• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2020 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15import os
16import numpy as np
17
18from mindspore.communication.management import init
19from mindspore.communication.management import release
20from mindspore.communication.management import get_rank
21from mindspore.communication.management import get_group_size
22from mindspore.nn import Cell
23from mindspore.nn import Conv2d
24from mindspore.nn import ReLU
25from mindspore.nn import Dense
26from mindspore.nn import Softmax
27import mindspore.ops.operations as P
28from mindspore.train.serialization import load_param_into_net
29from mindspore.train.callback import CheckpointConfig
30from mindspore.train.callback import ModelCheckpoint
31from mindspore.train.serialization import load_checkpoint
32from mindspore.nn import Momentum
33from mindspore.nn import SoftmaxCrossEntropyWithLogits
34from mindspore.train import Model
35from mindspore.parallel import set_algo_parameters
36from mindspore.common.initializer import initializer
37from mindspore.common import dtype as mstype
38from mindspore import Tensor
39from mindspore.common.parameter import Parameter
40from mindspore import context
41from mindspore.context import ParallelMode
42
43context.set_context(mode=context.GRAPH_MODE, device_target='Ascend')
44
45
46def _count_unequal_element(data_expected, data_me, rtol, atol):
47    assert data_expected.shape == data_me.shape
48    total_count = len(data_expected.flatten())
49    error = np.abs(data_expected - data_me)
50    greater = np.greater(error, atol + np.abs(data_me) * rtol)
51    loss_count = np.count_nonzero(greater)
52    assert (loss_count / total_count) < rtol, \
53        "\ndata_expected_std:{0}\ndata_me_error:{1}\nloss:{2}". \
54            format(data_expected[greater], data_me[greater], error[greater])
55
56
57def allclose_nparray(data_expected, data_me, rtol, atol, equal_nan=True):
58    if np.any(np.isnan(data_expected)):
59        assert np.allclose(data_expected, data_me, rtol, atol, equal_nan=equal_nan)
60    elif not np.allclose(data_expected, data_me, rtol, atol, equal_nan=equal_nan):
61        _count_unequal_element(data_expected, data_me, rtol, atol)
62    else:
63        assert True
64
65
66def clean_all_ckpt_files(folder_path):
67    if os.path.exists(folder_path):
68        for file_name in os.listdir(folder_path):
69            if file_name.endswith('.ckpt') or file_name.endswith('.meta'):
70                os.remove(os.path.join(folder_path, file_name))
71
72
73def find_newest_ckpt_file(folder_path):
74    ckpt_files = map(lambda f: os.path.join(folder_path, f),
75                     filter(lambda f: f.endswith('.ckpt'),
76                            os.listdir(folder_path)))
77    return max(ckpt_files, key=os.path.getctime)
78
79
80class FakeDataInitMode:
81    RandomInit = 0
82    OnesInit = 1
83    UniqueInit = 2
84    ZerosInit = 3
85
86
87class FakeData:
88    def __init__(self, size=1024, batch_size=32, image_size=(3, 224, 224),
89                 num_classes=10, random_offset=0, use_parallel=False,
90                 fakedata_mode=FakeDataInitMode.RandomInit):
91        self.size = size
92        self.rank_batch_size = batch_size
93        self.total_batch_size = self.rank_batch_size
94        self.random_offset = random_offset
95        self.image_size = image_size
96        self.num_classes = num_classes
97        self.rank_size = 1
98        self.rank_id = 0
99        self.batch_index = 0
100        self.image_data_type = np.float32
101        self.label_data_type = np.float32
102        self.is_onehot = True
103        self.fakedata_mode = fakedata_mode
104
105        if use_parallel is True:
106            init(backend_name='hccl')
107            self.rank_size = get_group_size()
108            self.rank_id = get_rank()
109
110        self.total_batch_size = self.rank_batch_size * self.rank_size
111
112        assert (self.size % self.total_batch_size) == 0
113
114        self.total_batch_data_size = (self.rank_size, self.rank_batch_size) + image_size
115
116    def get_dataset_size(self):
117        return int(self.size / self.total_batch_size)
118
119    def get_repeat_count(self):
120        return 1
121
122    def set_image_data_type(self, data_type):
123        self.image_data_type = data_type
124
125    def set_label_data_type(self, data_type):
126        self.label_data_type = data_type
127
128    def set_label_onehot(self, is_onehot=True):
129        self.is_onehot = is_onehot
130
131    def create_tuple_iterator(self, num_epochs=-1, do_copy=True):
132        _ = num_epochs
133        return self
134
135    def __getitem__(self, batch_index):
136        if batch_index * self.total_batch_size >= len(self):
137            raise IndexError("{} index out of range".format(self.__class__.__name__))
138        rng_state = np.random.get_state()
139        np.random.seed(batch_index + self.random_offset)
140        if self.fakedata_mode == FakeDataInitMode.OnesInit:
141            img = np.ones(self.total_batch_data_size)
142        elif self.fakedata_mode == FakeDataInitMode.ZerosInit:
143            img = np.zeros(self.total_batch_data_size)
144        elif self.fakedata_mode == FakeDataInitMode.UniqueInit:
145            total_size = 1
146            for i in self.total_batch_data_size:
147                total_size = total_size * i
148            img = np.reshape(np.arange(total_size) * 0.0001, self.total_batch_data_size)
149        else:
150            img = np.random.randn(*self.total_batch_data_size)
151        target = np.random.randint(0, self.num_classes, size=(self.rank_size, self.rank_batch_size))
152        np.random.set_state(rng_state)
153        img = img[self.rank_id]
154        target = target[self.rank_id]
155        img_ret = img.astype(self.image_data_type)
156        target_ret = target.astype(self.label_data_type)
157        if self.is_onehot:
158            target_onehot = np.zeros(shape=(self.rank_batch_size, self.num_classes))
159            target_onehot[np.arange(self.rank_batch_size), target] = 1
160            target_ret = target_onehot.astype(self.label_data_type)
161        return Tensor(img_ret), Tensor(target_ret)
162
163    def __len__(self):
164        return self.size
165
166    def __iter__(self):
167        self.batch_index = 0
168        return self
169
170    def reset(self):
171        self.batch_index = 0
172
173    def __next__(self):
174        if self.batch_index * self.total_batch_size < len(self):
175            data = self[self.batch_index]
176            self.batch_index += 1
177            return data
178        raise StopIteration
179
180
181class ParallelStrategySearchNet(Cell):
182    def __init__(self, in_channel, out_channel, axis, input_shape, mul_size,
183                 test_size, prelu_size, transpose_b, matmul_size, num_class):
184        super().__init__()
185        mul_np = np.full(mul_size, 0.5, dtype=np.float32)
186        self.mul_weight = Parameter(Tensor(mul_np), name="mul_weight")
187        bias_np = np.full((12,), 7.1, dtype=np.float32)
188        self.bias = Parameter(Tensor(bias_np), name="bias")
189        prelu_np = np.full(prelu_size, 0.8, dtype=np.float32)
190        self.prelu_weight = Parameter(Tensor(prelu_np), name="prelu_weight")
191        matmul_np = np.full(matmul_size, 1.1, dtype=np.float32)
192        self.matmul_weight = Parameter(Tensor(matmul_np), name="matmul_weight")
193        self.mul = P.Mul()
194        self.conv = Conv2d(in_channels=in_channel, out_channels=out_channel,
195                           kernel_size=5, has_bias=True,
196                           weight_init='ones', bias_init='ones',
197                           pad_mode='valid')
198        self.conv.conv2d.shard(((8, 1, 1, 1), (1, 1, 1, 1)))
199        self.scalar = 0.5
200        self.parameter = Parameter(
201            initializer(0.5, test_size, dtype=mstype.float32),
202            name='parameter')
203        self.tensor = Tensor(np.full(test_size, 0.05, dtype=np.float32))
204        self.softmax = Softmax(axis=axis)
205        self.relu = ReLU()
206        self.relu.relu.add_prim_attr("primitive_target", "CPU")
207        self.reshape = P.Reshape()
208        self.input_shape = input_shape
209        self.equal = P.Equal()
210        self.cast = P.Cast()
211        self.concat = P.Concat(axis=1)
212        self.reduce_sum = P.ReduceSum()
213        self.bias_add = P.BiasAdd()
214        self.cos = P.Cos()
215        self.prelu = P.PReLU()
216        self.matmul = P.MatMul(transpose_b=transpose_b)
217        self.l2norm = P.L2Normalize(axis=(1 - axis))
218        self.tensoradd = P.Add()
219        self.strided_slice = P.StridedSlice()
220        self.dense = Dense(in_channels=6,
221                           out_channels=num_class,
222                           weight_init='ones',
223                           bias_init='ones',
224                           has_bias=True)
225
226    def construct(self, inputs):
227        x = self.conv(inputs)
228        x = self.softmax(x)
229        x = self.relu(x)
230        x = self.mul(x, self.mul_weight)
231        x = self.reshape(x, self.input_shape)
232        y = self.parameter * self.tensor * self.scalar
233        z = self.equal(self.parameter, self.scalar)
234        z = self.cast(z, mstype.float16)
235        z = self.cast(z, mstype.float32)
236        x = self.concat((x, y, z))
237        x = self.reduce_sum(x, (2, 3))
238        x = self.bias_add(x, self.bias)
239        y = self.cos(x)
240        y = self.prelu(y, self.prelu_weight)
241        z = self.matmul(x, self.matmul_weight)
242        z = self.l2norm(z)
243        x = self.tensoradd(y, z)
244        x = self.strided_slice(x, (0, 0), (32, 6), (1, 1))
245        x = self.dense(x)
246        return x
247
248
249class ParallelStrategySearchFactory:
250    def __init__(self, standalone_mode_net, parallel_mode_net):
251        self.standalone_mode_net = standalone_mode_net
252        self.parallel_mode_net = parallel_mode_net
253        self.parallel_ckpt = None
254        self.standalone_ckpt = None
255        self.global_rank_id = None
256        self._set_parallel_env()
257        self._init_parallel()
258
259    def __enter__(self):
260        return self
261
262    def __exit__(self, exc_type, exc_val, exc_tb):
263        return
264
265    def __del__(self):
266        self._release_parallel()
267
268    def _set_parallel_env(self):
269        if 'RANK_ID' in os.environ:
270            self.global_rank_id = int(os.environ['RANK_ID'])
271
272    def _init_parallel(self):
273        self._init_parallel_flag = False
274        init(backend_name='hccl')
275        self._init_parallel_flag = True
276
277    def _release_parallel(self):
278        if self._init_parallel_flag:
279            release()
280
281    def _model_train_and_save_ckpt(self, net, dataset, epoch):
282        self.opt = Momentum(learning_rate=0.01, momentum=0.9, params=net.get_parameters())
283        self.loss_fn = SoftmaxCrossEntropyWithLogits(reduction='mean')
284        self.model = Model(network=net,
285                           loss_fn=self.loss_fn,
286                           optimizer=self.opt)
287        ckpt_config = CheckpointConfig(keep_checkpoint_max=1)
288        ckpt_path = './rank_{}_ckpt'.format(self.global_rank_id)
289        ckpt_callback = ModelCheckpoint(prefix='parallel', directory=ckpt_path,
290                                        config=ckpt_config)
291        clean_all_ckpt_files(ckpt_path)
292        self.model.train(epoch=epoch,
293                         train_dataset=dataset,
294                         callbacks=[ckpt_callback],
295                         dataset_sink_mode=False)
296        newest_ckpt_file = find_newest_ckpt_file(ckpt_path)
297        return load_checkpoint(newest_ckpt_file)
298
299    def mindspore_auto_parallel_impl(self, dataset, epoch, device_num, auto_parallel_search_mode="dynamic_programming"):
300        parallel_mode_net = self.parallel_mode_net
301        set_algo_parameters(fully_use_devices=False)
302        context.reset_auto_parallel_context()
303        context.set_auto_parallel_context(parallel_mode=ParallelMode.AUTO_PARALLEL,
304                                          device_num=device_num,
305                                          auto_parallel_search_mode=auto_parallel_search_mode)
306        self.parallel_ckpt = self._model_train_and_save_ckpt(net=parallel_mode_net,
307                                                             dataset=dataset, epoch=epoch)
308        context.reset_auto_parallel_context()
309
310    def mindspore_standalone_impl(self, dataset, epoch):
311        standalone_mode_net = self.standalone_mode_net
312        context.reset_auto_parallel_context()
313        context.set_auto_parallel_context(parallel_mode=ParallelMode.STAND_ALONE)
314        self.standalone_ckpt = self._model_train_and_save_ckpt(net=standalone_mode_net,
315                                                               dataset=dataset, epoch=epoch)
316        context.reset_auto_parallel_context()
317
318    def checkpoint_cmp(self, inputs_np):
319        standalone_net = self.standalone_mode_net
320        load_param_into_net(standalone_net, self.standalone_ckpt)
321        standalone_out = standalone_net(Tensor(inputs_np))
322
323        parallel_net = self.standalone_mode_net
324        load_param_into_net(parallel_net, self.parallel_ckpt)
325        parallel_out = parallel_net(Tensor(inputs_np))
326        allclose_nparray(standalone_out.asnumpy(), parallel_out.asnumpy(),
327                         0.001, 0.001)
328
329
330def test_auto_parallel_strategy_search_axis_1_basic():
331    inputs_np = np.random.randn(32, 3, 224, 224).astype(np.float32)
332    standalone_mode_net = ParallelStrategySearchNet(in_channel=3,
333                                                    out_channel=8, axis=1, input_shape=(32, 4, 110, -1),
334                                                    mul_size=(32, 1, 220, 220), test_size=(32, 4, 110, 880),
335                                                    prelu_size=(1,), transpose_b=True, matmul_size=(1, 12),
336                                                    num_class=12)
337    context.reset_auto_parallel_context()
338    context.set_auto_parallel_context(parallel_mode=ParallelMode.AUTO_PARALLEL)
339    parallel_mode_net = ParallelStrategySearchNet(in_channel=3,
340                                                  out_channel=8, axis=1, input_shape=(32, 4, 110, -1),
341                                                  mul_size=(32, 1, 220, 220), test_size=(32, 4, 110, 880),
342                                                  prelu_size=(1,), transpose_b=True, matmul_size=(1, 12),
343                                                  num_class=12)
344    parallel_mode_net.cos.shard(((2, 4),))
345    parallel_mode_net.matmul.shard(((1, 2), (1, 2)))
346    standalone_dataset = FakeData(size=128, batch_size=32,
347                                  image_size=(3, 224, 224), num_classes=12)
348    fact = ParallelStrategySearchFactory(standalone_mode_net=standalone_mode_net,
349                                         parallel_mode_net=parallel_mode_net)
350    fact.mindspore_standalone_impl(dataset=standalone_dataset, epoch=2)
351    parallel_dataset = FakeData(size=128, batch_size=4,
352                                image_size=(3, 224, 224), use_parallel=True,
353                                num_classes=12)
354    fact.mindspore_auto_parallel_impl(dataset=parallel_dataset,
355                                      epoch=2, device_num=8)
356    fact.checkpoint_cmp(inputs_np=inputs_np)
357
358
359def test_auto_parallel_recursive_strategy_search_axis_1_basic():
360    inputs_np = np.random.randn(32, 3, 224, 224).astype(np.float32)
361    standalone_mode_net = ParallelStrategySearchNet(in_channel=3,
362                                                    out_channel=8, axis=1, input_shape=(32, 4, 110, -1),
363                                                    mul_size=(32, 1, 220, 220), test_size=(32, 4, 110, 880),
364                                                    prelu_size=(1,), transpose_b=True, matmul_size=(1, 12),
365                                                    num_class=12)
366    context.reset_auto_parallel_context()
367    context.set_auto_parallel_context(parallel_mode=ParallelMode.AUTO_PARALLEL)
368    parallel_mode_net = ParallelStrategySearchNet(in_channel=3,
369                                                  out_channel=8, axis=1, input_shape=(32, 4, 110, -1),
370                                                  mul_size=(32, 1, 220, 220), test_size=(32, 4, 110, 880),
371                                                  prelu_size=(1,), transpose_b=True, matmul_size=(1, 12),
372                                                  num_class=12)
373    standalone_dataset = FakeData(size=128, batch_size=32,
374                                  image_size=(3, 224, 224), num_classes=12)
375    fact = ParallelStrategySearchFactory(standalone_mode_net=standalone_mode_net,
376                                         parallel_mode_net=parallel_mode_net)
377    fact.mindspore_standalone_impl(dataset=standalone_dataset, epoch=2)
378    parallel_dataset = FakeData(size=128, batch_size=4,
379                                image_size=(3, 224, 224), use_parallel=True,
380                                num_classes=12)
381    fact.mindspore_auto_parallel_impl(dataset=parallel_dataset,
382                                      epoch=2, device_num=8, auto_parallel_search_mode="recursive_programming")
383    fact.checkpoint_cmp(inputs_np=inputs_np)
384