                 break;
131             default:
132                 LOGE("[SpaceToBatchNDBuilder] Parameter Type is invalid. type=%d", tensor->GetType());
133                 return OH_NN_INVALID_PARAMETER;
134         }
135 
136         if (returnCode != OH_NN_SUCCESS) {
137             LOGE("[SpaceToBatchNDBuilder] Passed invalid param.");
138             return returnCode;
139         }
140     }
141 
142     // The quantization type of the first output determinies that of the operator.
143     SetQuantType(outputsIndex, allTensors);
144 
145     m_isBuild = true;
146     m_name = OP_NAME;
147     return OH_NN_SUCCESS;
148 }
149 
SetPadData(std::shared_ptr<NNTensor> tensor)150 OH_NN_ReturnCode SpaceToBatchNDBuilder::SetPadData(std::shared_ptr<NNTensor> tensor)
151 {
152     paddings.clear();
153 
154     void* buffer = tensor->GetBuffer();
155     if (buffer == nullptr) {
156         LOGE("[SpaceToBatchNDBuilder] Tensor buffer is nullptr.");
157         return OH_NN_INVALID_PARAMETER;
158     }
159 
160     const int64_t* paddingsData = reinterpret_cast<const int64_t*>(buffer);
161     for (int i = 0; i < PADDINGS_DATA_SIZE; i++) {
162         std::vector<int64_t> vect_data;
163         vect_data.reserve(VECT_DATA_SIZE);
164         for (int i = 0; i < VECT_DATA_SIZE; ++i) {
165             vect_data.push_back(paddingsData[i]);
166         }
167         paddings.push_back(vect_data);
168     }
169     return OH_NN_SUCCESS;
170 }
171 
GetPrimitive()172 LiteGraphTensorPtr SpaceToBatchNDBuilder::GetPrimitive()
173 {
174     if (!m_isBuild) {
175         LOGE("[SpaceToBatchNDBuilder] Cannot get primitive before call build.");
176         return {nullptr, DestroyLiteGraphPrimitive};
177     }
178 
179     auto primitive = mindspore::lite::MindIR_SpaceToBatchND_CreatePrimitive(block_shape, paddings);
180     if (primitive == nullptr) {
181         LOGE("[SpaceToBatchNDBuilder] MindIR_SpaceToBatchND_CreatePrimitive failed.");
182         return {nullptr, DestroyLiteGraphPrimitive};
183     }
184 
185     LiteGraphTensorPtr graphPrimitivePtr(primitive, DestroyLiteGraphPrimitive);
186     return graphPrimitivePtr;
187 }
188 
189 REGISTER_OPS(SpaceToBatchNDBuilder, OH_NN_OPS_SPACE_TO_BATCH_ND);
190 } // namespace Ops
191 } // namespace NeuralNetworkRuntime
192 } // namespace OHOS
193