1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2009 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include <linux/error-injection.h>
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "volumes.h"
17 #include "locking.h"
18 #include "btrfs_inode.h"
19 #include "async-thread.h"
20 #include "free-space-cache.h"
21 #include "inode-map.h"
22 #include "qgroup.h"
23 #include "print-tree.h"
24 #include "delalloc-space.h"
25 #include "block-group.h"
26 #include "backref.h"
27 #include "misc.h"
28
29 /*
30 * Relocation overview
31 *
32 * [What does relocation do]
33 *
34 * The objective of relocation is to relocate all extents of the target block
35 * group to other block groups.
36 * This is utilized by resize (shrink only), profile converting, compacting
37 * space, or balance routine to spread chunks over devices.
38 *
39 * Before | After
40 * ------------------------------------------------------------------
41 * BG A: 10 data extents | BG A: deleted
42 * BG B: 2 data extents | BG B: 10 data extents (2 old + 8 relocated)
43 * BG C: 1 extents | BG C: 3 data extents (1 old + 2 relocated)
44 *
45 * [How does relocation work]
46 *
47 * 1. Mark the target block group read-only
48 * New extents won't be allocated from the target block group.
49 *
50 * 2.1 Record each extent in the target block group
51 * To build a proper map of extents to be relocated.
52 *
53 * 2.2 Build data reloc tree and reloc trees
54 * Data reloc tree will contain an inode, recording all newly relocated
55 * data extents.
56 * There will be only one data reloc tree for one data block group.
57 *
58 * Reloc tree will be a special snapshot of its source tree, containing
59 * relocated tree blocks.
60 * Each tree referring to a tree block in target block group will get its
61 * reloc tree built.
62 *
63 * 2.3 Swap source tree with its corresponding reloc tree
64 * Each involved tree only refers to new extents after swap.
65 *
66 * 3. Cleanup reloc trees and data reloc tree.
67 * As old extents in the target block group are still referenced by reloc
68 * trees, we need to clean them up before really freeing the target block
69 * group.
70 *
71 * The main complexity is in steps 2.2 and 2.3.
72 *
73 * The entry point of relocation is relocate_block_group() function.
74 */
75
76 #define RELOCATION_RESERVED_NODES 256
77 /*
78 * map address of tree root to tree
79 */
80 struct mapping_node {
81 struct {
82 struct rb_node rb_node;
83 u64 bytenr;
84 }; /* Use rb_simle_node for search/insert */
85 void *data;
86 };
87
88 struct mapping_tree {
89 struct rb_root rb_root;
90 spinlock_t lock;
91 };
92
93 /*
94 * present a tree block to process
95 */
96 struct tree_block {
97 struct {
98 struct rb_node rb_node;
99 u64 bytenr;
100 }; /* Use rb_simple_node for search/insert */
101 struct btrfs_key key;
102 unsigned int level:8;
103 unsigned int key_ready:1;
104 };
105
106 #define MAX_EXTENTS 128
107
108 struct file_extent_cluster {
109 u64 start;
110 u64 end;
111 u64 boundary[MAX_EXTENTS];
112 unsigned int nr;
113 };
114
115 struct reloc_control {
116 /* block group to relocate */
117 struct btrfs_block_group *block_group;
118 /* extent tree */
119 struct btrfs_root *extent_root;
120 /* inode for moving data */
121 struct inode *data_inode;
122
123 struct btrfs_block_rsv *block_rsv;
124
125 struct btrfs_backref_cache backref_cache;
126
127 struct file_extent_cluster cluster;
128 /* tree blocks have been processed */
129 struct extent_io_tree processed_blocks;
130 /* map start of tree root to corresponding reloc tree */
131 struct mapping_tree reloc_root_tree;
132 /* list of reloc trees */
133 struct list_head reloc_roots;
134 /* list of subvolume trees that get relocated */
135 struct list_head dirty_subvol_roots;
136 /* size of metadata reservation for merging reloc trees */
137 u64 merging_rsv_size;
138 /* size of relocated tree nodes */
139 u64 nodes_relocated;
140 /* reserved size for block group relocation*/
141 u64 reserved_bytes;
142
143 u64 search_start;
144 u64 extents_found;
145
146 unsigned int stage:8;
147 unsigned int create_reloc_tree:1;
148 unsigned int merge_reloc_tree:1;
149 unsigned int found_file_extent:1;
150 };
151
152 /* stages of data relocation */
153 #define MOVE_DATA_EXTENTS 0
154 #define UPDATE_DATA_PTRS 1
155
mark_block_processed(struct reloc_control * rc,struct btrfs_backref_node * node)156 static void mark_block_processed(struct reloc_control *rc,
157 struct btrfs_backref_node *node)
158 {
159 u32 blocksize;
160
161 if (node->level == 0 ||
162 in_range(node->bytenr, rc->block_group->start,
163 rc->block_group->length)) {
164 blocksize = rc->extent_root->fs_info->nodesize;
165 set_extent_bits(&rc->processed_blocks, node->bytenr,
166 node->bytenr + blocksize - 1, EXTENT_DIRTY);
167 }
168 node->processed = 1;
169 }
170
171
mapping_tree_init(struct mapping_tree * tree)172 static void mapping_tree_init(struct mapping_tree *tree)
173 {
174 tree->rb_root = RB_ROOT;
175 spin_lock_init(&tree->lock);
176 }
177
178 /*
179 * walk up backref nodes until reach node presents tree root
180 */
walk_up_backref(struct btrfs_backref_node * node,struct btrfs_backref_edge * edges[],int * index)181 static struct btrfs_backref_node *walk_up_backref(
182 struct btrfs_backref_node *node,
183 struct btrfs_backref_edge *edges[], int *index)
184 {
185 struct btrfs_backref_edge *edge;
186 int idx = *index;
187
188 while (!list_empty(&node->upper)) {
189 edge = list_entry(node->upper.next,
190 struct btrfs_backref_edge, list[LOWER]);
191 edges[idx++] = edge;
192 node = edge->node[UPPER];
193 }
194 BUG_ON(node->detached);
195 *index = idx;
196 return node;
197 }
198
199 /*
200 * walk down backref nodes to find start of next reference path
201 */
walk_down_backref(struct btrfs_backref_edge * edges[],int * index)202 static struct btrfs_backref_node *walk_down_backref(
203 struct btrfs_backref_edge *edges[], int *index)
204 {
205 struct btrfs_backref_edge *edge;
206 struct btrfs_backref_node *lower;
207 int idx = *index;
208
209 while (idx > 0) {
210 edge = edges[idx - 1];
211 lower = edge->node[LOWER];
212 if (list_is_last(&edge->list[LOWER], &lower->upper)) {
213 idx--;
214 continue;
215 }
216 edge = list_entry(edge->list[LOWER].next,
217 struct btrfs_backref_edge, list[LOWER]);
218 edges[idx - 1] = edge;
219 *index = idx;
220 return edge->node[UPPER];
221 }
222 *index = 0;
223 return NULL;
224 }
225
update_backref_node(struct btrfs_backref_cache * cache,struct btrfs_backref_node * node,u64 bytenr)226 static void update_backref_node(struct btrfs_backref_cache *cache,
227 struct btrfs_backref_node *node, u64 bytenr)
228 {
229 struct rb_node *rb_node;
230 rb_erase(&node->rb_node, &cache->rb_root);
231 node->bytenr = bytenr;
232 rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node);
233 if (rb_node)
234 btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST);
235 }
236
237 /*
238 * update backref cache after a transaction commit
239 */
update_backref_cache(struct btrfs_trans_handle * trans,struct btrfs_backref_cache * cache)240 static int update_backref_cache(struct btrfs_trans_handle *trans,
241 struct btrfs_backref_cache *cache)
242 {
243 struct btrfs_backref_node *node;
244 int level = 0;
245
246 if (cache->last_trans == 0) {
247 cache->last_trans = trans->transid;
248 return 0;
249 }
250
251 if (cache->last_trans == trans->transid)
252 return 0;
253
254 /*
255 * detached nodes are used to avoid unnecessary backref
256 * lookup. transaction commit changes the extent tree.
257 * so the detached nodes are no longer useful.
258 */
259 while (!list_empty(&cache->detached)) {
260 node = list_entry(cache->detached.next,
261 struct btrfs_backref_node, list);
262 btrfs_backref_cleanup_node(cache, node);
263 }
264
265 while (!list_empty(&cache->changed)) {
266 node = list_entry(cache->changed.next,
267 struct btrfs_backref_node, list);
268 list_del_init(&node->list);
269 BUG_ON(node->pending);
270 update_backref_node(cache, node, node->new_bytenr);
271 }
272
273 /*
274 * some nodes can be left in the pending list if there were
275 * errors during processing the pending nodes.
276 */
277 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
278 list_for_each_entry(node, &cache->pending[level], list) {
279 BUG_ON(!node->pending);
280 if (node->bytenr == node->new_bytenr)
281 continue;
282 update_backref_node(cache, node, node->new_bytenr);
283 }
284 }
285
286 cache->last_trans = 0;
287 return 1;
288 }
289
reloc_root_is_dead(struct btrfs_root * root)290 static bool reloc_root_is_dead(struct btrfs_root *root)
291 {
292 /*
293 * Pair with set_bit/clear_bit in clean_dirty_subvols and
294 * btrfs_update_reloc_root. We need to see the updated bit before
295 * trying to access reloc_root
296 */
297 smp_rmb();
298 if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
299 return true;
300 return false;
301 }
302
303 /*
304 * Check if this subvolume tree has valid reloc tree.
305 *
306 * Reloc tree after swap is considered dead, thus not considered as valid.
307 * This is enough for most callers, as they don't distinguish dead reloc root
308 * from no reloc root. But btrfs_should_ignore_reloc_root() below is a
309 * special case.
310 */
have_reloc_root(struct btrfs_root * root)311 static bool have_reloc_root(struct btrfs_root *root)
312 {
313 if (reloc_root_is_dead(root))
314 return false;
315 if (!root->reloc_root)
316 return false;
317 return true;
318 }
319
btrfs_should_ignore_reloc_root(struct btrfs_root * root)320 int btrfs_should_ignore_reloc_root(struct btrfs_root *root)
321 {
322 struct btrfs_root *reloc_root;
323
324 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
325 return 0;
326
327 /* This root has been merged with its reloc tree, we can ignore it */
328 if (reloc_root_is_dead(root))
329 return 1;
330
331 reloc_root = root->reloc_root;
332 if (!reloc_root)
333 return 0;
334
335 if (btrfs_header_generation(reloc_root->commit_root) ==
336 root->fs_info->running_transaction->transid)
337 return 0;
338 /*
339 * if there is reloc tree and it was created in previous
340 * transaction backref lookup can find the reloc tree,
341 * so backref node for the fs tree root is useless for
342 * relocation.
343 */
344 return 1;
345 }
346
347 /*
348 * find reloc tree by address of tree root
349 */
find_reloc_root(struct btrfs_fs_info * fs_info,u64 bytenr)350 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
351 {
352 struct reloc_control *rc = fs_info->reloc_ctl;
353 struct rb_node *rb_node;
354 struct mapping_node *node;
355 struct btrfs_root *root = NULL;
356
357 ASSERT(rc);
358 spin_lock(&rc->reloc_root_tree.lock);
359 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
360 if (rb_node) {
361 node = rb_entry(rb_node, struct mapping_node, rb_node);
362 root = (struct btrfs_root *)node->data;
363 }
364 spin_unlock(&rc->reloc_root_tree.lock);
365 return btrfs_grab_root(root);
366 }
367
368 /*
369 * For useless nodes, do two major clean ups:
370 *
371 * - Cleanup the children edges and nodes
372 * If child node is also orphan (no parent) during cleanup, then the child
373 * node will also be cleaned up.
374 *
375 * - Freeing up leaves (level 0), keeps nodes detached
376 * For nodes, the node is still cached as "detached"
377 *
378 * Return false if @node is not in the @useless_nodes list.
379 * Return true if @node is in the @useless_nodes list.
380 */
handle_useless_nodes(struct reloc_control * rc,struct btrfs_backref_node * node)381 static bool handle_useless_nodes(struct reloc_control *rc,
382 struct btrfs_backref_node *node)
383 {
384 struct btrfs_backref_cache *cache = &rc->backref_cache;
385 struct list_head *useless_node = &cache->useless_node;
386 bool ret = false;
387
388 while (!list_empty(useless_node)) {
389 struct btrfs_backref_node *cur;
390
391 cur = list_first_entry(useless_node, struct btrfs_backref_node,
392 list);
393 list_del_init(&cur->list);
394
395 /* Only tree root nodes can be added to @useless_nodes */
396 ASSERT(list_empty(&cur->upper));
397
398 if (cur == node)
399 ret = true;
400
401 /* The node is the lowest node */
402 if (cur->lowest) {
403 list_del_init(&cur->lower);
404 cur->lowest = 0;
405 }
406
407 /* Cleanup the lower edges */
408 while (!list_empty(&cur->lower)) {
409 struct btrfs_backref_edge *edge;
410 struct btrfs_backref_node *lower;
411
412 edge = list_entry(cur->lower.next,
413 struct btrfs_backref_edge, list[UPPER]);
414 list_del(&edge->list[UPPER]);
415 list_del(&edge->list[LOWER]);
416 lower = edge->node[LOWER];
417 btrfs_backref_free_edge(cache, edge);
418
419 /* Child node is also orphan, queue for cleanup */
420 if (list_empty(&lower->upper))
421 list_add(&lower->list, useless_node);
422 }
423 /* Mark this block processed for relocation */
424 mark_block_processed(rc, cur);
425
426 /*
427 * Backref nodes for tree leaves are deleted from the cache.
428 * Backref nodes for upper level tree blocks are left in the
429 * cache to avoid unnecessary backref lookup.
430 */
431 if (cur->level > 0) {
432 list_add(&cur->list, &cache->detached);
433 cur->detached = 1;
434 } else {
435 rb_erase(&cur->rb_node, &cache->rb_root);
436 btrfs_backref_free_node(cache, cur);
437 }
438 }
439 return ret;
440 }
441
442 /*
443 * Build backref tree for a given tree block. Root of the backref tree
444 * corresponds the tree block, leaves of the backref tree correspond roots of
445 * b-trees that reference the tree block.
446 *
447 * The basic idea of this function is check backrefs of a given block to find
448 * upper level blocks that reference the block, and then check backrefs of
449 * these upper level blocks recursively. The recursion stops when tree root is
450 * reached or backrefs for the block is cached.
451 *
452 * NOTE: if we find that backrefs for a block are cached, we know backrefs for
453 * all upper level blocks that directly/indirectly reference the block are also
454 * cached.
455 */
build_backref_tree(struct reloc_control * rc,struct btrfs_key * node_key,int level,u64 bytenr)456 static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
457 struct reloc_control *rc, struct btrfs_key *node_key,
458 int level, u64 bytenr)
459 {
460 struct btrfs_backref_iter *iter;
461 struct btrfs_backref_cache *cache = &rc->backref_cache;
462 /* For searching parent of TREE_BLOCK_REF */
463 struct btrfs_path *path;
464 struct btrfs_backref_node *cur;
465 struct btrfs_backref_node *node = NULL;
466 struct btrfs_backref_edge *edge;
467 int ret;
468 int err = 0;
469
470 iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info, GFP_NOFS);
471 if (!iter)
472 return ERR_PTR(-ENOMEM);
473 path = btrfs_alloc_path();
474 if (!path) {
475 err = -ENOMEM;
476 goto out;
477 }
478
479 node = btrfs_backref_alloc_node(cache, bytenr, level);
480 if (!node) {
481 err = -ENOMEM;
482 goto out;
483 }
484
485 node->lowest = 1;
486 cur = node;
487
488 /* Breadth-first search to build backref cache */
489 do {
490 ret = btrfs_backref_add_tree_node(cache, path, iter, node_key,
491 cur);
492 if (ret < 0) {
493 err = ret;
494 goto out;
495 }
496 edge = list_first_entry_or_null(&cache->pending_edge,
497 struct btrfs_backref_edge, list[UPPER]);
498 /*
499 * The pending list isn't empty, take the first block to
500 * process
501 */
502 if (edge) {
503 list_del_init(&edge->list[UPPER]);
504 cur = edge->node[UPPER];
505 }
506 } while (edge);
507
508 /* Finish the upper linkage of newly added edges/nodes */
509 ret = btrfs_backref_finish_upper_links(cache, node);
510 if (ret < 0) {
511 err = ret;
512 goto out;
513 }
514
515 if (handle_useless_nodes(rc, node))
516 node = NULL;
517 out:
518 btrfs_backref_iter_free(iter);
519 btrfs_free_path(path);
520 if (err) {
521 btrfs_backref_error_cleanup(cache, node);
522 return ERR_PTR(err);
523 }
524 ASSERT(!node || !node->detached);
525 ASSERT(list_empty(&cache->useless_node) &&
526 list_empty(&cache->pending_edge));
527 return node;
528 }
529
530 /*
531 * helper to add backref node for the newly created snapshot.
532 * the backref node is created by cloning backref node that
533 * corresponds to root of source tree
534 */
clone_backref_node(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * src,struct btrfs_root * dest)535 static int clone_backref_node(struct btrfs_trans_handle *trans,
536 struct reloc_control *rc,
537 struct btrfs_root *src,
538 struct btrfs_root *dest)
539 {
540 struct btrfs_root *reloc_root = src->reloc_root;
541 struct btrfs_backref_cache *cache = &rc->backref_cache;
542 struct btrfs_backref_node *node = NULL;
543 struct btrfs_backref_node *new_node;
544 struct btrfs_backref_edge *edge;
545 struct btrfs_backref_edge *new_edge;
546 struct rb_node *rb_node;
547
548 if (cache->last_trans > 0)
549 update_backref_cache(trans, cache);
550
551 rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start);
552 if (rb_node) {
553 node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
554 if (node->detached)
555 node = NULL;
556 else
557 BUG_ON(node->new_bytenr != reloc_root->node->start);
558 }
559
560 if (!node) {
561 rb_node = rb_simple_search(&cache->rb_root,
562 reloc_root->commit_root->start);
563 if (rb_node) {
564 node = rb_entry(rb_node, struct btrfs_backref_node,
565 rb_node);
566 BUG_ON(node->detached);
567 }
568 }
569
570 if (!node)
571 return 0;
572
573 new_node = btrfs_backref_alloc_node(cache, dest->node->start,
574 node->level);
575 if (!new_node)
576 return -ENOMEM;
577
578 new_node->lowest = node->lowest;
579 new_node->checked = 1;
580 new_node->root = btrfs_grab_root(dest);
581 ASSERT(new_node->root);
582
583 if (!node->lowest) {
584 list_for_each_entry(edge, &node->lower, list[UPPER]) {
585 new_edge = btrfs_backref_alloc_edge(cache);
586 if (!new_edge)
587 goto fail;
588
589 btrfs_backref_link_edge(new_edge, edge->node[LOWER],
590 new_node, LINK_UPPER);
591 }
592 } else {
593 list_add_tail(&new_node->lower, &cache->leaves);
594 }
595
596 rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr,
597 &new_node->rb_node);
598 if (rb_node)
599 btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST);
600
601 if (!new_node->lowest) {
602 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
603 list_add_tail(&new_edge->list[LOWER],
604 &new_edge->node[LOWER]->upper);
605 }
606 }
607 return 0;
608 fail:
609 while (!list_empty(&new_node->lower)) {
610 new_edge = list_entry(new_node->lower.next,
611 struct btrfs_backref_edge, list[UPPER]);
612 list_del(&new_edge->list[UPPER]);
613 btrfs_backref_free_edge(cache, new_edge);
614 }
615 btrfs_backref_free_node(cache, new_node);
616 return -ENOMEM;
617 }
618
619 /*
620 * helper to add 'address of tree root -> reloc tree' mapping
621 */
__add_reloc_root(struct btrfs_root * root)622 static int __must_check __add_reloc_root(struct btrfs_root *root)
623 {
624 struct btrfs_fs_info *fs_info = root->fs_info;
625 struct rb_node *rb_node;
626 struct mapping_node *node;
627 struct reloc_control *rc = fs_info->reloc_ctl;
628
629 node = kmalloc(sizeof(*node), GFP_NOFS);
630 if (!node)
631 return -ENOMEM;
632
633 node->bytenr = root->commit_root->start;
634 node->data = root;
635
636 spin_lock(&rc->reloc_root_tree.lock);
637 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
638 node->bytenr, &node->rb_node);
639 spin_unlock(&rc->reloc_root_tree.lock);
640 if (rb_node) {
641 btrfs_panic(fs_info, -EEXIST,
642 "Duplicate root found for start=%llu while inserting into relocation tree",
643 node->bytenr);
644 }
645
646 list_add_tail(&root->root_list, &rc->reloc_roots);
647 return 0;
648 }
649
650 /*
651 * helper to delete the 'address of tree root -> reloc tree'
652 * mapping
653 */
__del_reloc_root(struct btrfs_root * root)654 static void __del_reloc_root(struct btrfs_root *root)
655 {
656 struct btrfs_fs_info *fs_info = root->fs_info;
657 struct rb_node *rb_node;
658 struct mapping_node *node = NULL;
659 struct reloc_control *rc = fs_info->reloc_ctl;
660 bool put_ref = false;
661
662 if (rc && root->node) {
663 spin_lock(&rc->reloc_root_tree.lock);
664 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
665 root->commit_root->start);
666 if (rb_node) {
667 node = rb_entry(rb_node, struct mapping_node, rb_node);
668 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
669 RB_CLEAR_NODE(&node->rb_node);
670 }
671 spin_unlock(&rc->reloc_root_tree.lock);
672 ASSERT(!node || (struct btrfs_root *)node->data == root);
673 }
674
675 /*
676 * We only put the reloc root here if it's on the list. There's a lot
677 * of places where the pattern is to splice the rc->reloc_roots, process
678 * the reloc roots, and then add the reloc root back onto
679 * rc->reloc_roots. If we call __del_reloc_root while it's off of the
680 * list we don't want the reference being dropped, because the guy
681 * messing with the list is in charge of the reference.
682 */
683 spin_lock(&fs_info->trans_lock);
684 if (!list_empty(&root->root_list)) {
685 put_ref = true;
686 list_del_init(&root->root_list);
687 }
688 spin_unlock(&fs_info->trans_lock);
689 if (put_ref)
690 btrfs_put_root(root);
691 kfree(node);
692 }
693
694 /*
695 * helper to update the 'address of tree root -> reloc tree'
696 * mapping
697 */
__update_reloc_root(struct btrfs_root * root)698 static int __update_reloc_root(struct btrfs_root *root)
699 {
700 struct btrfs_fs_info *fs_info = root->fs_info;
701 struct rb_node *rb_node;
702 struct mapping_node *node = NULL;
703 struct reloc_control *rc = fs_info->reloc_ctl;
704
705 spin_lock(&rc->reloc_root_tree.lock);
706 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
707 root->commit_root->start);
708 if (rb_node) {
709 node = rb_entry(rb_node, struct mapping_node, rb_node);
710 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
711 }
712 spin_unlock(&rc->reloc_root_tree.lock);
713
714 if (!node)
715 return 0;
716 BUG_ON((struct btrfs_root *)node->data != root);
717
718 spin_lock(&rc->reloc_root_tree.lock);
719 node->bytenr = root->node->start;
720 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
721 node->bytenr, &node->rb_node);
722 spin_unlock(&rc->reloc_root_tree.lock);
723 if (rb_node)
724 btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
725 return 0;
726 }
727
create_reloc_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid)728 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
729 struct btrfs_root *root, u64 objectid)
730 {
731 struct btrfs_fs_info *fs_info = root->fs_info;
732 struct btrfs_root *reloc_root;
733 struct extent_buffer *eb;
734 struct btrfs_root_item *root_item;
735 struct btrfs_key root_key;
736 int ret = 0;
737 bool must_abort = false;
738
739 root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
740 if (!root_item)
741 return ERR_PTR(-ENOMEM);
742
743 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
744 root_key.type = BTRFS_ROOT_ITEM_KEY;
745 root_key.offset = objectid;
746
747 if (root->root_key.objectid == objectid) {
748 u64 commit_root_gen;
749
750 /* called by btrfs_init_reloc_root */
751 ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
752 BTRFS_TREE_RELOC_OBJECTID);
753 if (ret)
754 goto fail;
755
756 /*
757 * Set the last_snapshot field to the generation of the commit
758 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
759 * correctly (returns true) when the relocation root is created
760 * either inside the critical section of a transaction commit
761 * (through transaction.c:qgroup_account_snapshot()) and when
762 * it's created before the transaction commit is started.
763 */
764 commit_root_gen = btrfs_header_generation(root->commit_root);
765 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
766 } else {
767 /*
768 * called by btrfs_reloc_post_snapshot_hook.
769 * the source tree is a reloc tree, all tree blocks
770 * modified after it was created have RELOC flag
771 * set in their headers. so it's OK to not update
772 * the 'last_snapshot'.
773 */
774 ret = btrfs_copy_root(trans, root, root->node, &eb,
775 BTRFS_TREE_RELOC_OBJECTID);
776 if (ret)
777 goto fail;
778 }
779
780 /*
781 * We have changed references at this point, we must abort the
782 * transaction if anything fails.
783 */
784 must_abort = true;
785
786 memcpy(root_item, &root->root_item, sizeof(*root_item));
787 btrfs_set_root_bytenr(root_item, eb->start);
788 btrfs_set_root_level(root_item, btrfs_header_level(eb));
789 btrfs_set_root_generation(root_item, trans->transid);
790
791 if (root->root_key.objectid == objectid) {
792 btrfs_set_root_refs(root_item, 0);
793 memset(&root_item->drop_progress, 0,
794 sizeof(struct btrfs_disk_key));
795 root_item->drop_level = 0;
796 }
797
798 btrfs_tree_unlock(eb);
799 free_extent_buffer(eb);
800
801 ret = btrfs_insert_root(trans, fs_info->tree_root,
802 &root_key, root_item);
803 if (ret)
804 goto fail;
805
806 kfree(root_item);
807
808 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
809 if (IS_ERR(reloc_root)) {
810 ret = PTR_ERR(reloc_root);
811 goto abort;
812 }
813 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
814 reloc_root->last_trans = trans->transid;
815 return reloc_root;
816 fail:
817 kfree(root_item);
818 abort:
819 if (must_abort)
820 btrfs_abort_transaction(trans, ret);
821 return ERR_PTR(ret);
822 }
823
824 /*
825 * create reloc tree for a given fs tree. reloc tree is just a
826 * snapshot of the fs tree with special root objectid.
827 *
828 * The reloc_root comes out of here with two references, one for
829 * root->reloc_root, and another for being on the rc->reloc_roots list.
830 */
btrfs_init_reloc_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)831 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
832 struct btrfs_root *root)
833 {
834 struct btrfs_fs_info *fs_info = root->fs_info;
835 struct btrfs_root *reloc_root;
836 struct reloc_control *rc = fs_info->reloc_ctl;
837 struct btrfs_block_rsv *rsv;
838 int clear_rsv = 0;
839 int ret;
840
841 if (!rc)
842 return 0;
843
844 /*
845 * The subvolume has reloc tree but the swap is finished, no need to
846 * create/update the dead reloc tree
847 */
848 if (reloc_root_is_dead(root))
849 return 0;
850
851 /*
852 * This is subtle but important. We do not do
853 * record_root_in_transaction for reloc roots, instead we record their
854 * corresponding fs root, and then here we update the last trans for the
855 * reloc root. This means that we have to do this for the entire life
856 * of the reloc root, regardless of which stage of the relocation we are
857 * in.
858 */
859 if (root->reloc_root) {
860 reloc_root = root->reloc_root;
861 reloc_root->last_trans = trans->transid;
862 return 0;
863 }
864
865 /*
866 * We are merging reloc roots, we do not need new reloc trees. Also
867 * reloc trees never need their own reloc tree.
868 */
869 if (!rc->create_reloc_tree ||
870 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
871 return 0;
872
873 if (!trans->reloc_reserved) {
874 rsv = trans->block_rsv;
875 trans->block_rsv = rc->block_rsv;
876 clear_rsv = 1;
877 }
878 reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
879 if (clear_rsv)
880 trans->block_rsv = rsv;
881
882 ret = __add_reloc_root(reloc_root);
883 BUG_ON(ret < 0);
884 root->reloc_root = btrfs_grab_root(reloc_root);
885 return 0;
886 }
887
888 /*
889 * update root item of reloc tree
890 */
btrfs_update_reloc_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)891 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
892 struct btrfs_root *root)
893 {
894 struct btrfs_fs_info *fs_info = root->fs_info;
895 struct btrfs_root *reloc_root;
896 struct btrfs_root_item *root_item;
897 int ret;
898
899 if (!have_reloc_root(root))
900 return 0;
901
902 reloc_root = root->reloc_root;
903 root_item = &reloc_root->root_item;
904
905 /*
906 * We are probably ok here, but __del_reloc_root() will drop its ref of
907 * the root. We have the ref for root->reloc_root, but just in case
908 * hold it while we update the reloc root.
909 */
910 btrfs_grab_root(reloc_root);
911
912 /* root->reloc_root will stay until current relocation finished */
913 if (fs_info->reloc_ctl->merge_reloc_tree &&
914 btrfs_root_refs(root_item) == 0) {
915 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
916 /*
917 * Mark the tree as dead before we change reloc_root so
918 * have_reloc_root will not touch it from now on.
919 */
920 smp_wmb();
921 __del_reloc_root(reloc_root);
922 }
923
924 if (reloc_root->commit_root != reloc_root->node) {
925 __update_reloc_root(reloc_root);
926 btrfs_set_root_node(root_item, reloc_root->node);
927 free_extent_buffer(reloc_root->commit_root);
928 reloc_root->commit_root = btrfs_root_node(reloc_root);
929 }
930
931 ret = btrfs_update_root(trans, fs_info->tree_root,
932 &reloc_root->root_key, root_item);
933 btrfs_put_root(reloc_root);
934 return ret;
935 }
936
937 /*
938 * helper to find first cached inode with inode number >= objectid
939 * in a subvolume
940 */
find_next_inode(struct btrfs_root * root,u64 objectid)941 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
942 {
943 struct rb_node *node;
944 struct rb_node *prev;
945 struct btrfs_inode *entry;
946 struct inode *inode;
947
948 spin_lock(&root->inode_lock);
949 again:
950 node = root->inode_tree.rb_node;
951 prev = NULL;
952 while (node) {
953 prev = node;
954 entry = rb_entry(node, struct btrfs_inode, rb_node);
955
956 if (objectid < btrfs_ino(entry))
957 node = node->rb_left;
958 else if (objectid > btrfs_ino(entry))
959 node = node->rb_right;
960 else
961 break;
962 }
963 if (!node) {
964 while (prev) {
965 entry = rb_entry(prev, struct btrfs_inode, rb_node);
966 if (objectid <= btrfs_ino(entry)) {
967 node = prev;
968 break;
969 }
970 prev = rb_next(prev);
971 }
972 }
973 while (node) {
974 entry = rb_entry(node, struct btrfs_inode, rb_node);
975 inode = igrab(&entry->vfs_inode);
976 if (inode) {
977 spin_unlock(&root->inode_lock);
978 return inode;
979 }
980
981 objectid = btrfs_ino(entry) + 1;
982 if (cond_resched_lock(&root->inode_lock))
983 goto again;
984
985 node = rb_next(node);
986 }
987 spin_unlock(&root->inode_lock);
988 return NULL;
989 }
990
991 /*
992 * get new location of data
993 */
get_new_location(struct inode * reloc_inode,u64 * new_bytenr,u64 bytenr,u64 num_bytes)994 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
995 u64 bytenr, u64 num_bytes)
996 {
997 struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
998 struct btrfs_path *path;
999 struct btrfs_file_extent_item *fi;
1000 struct extent_buffer *leaf;
1001 int ret;
1002
1003 path = btrfs_alloc_path();
1004 if (!path)
1005 return -ENOMEM;
1006
1007 bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1008 ret = btrfs_lookup_file_extent(NULL, root, path,
1009 btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1010 if (ret < 0)
1011 goto out;
1012 if (ret > 0) {
1013 ret = -ENOENT;
1014 goto out;
1015 }
1016
1017 leaf = path->nodes[0];
1018 fi = btrfs_item_ptr(leaf, path->slots[0],
1019 struct btrfs_file_extent_item);
1020
1021 BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1022 btrfs_file_extent_compression(leaf, fi) ||
1023 btrfs_file_extent_encryption(leaf, fi) ||
1024 btrfs_file_extent_other_encoding(leaf, fi));
1025
1026 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1027 ret = -EINVAL;
1028 goto out;
1029 }
1030
1031 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1032 ret = 0;
1033 out:
1034 btrfs_free_path(path);
1035 return ret;
1036 }
1037
1038 /*
1039 * update file extent items in the tree leaf to point to
1040 * the new locations.
1041 */
1042 static noinline_for_stack
replace_file_extents(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * root,struct extent_buffer * leaf)1043 int replace_file_extents(struct btrfs_trans_handle *trans,
1044 struct reloc_control *rc,
1045 struct btrfs_root *root,
1046 struct extent_buffer *leaf)
1047 {
1048 struct btrfs_fs_info *fs_info = root->fs_info;
1049 struct btrfs_key key;
1050 struct btrfs_file_extent_item *fi;
1051 struct inode *inode = NULL;
1052 u64 parent;
1053 u64 bytenr;
1054 u64 new_bytenr = 0;
1055 u64 num_bytes;
1056 u64 end;
1057 u32 nritems;
1058 u32 i;
1059 int ret = 0;
1060 int first = 1;
1061 int dirty = 0;
1062
1063 if (rc->stage != UPDATE_DATA_PTRS)
1064 return 0;
1065
1066 /* reloc trees always use full backref */
1067 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1068 parent = leaf->start;
1069 else
1070 parent = 0;
1071
1072 nritems = btrfs_header_nritems(leaf);
1073 for (i = 0; i < nritems; i++) {
1074 struct btrfs_ref ref = { 0 };
1075
1076 cond_resched();
1077 btrfs_item_key_to_cpu(leaf, &key, i);
1078 if (key.type != BTRFS_EXTENT_DATA_KEY)
1079 continue;
1080 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1081 if (btrfs_file_extent_type(leaf, fi) ==
1082 BTRFS_FILE_EXTENT_INLINE)
1083 continue;
1084 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1085 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1086 if (bytenr == 0)
1087 continue;
1088 if (!in_range(bytenr, rc->block_group->start,
1089 rc->block_group->length))
1090 continue;
1091
1092 /*
1093 * if we are modifying block in fs tree, wait for readpage
1094 * to complete and drop the extent cache
1095 */
1096 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1097 if (first) {
1098 inode = find_next_inode(root, key.objectid);
1099 first = 0;
1100 } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1101 btrfs_add_delayed_iput(inode);
1102 inode = find_next_inode(root, key.objectid);
1103 }
1104 if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1105 end = key.offset +
1106 btrfs_file_extent_num_bytes(leaf, fi);
1107 WARN_ON(!IS_ALIGNED(key.offset,
1108 fs_info->sectorsize));
1109 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1110 end--;
1111 ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1112 key.offset, end);
1113 if (!ret)
1114 continue;
1115
1116 btrfs_drop_extent_cache(BTRFS_I(inode),
1117 key.offset, end, 1);
1118 unlock_extent(&BTRFS_I(inode)->io_tree,
1119 key.offset, end);
1120 }
1121 }
1122
1123 ret = get_new_location(rc->data_inode, &new_bytenr,
1124 bytenr, num_bytes);
1125 if (ret) {
1126 /*
1127 * Don't have to abort since we've not changed anything
1128 * in the file extent yet.
1129 */
1130 break;
1131 }
1132
1133 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1134 dirty = 1;
1135
1136 key.offset -= btrfs_file_extent_offset(leaf, fi);
1137 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1138 num_bytes, parent);
1139 ref.real_root = root->root_key.objectid;
1140 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1141 key.objectid, key.offset);
1142 ret = btrfs_inc_extent_ref(trans, &ref);
1143 if (ret) {
1144 btrfs_abort_transaction(trans, ret);
1145 break;
1146 }
1147
1148 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1149 num_bytes, parent);
1150 ref.real_root = root->root_key.objectid;
1151 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1152 key.objectid, key.offset);
1153 ret = btrfs_free_extent(trans, &ref);
1154 if (ret) {
1155 btrfs_abort_transaction(trans, ret);
1156 break;
1157 }
1158 }
1159 if (dirty)
1160 btrfs_mark_buffer_dirty(leaf);
1161 if (inode)
1162 btrfs_add_delayed_iput(inode);
1163 return ret;
1164 }
1165
1166 static noinline_for_stack
memcmp_node_keys(struct extent_buffer * eb,int slot,struct btrfs_path * path,int level)1167 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1168 struct btrfs_path *path, int level)
1169 {
1170 struct btrfs_disk_key key1;
1171 struct btrfs_disk_key key2;
1172 btrfs_node_key(eb, &key1, slot);
1173 btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1174 return memcmp(&key1, &key2, sizeof(key1));
1175 }
1176
1177 /*
1178 * try to replace tree blocks in fs tree with the new blocks
1179 * in reloc tree. tree blocks haven't been modified since the
1180 * reloc tree was create can be replaced.
1181 *
1182 * if a block was replaced, level of the block + 1 is returned.
1183 * if no block got replaced, 0 is returned. if there are other
1184 * errors, a negative error number is returned.
1185 */
1186 static noinline_for_stack
replace_path(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * dest,struct btrfs_root * src,struct btrfs_path * path,struct btrfs_key * next_key,int lowest_level,int max_level)1187 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1188 struct btrfs_root *dest, struct btrfs_root *src,
1189 struct btrfs_path *path, struct btrfs_key *next_key,
1190 int lowest_level, int max_level)
1191 {
1192 struct btrfs_fs_info *fs_info = dest->fs_info;
1193 struct extent_buffer *eb;
1194 struct extent_buffer *parent;
1195 struct btrfs_ref ref = { 0 };
1196 struct btrfs_key key;
1197 u64 old_bytenr;
1198 u64 new_bytenr;
1199 u64 old_ptr_gen;
1200 u64 new_ptr_gen;
1201 u64 last_snapshot;
1202 u32 blocksize;
1203 int cow = 0;
1204 int level;
1205 int ret;
1206 int slot;
1207
1208 ASSERT(src->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1209 ASSERT(dest->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1210
1211 last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1212 again:
1213 slot = path->slots[lowest_level];
1214 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1215
1216 eb = btrfs_lock_root_node(dest);
1217 btrfs_set_lock_blocking_write(eb);
1218 level = btrfs_header_level(eb);
1219
1220 if (level < lowest_level) {
1221 btrfs_tree_unlock(eb);
1222 free_extent_buffer(eb);
1223 return 0;
1224 }
1225
1226 if (cow) {
1227 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
1228 BTRFS_NESTING_COW);
1229 BUG_ON(ret);
1230 }
1231 btrfs_set_lock_blocking_write(eb);
1232
1233 if (next_key) {
1234 next_key->objectid = (u64)-1;
1235 next_key->type = (u8)-1;
1236 next_key->offset = (u64)-1;
1237 }
1238
1239 parent = eb;
1240 while (1) {
1241 struct btrfs_key first_key;
1242
1243 level = btrfs_header_level(parent);
1244 ASSERT(level >= lowest_level);
1245
1246 ret = btrfs_bin_search(parent, &key, &slot);
1247 if (ret < 0)
1248 break;
1249 if (ret && slot > 0)
1250 slot--;
1251
1252 if (next_key && slot + 1 < btrfs_header_nritems(parent))
1253 btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1254
1255 old_bytenr = btrfs_node_blockptr(parent, slot);
1256 blocksize = fs_info->nodesize;
1257 old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1258 btrfs_node_key_to_cpu(parent, &first_key, slot);
1259
1260 if (level <= max_level) {
1261 eb = path->nodes[level];
1262 new_bytenr = btrfs_node_blockptr(eb,
1263 path->slots[level]);
1264 new_ptr_gen = btrfs_node_ptr_generation(eb,
1265 path->slots[level]);
1266 } else {
1267 new_bytenr = 0;
1268 new_ptr_gen = 0;
1269 }
1270
1271 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1272 ret = level;
1273 break;
1274 }
1275
1276 if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1277 memcmp_node_keys(parent, slot, path, level)) {
1278 if (level <= lowest_level) {
1279 ret = 0;
1280 break;
1281 }
1282
1283 eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen,
1284 level - 1, &first_key);
1285 if (IS_ERR(eb)) {
1286 ret = PTR_ERR(eb);
1287 break;
1288 } else if (!extent_buffer_uptodate(eb)) {
1289 ret = -EIO;
1290 free_extent_buffer(eb);
1291 break;
1292 }
1293 btrfs_tree_lock(eb);
1294 if (cow) {
1295 ret = btrfs_cow_block(trans, dest, eb, parent,
1296 slot, &eb,
1297 BTRFS_NESTING_COW);
1298 BUG_ON(ret);
1299 }
1300 btrfs_set_lock_blocking_write(eb);
1301
1302 btrfs_tree_unlock(parent);
1303 free_extent_buffer(parent);
1304
1305 parent = eb;
1306 continue;
1307 }
1308
1309 if (!cow) {
1310 btrfs_tree_unlock(parent);
1311 free_extent_buffer(parent);
1312 cow = 1;
1313 goto again;
1314 }
1315
1316 btrfs_node_key_to_cpu(path->nodes[level], &key,
1317 path->slots[level]);
1318 btrfs_release_path(path);
1319
1320 path->lowest_level = level;
1321 ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1322 path->lowest_level = 0;
1323 BUG_ON(ret);
1324
1325 /*
1326 * Info qgroup to trace both subtrees.
1327 *
1328 * We must trace both trees.
1329 * 1) Tree reloc subtree
1330 * If not traced, we will leak data numbers
1331 * 2) Fs subtree
1332 * If not traced, we will double count old data
1333 *
1334 * We don't scan the subtree right now, but only record
1335 * the swapped tree blocks.
1336 * The real subtree rescan is delayed until we have new
1337 * CoW on the subtree root node before transaction commit.
1338 */
1339 ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1340 rc->block_group, parent, slot,
1341 path->nodes[level], path->slots[level],
1342 last_snapshot);
1343 if (ret < 0)
1344 break;
1345 /*
1346 * swap blocks in fs tree and reloc tree.
1347 */
1348 btrfs_set_node_blockptr(parent, slot, new_bytenr);
1349 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1350 btrfs_mark_buffer_dirty(parent);
1351
1352 btrfs_set_node_blockptr(path->nodes[level],
1353 path->slots[level], old_bytenr);
1354 btrfs_set_node_ptr_generation(path->nodes[level],
1355 path->slots[level], old_ptr_gen);
1356 btrfs_mark_buffer_dirty(path->nodes[level]);
1357
1358 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1359 blocksize, path->nodes[level]->start);
1360 ref.skip_qgroup = true;
1361 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1362 ret = btrfs_inc_extent_ref(trans, &ref);
1363 BUG_ON(ret);
1364 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1365 blocksize, 0);
1366 ref.skip_qgroup = true;
1367 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1368 ret = btrfs_inc_extent_ref(trans, &ref);
1369 BUG_ON(ret);
1370
1371 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1372 blocksize, path->nodes[level]->start);
1373 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1374 ref.skip_qgroup = true;
1375 ret = btrfs_free_extent(trans, &ref);
1376 BUG_ON(ret);
1377
1378 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1379 blocksize, 0);
1380 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1381 ref.skip_qgroup = true;
1382 ret = btrfs_free_extent(trans, &ref);
1383 BUG_ON(ret);
1384
1385 btrfs_unlock_up_safe(path, 0);
1386
1387 ret = level;
1388 break;
1389 }
1390 btrfs_tree_unlock(parent);
1391 free_extent_buffer(parent);
1392 return ret;
1393 }
1394
1395 /*
1396 * helper to find next relocated block in reloc tree
1397 */
1398 static noinline_for_stack
walk_up_reloc_tree(struct btrfs_root * root,struct btrfs_path * path,int * level)1399 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1400 int *level)
1401 {
1402 struct extent_buffer *eb;
1403 int i;
1404 u64 last_snapshot;
1405 u32 nritems;
1406
1407 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1408
1409 for (i = 0; i < *level; i++) {
1410 free_extent_buffer(path->nodes[i]);
1411 path->nodes[i] = NULL;
1412 }
1413
1414 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1415 eb = path->nodes[i];
1416 nritems = btrfs_header_nritems(eb);
1417 while (path->slots[i] + 1 < nritems) {
1418 path->slots[i]++;
1419 if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1420 last_snapshot)
1421 continue;
1422
1423 *level = i;
1424 return 0;
1425 }
1426 free_extent_buffer(path->nodes[i]);
1427 path->nodes[i] = NULL;
1428 }
1429 return 1;
1430 }
1431
1432 /*
1433 * walk down reloc tree to find relocated block of lowest level
1434 */
1435 static noinline_for_stack
walk_down_reloc_tree(struct btrfs_root * root,struct btrfs_path * path,int * level)1436 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1437 int *level)
1438 {
1439 struct btrfs_fs_info *fs_info = root->fs_info;
1440 struct extent_buffer *eb = NULL;
1441 int i;
1442 u64 bytenr;
1443 u64 ptr_gen = 0;
1444 u64 last_snapshot;
1445 u32 nritems;
1446
1447 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1448
1449 for (i = *level; i > 0; i--) {
1450 struct btrfs_key first_key;
1451
1452 eb = path->nodes[i];
1453 nritems = btrfs_header_nritems(eb);
1454 while (path->slots[i] < nritems) {
1455 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1456 if (ptr_gen > last_snapshot)
1457 break;
1458 path->slots[i]++;
1459 }
1460 if (path->slots[i] >= nritems) {
1461 if (i == *level)
1462 break;
1463 *level = i + 1;
1464 return 0;
1465 }
1466 if (i == 1) {
1467 *level = i;
1468 return 0;
1469 }
1470
1471 bytenr = btrfs_node_blockptr(eb, path->slots[i]);
1472 btrfs_node_key_to_cpu(eb, &first_key, path->slots[i]);
1473 eb = read_tree_block(fs_info, bytenr, ptr_gen, i - 1,
1474 &first_key);
1475 if (IS_ERR(eb)) {
1476 return PTR_ERR(eb);
1477 } else if (!extent_buffer_uptodate(eb)) {
1478 free_extent_buffer(eb);
1479 return -EIO;
1480 }
1481 BUG_ON(btrfs_header_level(eb) != i - 1);
1482 path->nodes[i - 1] = eb;
1483 path->slots[i - 1] = 0;
1484 }
1485 return 1;
1486 }
1487
1488 /*
1489 * invalidate extent cache for file extents whose key in range of
1490 * [min_key, max_key)
1491 */
invalidate_extent_cache(struct btrfs_root * root,struct btrfs_key * min_key,struct btrfs_key * max_key)1492 static int invalidate_extent_cache(struct btrfs_root *root,
1493 struct btrfs_key *min_key,
1494 struct btrfs_key *max_key)
1495 {
1496 struct btrfs_fs_info *fs_info = root->fs_info;
1497 struct inode *inode = NULL;
1498 u64 objectid;
1499 u64 start, end;
1500 u64 ino;
1501
1502 objectid = min_key->objectid;
1503 while (1) {
1504 cond_resched();
1505 iput(inode);
1506
1507 if (objectid > max_key->objectid)
1508 break;
1509
1510 inode = find_next_inode(root, objectid);
1511 if (!inode)
1512 break;
1513 ino = btrfs_ino(BTRFS_I(inode));
1514
1515 if (ino > max_key->objectid) {
1516 iput(inode);
1517 break;
1518 }
1519
1520 objectid = ino + 1;
1521 if (!S_ISREG(inode->i_mode))
1522 continue;
1523
1524 if (unlikely(min_key->objectid == ino)) {
1525 if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1526 continue;
1527 if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1528 start = 0;
1529 else {
1530 start = min_key->offset;
1531 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1532 }
1533 } else {
1534 start = 0;
1535 }
1536
1537 if (unlikely(max_key->objectid == ino)) {
1538 if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1539 continue;
1540 if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1541 end = (u64)-1;
1542 } else {
1543 if (max_key->offset == 0)
1544 continue;
1545 end = max_key->offset;
1546 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1547 end--;
1548 }
1549 } else {
1550 end = (u64)-1;
1551 }
1552
1553 /* the lock_extent waits for readpage to complete */
1554 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
1555 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
1556 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
1557 }
1558 return 0;
1559 }
1560
find_next_key(struct btrfs_path * path,int level,struct btrfs_key * key)1561 static int find_next_key(struct btrfs_path *path, int level,
1562 struct btrfs_key *key)
1563
1564 {
1565 while (level < BTRFS_MAX_LEVEL) {
1566 if (!path->nodes[level])
1567 break;
1568 if (path->slots[level] + 1 <
1569 btrfs_header_nritems(path->nodes[level])) {
1570 btrfs_node_key_to_cpu(path->nodes[level], key,
1571 path->slots[level] + 1);
1572 return 0;
1573 }
1574 level++;
1575 }
1576 return 1;
1577 }
1578
1579 /*
1580 * Insert current subvolume into reloc_control::dirty_subvol_roots
1581 */
insert_dirty_subvol(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * root)1582 static void insert_dirty_subvol(struct btrfs_trans_handle *trans,
1583 struct reloc_control *rc,
1584 struct btrfs_root *root)
1585 {
1586 struct btrfs_root *reloc_root = root->reloc_root;
1587 struct btrfs_root_item *reloc_root_item;
1588
1589 /* @root must be a subvolume tree root with a valid reloc tree */
1590 ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1591 ASSERT(reloc_root);
1592
1593 reloc_root_item = &reloc_root->root_item;
1594 memset(&reloc_root_item->drop_progress, 0,
1595 sizeof(reloc_root_item->drop_progress));
1596 reloc_root_item->drop_level = 0;
1597 btrfs_set_root_refs(reloc_root_item, 0);
1598 btrfs_update_reloc_root(trans, root);
1599
1600 if (list_empty(&root->reloc_dirty_list)) {
1601 btrfs_grab_root(root);
1602 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1603 }
1604 }
1605
clean_dirty_subvols(struct reloc_control * rc)1606 static int clean_dirty_subvols(struct reloc_control *rc)
1607 {
1608 struct btrfs_root *root;
1609 struct btrfs_root *next;
1610 int ret = 0;
1611 int ret2;
1612
1613 list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1614 reloc_dirty_list) {
1615 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1616 /* Merged subvolume, cleanup its reloc root */
1617 struct btrfs_root *reloc_root = root->reloc_root;
1618
1619 list_del_init(&root->reloc_dirty_list);
1620 root->reloc_root = NULL;
1621 /*
1622 * Need barrier to ensure clear_bit() only happens after
1623 * root->reloc_root = NULL. Pairs with have_reloc_root.
1624 */
1625 smp_wmb();
1626 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1627 if (reloc_root) {
1628 /*
1629 * btrfs_drop_snapshot drops our ref we hold for
1630 * ->reloc_root. If it fails however we must
1631 * drop the ref ourselves.
1632 */
1633 ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1634 if (ret2 < 0) {
1635 btrfs_put_root(reloc_root);
1636 if (!ret)
1637 ret = ret2;
1638 }
1639 }
1640 btrfs_put_root(root);
1641 } else {
1642 /* Orphan reloc tree, just clean it up */
1643 ret2 = btrfs_drop_snapshot(root, 0, 1);
1644 if (ret2 < 0) {
1645 btrfs_put_root(root);
1646 if (!ret)
1647 ret = ret2;
1648 }
1649 }
1650 }
1651 return ret;
1652 }
1653
1654 /*
1655 * merge the relocated tree blocks in reloc tree with corresponding
1656 * fs tree.
1657 */
merge_reloc_root(struct reloc_control * rc,struct btrfs_root * root)1658 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1659 struct btrfs_root *root)
1660 {
1661 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1662 struct btrfs_key key;
1663 struct btrfs_key next_key;
1664 struct btrfs_trans_handle *trans = NULL;
1665 struct btrfs_root *reloc_root;
1666 struct btrfs_root_item *root_item;
1667 struct btrfs_path *path;
1668 struct extent_buffer *leaf;
1669 int reserve_level;
1670 int level;
1671 int max_level;
1672 int replaced = 0;
1673 int ret;
1674 int err = 0;
1675 u32 min_reserved;
1676
1677 path = btrfs_alloc_path();
1678 if (!path)
1679 return -ENOMEM;
1680 path->reada = READA_FORWARD;
1681
1682 reloc_root = root->reloc_root;
1683 root_item = &reloc_root->root_item;
1684
1685 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1686 level = btrfs_root_level(root_item);
1687 atomic_inc(&reloc_root->node->refs);
1688 path->nodes[level] = reloc_root->node;
1689 path->slots[level] = 0;
1690 } else {
1691 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1692
1693 level = root_item->drop_level;
1694 BUG_ON(level == 0);
1695 path->lowest_level = level;
1696 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1697 path->lowest_level = 0;
1698 if (ret < 0) {
1699 btrfs_free_path(path);
1700 return ret;
1701 }
1702
1703 btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1704 path->slots[level]);
1705 WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1706
1707 btrfs_unlock_up_safe(path, 0);
1708 }
1709
1710 /*
1711 * In merge_reloc_root(), we modify the upper level pointer to swap the
1712 * tree blocks between reloc tree and subvolume tree. Thus for tree
1713 * block COW, we COW at most from level 1 to root level for each tree.
1714 *
1715 * Thus the needed metadata size is at most root_level * nodesize,
1716 * and * 2 since we have two trees to COW.
1717 */
1718 reserve_level = max_t(int, 1, btrfs_root_level(root_item));
1719 min_reserved = fs_info->nodesize * reserve_level * 2;
1720 memset(&next_key, 0, sizeof(next_key));
1721
1722 while (1) {
1723 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
1724 BTRFS_RESERVE_FLUSH_LIMIT);
1725 if (ret) {
1726 err = ret;
1727 goto out;
1728 }
1729 trans = btrfs_start_transaction(root, 0);
1730 if (IS_ERR(trans)) {
1731 err = PTR_ERR(trans);
1732 trans = NULL;
1733 goto out;
1734 }
1735
1736 /*
1737 * At this point we no longer have a reloc_control, so we can't
1738 * depend on btrfs_init_reloc_root to update our last_trans.
1739 *
1740 * But that's ok, we started the trans handle on our
1741 * corresponding fs_root, which means it's been added to the
1742 * dirty list. At commit time we'll still call
1743 * btrfs_update_reloc_root() and update our root item
1744 * appropriately.
1745 */
1746 reloc_root->last_trans = trans->transid;
1747 trans->block_rsv = rc->block_rsv;
1748
1749 replaced = 0;
1750 max_level = level;
1751
1752 ret = walk_down_reloc_tree(reloc_root, path, &level);
1753 if (ret < 0) {
1754 err = ret;
1755 goto out;
1756 }
1757 if (ret > 0)
1758 break;
1759
1760 if (!find_next_key(path, level, &key) &&
1761 btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1762 ret = 0;
1763 } else {
1764 ret = replace_path(trans, rc, root, reloc_root, path,
1765 &next_key, level, max_level);
1766 }
1767 if (ret < 0) {
1768 err = ret;
1769 goto out;
1770 }
1771
1772 if (ret > 0) {
1773 level = ret;
1774 btrfs_node_key_to_cpu(path->nodes[level], &key,
1775 path->slots[level]);
1776 replaced = 1;
1777 }
1778
1779 ret = walk_up_reloc_tree(reloc_root, path, &level);
1780 if (ret > 0)
1781 break;
1782
1783 BUG_ON(level == 0);
1784 /*
1785 * save the merging progress in the drop_progress.
1786 * this is OK since root refs == 1 in this case.
1787 */
1788 btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1789 path->slots[level]);
1790 root_item->drop_level = level;
1791
1792 btrfs_end_transaction_throttle(trans);
1793 trans = NULL;
1794
1795 btrfs_btree_balance_dirty(fs_info);
1796
1797 if (replaced && rc->stage == UPDATE_DATA_PTRS)
1798 invalidate_extent_cache(root, &key, &next_key);
1799 }
1800
1801 /*
1802 * handle the case only one block in the fs tree need to be
1803 * relocated and the block is tree root.
1804 */
1805 leaf = btrfs_lock_root_node(root);
1806 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
1807 BTRFS_NESTING_COW);
1808 btrfs_tree_unlock(leaf);
1809 free_extent_buffer(leaf);
1810 if (ret < 0)
1811 err = ret;
1812 out:
1813 btrfs_free_path(path);
1814
1815 if (err == 0)
1816 insert_dirty_subvol(trans, rc, root);
1817
1818 if (trans)
1819 btrfs_end_transaction_throttle(trans);
1820
1821 btrfs_btree_balance_dirty(fs_info);
1822
1823 if (replaced && rc->stage == UPDATE_DATA_PTRS)
1824 invalidate_extent_cache(root, &key, &next_key);
1825
1826 return err;
1827 }
1828
1829 static noinline_for_stack
prepare_to_merge(struct reloc_control * rc,int err)1830 int prepare_to_merge(struct reloc_control *rc, int err)
1831 {
1832 struct btrfs_root *root = rc->extent_root;
1833 struct btrfs_fs_info *fs_info = root->fs_info;
1834 struct btrfs_root *reloc_root;
1835 struct btrfs_trans_handle *trans;
1836 LIST_HEAD(reloc_roots);
1837 u64 num_bytes = 0;
1838 int ret;
1839
1840 mutex_lock(&fs_info->reloc_mutex);
1841 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1842 rc->merging_rsv_size += rc->nodes_relocated * 2;
1843 mutex_unlock(&fs_info->reloc_mutex);
1844
1845 again:
1846 if (!err) {
1847 num_bytes = rc->merging_rsv_size;
1848 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
1849 BTRFS_RESERVE_FLUSH_ALL);
1850 if (ret)
1851 err = ret;
1852 }
1853
1854 trans = btrfs_join_transaction(rc->extent_root);
1855 if (IS_ERR(trans)) {
1856 if (!err)
1857 btrfs_block_rsv_release(fs_info, rc->block_rsv,
1858 num_bytes, NULL);
1859 return PTR_ERR(trans);
1860 }
1861
1862 if (!err) {
1863 if (num_bytes != rc->merging_rsv_size) {
1864 btrfs_end_transaction(trans);
1865 btrfs_block_rsv_release(fs_info, rc->block_rsv,
1866 num_bytes, NULL);
1867 goto again;
1868 }
1869 }
1870
1871 rc->merge_reloc_tree = 1;
1872
1873 while (!list_empty(&rc->reloc_roots)) {
1874 reloc_root = list_entry(rc->reloc_roots.next,
1875 struct btrfs_root, root_list);
1876 list_del_init(&reloc_root->root_list);
1877
1878 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1879 false);
1880 BUG_ON(IS_ERR(root));
1881 BUG_ON(root->reloc_root != reloc_root);
1882
1883 /*
1884 * set reference count to 1, so btrfs_recover_relocation
1885 * knows it should resumes merging
1886 */
1887 if (!err)
1888 btrfs_set_root_refs(&reloc_root->root_item, 1);
1889 btrfs_update_reloc_root(trans, root);
1890
1891 list_add(&reloc_root->root_list, &reloc_roots);
1892 btrfs_put_root(root);
1893 }
1894
1895 list_splice(&reloc_roots, &rc->reloc_roots);
1896
1897 if (!err)
1898 btrfs_commit_transaction(trans);
1899 else
1900 btrfs_end_transaction(trans);
1901 return err;
1902 }
1903
1904 static noinline_for_stack
free_reloc_roots(struct list_head * list)1905 void free_reloc_roots(struct list_head *list)
1906 {
1907 struct btrfs_root *reloc_root, *tmp;
1908
1909 list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1910 __del_reloc_root(reloc_root);
1911 }
1912
1913 static noinline_for_stack
merge_reloc_roots(struct reloc_control * rc)1914 void merge_reloc_roots(struct reloc_control *rc)
1915 {
1916 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1917 struct btrfs_root *root;
1918 struct btrfs_root *reloc_root;
1919 LIST_HEAD(reloc_roots);
1920 int found = 0;
1921 int ret = 0;
1922 again:
1923 root = rc->extent_root;
1924
1925 /*
1926 * this serializes us with btrfs_record_root_in_transaction,
1927 * we have to make sure nobody is in the middle of
1928 * adding their roots to the list while we are
1929 * doing this splice
1930 */
1931 mutex_lock(&fs_info->reloc_mutex);
1932 list_splice_init(&rc->reloc_roots, &reloc_roots);
1933 mutex_unlock(&fs_info->reloc_mutex);
1934
1935 while (!list_empty(&reloc_roots)) {
1936 found = 1;
1937 reloc_root = list_entry(reloc_roots.next,
1938 struct btrfs_root, root_list);
1939
1940 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1941 false);
1942 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
1943 BUG_ON(IS_ERR(root));
1944 BUG_ON(root->reloc_root != reloc_root);
1945 ret = merge_reloc_root(rc, root);
1946 btrfs_put_root(root);
1947 if (ret) {
1948 if (list_empty(&reloc_root->root_list))
1949 list_add_tail(&reloc_root->root_list,
1950 &reloc_roots);
1951 goto out;
1952 }
1953 } else {
1954 if (!IS_ERR(root)) {
1955 if (root->reloc_root == reloc_root) {
1956 root->reloc_root = NULL;
1957 btrfs_put_root(reloc_root);
1958 }
1959 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
1960 &root->state);
1961 btrfs_put_root(root);
1962 }
1963
1964 list_del_init(&reloc_root->root_list);
1965 /* Don't forget to queue this reloc root for cleanup */
1966 list_add_tail(&reloc_root->reloc_dirty_list,
1967 &rc->dirty_subvol_roots);
1968 }
1969 }
1970
1971 if (found) {
1972 found = 0;
1973 goto again;
1974 }
1975 out:
1976 if (ret) {
1977 btrfs_handle_fs_error(fs_info, ret, NULL);
1978 free_reloc_roots(&reloc_roots);
1979
1980 /* new reloc root may be added */
1981 mutex_lock(&fs_info->reloc_mutex);
1982 list_splice_init(&rc->reloc_roots, &reloc_roots);
1983 mutex_unlock(&fs_info->reloc_mutex);
1984 free_reloc_roots(&reloc_roots);
1985 }
1986
1987 /*
1988 * We used to have
1989 *
1990 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
1991 *
1992 * here, but it's wrong. If we fail to start the transaction in
1993 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
1994 * have actually been removed from the reloc_root_tree rb tree. This is
1995 * fine because we're bailing here, and we hold a reference on the root
1996 * for the list that holds it, so these roots will be cleaned up when we
1997 * do the reloc_dirty_list afterwards. Meanwhile the root->reloc_root
1998 * will be cleaned up on unmount.
1999 *
2000 * The remaining nodes will be cleaned up by free_reloc_control.
2001 */
2002 }
2003
free_block_list(struct rb_root * blocks)2004 static void free_block_list(struct rb_root *blocks)
2005 {
2006 struct tree_block *block;
2007 struct rb_node *rb_node;
2008 while ((rb_node = rb_first(blocks))) {
2009 block = rb_entry(rb_node, struct tree_block, rb_node);
2010 rb_erase(rb_node, blocks);
2011 kfree(block);
2012 }
2013 }
2014
record_reloc_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * reloc_root)2015 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2016 struct btrfs_root *reloc_root)
2017 {
2018 struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2019 struct btrfs_root *root;
2020 int ret;
2021
2022 if (reloc_root->last_trans == trans->transid)
2023 return 0;
2024
2025 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
2026 BUG_ON(IS_ERR(root));
2027 BUG_ON(root->reloc_root != reloc_root);
2028 ret = btrfs_record_root_in_trans(trans, root);
2029 btrfs_put_root(root);
2030
2031 return ret;
2032 }
2033
2034 static noinline_for_stack
select_reloc_root(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node,struct btrfs_backref_edge * edges[])2035 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2036 struct reloc_control *rc,
2037 struct btrfs_backref_node *node,
2038 struct btrfs_backref_edge *edges[])
2039 {
2040 struct btrfs_backref_node *next;
2041 struct btrfs_root *root;
2042 int index = 0;
2043
2044 next = node;
2045 while (1) {
2046 cond_resched();
2047 next = walk_up_backref(next, edges, &index);
2048 root = next->root;
2049 BUG_ON(!root);
2050 BUG_ON(!test_bit(BTRFS_ROOT_SHAREABLE, &root->state));
2051
2052 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2053 record_reloc_root_in_trans(trans, root);
2054 break;
2055 }
2056
2057 btrfs_record_root_in_trans(trans, root);
2058 root = root->reloc_root;
2059
2060 if (next->new_bytenr != root->node->start) {
2061 BUG_ON(next->new_bytenr);
2062 BUG_ON(!list_empty(&next->list));
2063 next->new_bytenr = root->node->start;
2064 btrfs_put_root(next->root);
2065 next->root = btrfs_grab_root(root);
2066 ASSERT(next->root);
2067 list_add_tail(&next->list,
2068 &rc->backref_cache.changed);
2069 mark_block_processed(rc, next);
2070 break;
2071 }
2072
2073 WARN_ON(1);
2074 root = NULL;
2075 next = walk_down_backref(edges, &index);
2076 if (!next || next->level <= node->level)
2077 break;
2078 }
2079 if (!root)
2080 return NULL;
2081
2082 next = node;
2083 /* setup backref node path for btrfs_reloc_cow_block */
2084 while (1) {
2085 rc->backref_cache.path[next->level] = next;
2086 if (--index < 0)
2087 break;
2088 next = edges[index]->node[UPPER];
2089 }
2090 return root;
2091 }
2092
2093 /*
2094 * Select a tree root for relocation.
2095 *
2096 * Return NULL if the block is not shareable. We should use do_relocation() in
2097 * this case.
2098 *
2099 * Return a tree root pointer if the block is shareable.
2100 * Return -ENOENT if the block is root of reloc tree.
2101 */
2102 static noinline_for_stack
select_one_root(struct btrfs_backref_node * node)2103 struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2104 {
2105 struct btrfs_backref_node *next;
2106 struct btrfs_root *root;
2107 struct btrfs_root *fs_root = NULL;
2108 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2109 int index = 0;
2110
2111 next = node;
2112 while (1) {
2113 cond_resched();
2114 next = walk_up_backref(next, edges, &index);
2115 root = next->root;
2116 BUG_ON(!root);
2117
2118 /* No other choice for non-shareable tree */
2119 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2120 return root;
2121
2122 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2123 fs_root = root;
2124
2125 if (next != node)
2126 return NULL;
2127
2128 next = walk_down_backref(edges, &index);
2129 if (!next || next->level <= node->level)
2130 break;
2131 }
2132
2133 if (!fs_root)
2134 return ERR_PTR(-ENOENT);
2135 return fs_root;
2136 }
2137
2138 static noinline_for_stack
calcu_metadata_size(struct reloc_control * rc,struct btrfs_backref_node * node,int reserve)2139 u64 calcu_metadata_size(struct reloc_control *rc,
2140 struct btrfs_backref_node *node, int reserve)
2141 {
2142 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2143 struct btrfs_backref_node *next = node;
2144 struct btrfs_backref_edge *edge;
2145 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2146 u64 num_bytes = 0;
2147 int index = 0;
2148
2149 BUG_ON(reserve && node->processed);
2150
2151 while (next) {
2152 cond_resched();
2153 while (1) {
2154 if (next->processed && (reserve || next != node))
2155 break;
2156
2157 num_bytes += fs_info->nodesize;
2158
2159 if (list_empty(&next->upper))
2160 break;
2161
2162 edge = list_entry(next->upper.next,
2163 struct btrfs_backref_edge, list[LOWER]);
2164 edges[index++] = edge;
2165 next = edge->node[UPPER];
2166 }
2167 next = walk_down_backref(edges, &index);
2168 }
2169 return num_bytes;
2170 }
2171
reserve_metadata_space(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node)2172 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2173 struct reloc_control *rc,
2174 struct btrfs_backref_node *node)
2175 {
2176 struct btrfs_root *root = rc->extent_root;
2177 struct btrfs_fs_info *fs_info = root->fs_info;
2178 u64 num_bytes;
2179 int ret;
2180 u64 tmp;
2181
2182 num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2183
2184 trans->block_rsv = rc->block_rsv;
2185 rc->reserved_bytes += num_bytes;
2186
2187 /*
2188 * We are under a transaction here so we can only do limited flushing.
2189 * If we get an enospc just kick back -EAGAIN so we know to drop the
2190 * transaction and try to refill when we can flush all the things.
2191 */
2192 ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2193 BTRFS_RESERVE_FLUSH_LIMIT);
2194 if (ret) {
2195 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2196 while (tmp <= rc->reserved_bytes)
2197 tmp <<= 1;
2198 /*
2199 * only one thread can access block_rsv at this point,
2200 * so we don't need hold lock to protect block_rsv.
2201 * we expand more reservation size here to allow enough
2202 * space for relocation and we will return earlier in
2203 * enospc case.
2204 */
2205 rc->block_rsv->size = tmp + fs_info->nodesize *
2206 RELOCATION_RESERVED_NODES;
2207 return -EAGAIN;
2208 }
2209
2210 return 0;
2211 }
2212
2213 /*
2214 * relocate a block tree, and then update pointers in upper level
2215 * blocks that reference the block to point to the new location.
2216 *
2217 * if called by link_to_upper, the block has already been relocated.
2218 * in that case this function just updates pointers.
2219 */
do_relocation(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node,struct btrfs_key * key,struct btrfs_path * path,int lowest)2220 static int do_relocation(struct btrfs_trans_handle *trans,
2221 struct reloc_control *rc,
2222 struct btrfs_backref_node *node,
2223 struct btrfs_key *key,
2224 struct btrfs_path *path, int lowest)
2225 {
2226 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2227 struct btrfs_backref_node *upper;
2228 struct btrfs_backref_edge *edge;
2229 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2230 struct btrfs_root *root;
2231 struct extent_buffer *eb;
2232 u32 blocksize;
2233 u64 bytenr;
2234 u64 generation;
2235 int slot;
2236 int ret;
2237 int err = 0;
2238
2239 BUG_ON(lowest && node->eb);
2240
2241 path->lowest_level = node->level + 1;
2242 rc->backref_cache.path[node->level] = node;
2243 list_for_each_entry(edge, &node->upper, list[LOWER]) {
2244 struct btrfs_key first_key;
2245 struct btrfs_ref ref = { 0 };
2246
2247 cond_resched();
2248
2249 upper = edge->node[UPPER];
2250 root = select_reloc_root(trans, rc, upper, edges);
2251 BUG_ON(!root);
2252
2253 if (upper->eb && !upper->locked) {
2254 if (!lowest) {
2255 ret = btrfs_bin_search(upper->eb, key, &slot);
2256 if (ret < 0) {
2257 err = ret;
2258 goto next;
2259 }
2260 BUG_ON(ret);
2261 bytenr = btrfs_node_blockptr(upper->eb, slot);
2262 if (node->eb->start == bytenr)
2263 goto next;
2264 }
2265 btrfs_backref_drop_node_buffer(upper);
2266 }
2267
2268 if (!upper->eb) {
2269 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2270 if (ret) {
2271 if (ret < 0)
2272 err = ret;
2273 else
2274 err = -ENOENT;
2275
2276 btrfs_release_path(path);
2277 break;
2278 }
2279
2280 if (!upper->eb) {
2281 upper->eb = path->nodes[upper->level];
2282 path->nodes[upper->level] = NULL;
2283 } else {
2284 BUG_ON(upper->eb != path->nodes[upper->level]);
2285 }
2286
2287 upper->locked = 1;
2288 path->locks[upper->level] = 0;
2289
2290 slot = path->slots[upper->level];
2291 btrfs_release_path(path);
2292 } else {
2293 ret = btrfs_bin_search(upper->eb, key, &slot);
2294 if (ret < 0) {
2295 err = ret;
2296 goto next;
2297 }
2298 BUG_ON(ret);
2299 }
2300
2301 bytenr = btrfs_node_blockptr(upper->eb, slot);
2302 if (lowest) {
2303 if (bytenr != node->bytenr) {
2304 btrfs_err(root->fs_info,
2305 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2306 bytenr, node->bytenr, slot,
2307 upper->eb->start);
2308 err = -EIO;
2309 goto next;
2310 }
2311 } else {
2312 if (node->eb->start == bytenr)
2313 goto next;
2314 }
2315
2316 blocksize = root->fs_info->nodesize;
2317 generation = btrfs_node_ptr_generation(upper->eb, slot);
2318 btrfs_node_key_to_cpu(upper->eb, &first_key, slot);
2319 eb = read_tree_block(fs_info, bytenr, generation,
2320 upper->level - 1, &first_key);
2321 if (IS_ERR(eb)) {
2322 err = PTR_ERR(eb);
2323 goto next;
2324 } else if (!extent_buffer_uptodate(eb)) {
2325 free_extent_buffer(eb);
2326 err = -EIO;
2327 goto next;
2328 }
2329 btrfs_tree_lock(eb);
2330 btrfs_set_lock_blocking_write(eb);
2331
2332 if (!node->eb) {
2333 ret = btrfs_cow_block(trans, root, eb, upper->eb,
2334 slot, &eb, BTRFS_NESTING_COW);
2335 btrfs_tree_unlock(eb);
2336 free_extent_buffer(eb);
2337 if (ret < 0) {
2338 err = ret;
2339 goto next;
2340 }
2341 BUG_ON(node->eb != eb);
2342 } else {
2343 btrfs_set_node_blockptr(upper->eb, slot,
2344 node->eb->start);
2345 btrfs_set_node_ptr_generation(upper->eb, slot,
2346 trans->transid);
2347 btrfs_mark_buffer_dirty(upper->eb);
2348
2349 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2350 node->eb->start, blocksize,
2351 upper->eb->start);
2352 ref.real_root = root->root_key.objectid;
2353 btrfs_init_tree_ref(&ref, node->level,
2354 btrfs_header_owner(upper->eb));
2355 ret = btrfs_inc_extent_ref(trans, &ref);
2356 BUG_ON(ret);
2357
2358 ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2359 BUG_ON(ret);
2360 }
2361 next:
2362 if (!upper->pending)
2363 btrfs_backref_drop_node_buffer(upper);
2364 else
2365 btrfs_backref_unlock_node_buffer(upper);
2366 if (err)
2367 break;
2368 }
2369
2370 if (!err && node->pending) {
2371 btrfs_backref_drop_node_buffer(node);
2372 list_move_tail(&node->list, &rc->backref_cache.changed);
2373 node->pending = 0;
2374 }
2375
2376 path->lowest_level = 0;
2377 BUG_ON(err == -ENOSPC);
2378 return err;
2379 }
2380
link_to_upper(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node,struct btrfs_path * path)2381 static int link_to_upper(struct btrfs_trans_handle *trans,
2382 struct reloc_control *rc,
2383 struct btrfs_backref_node *node,
2384 struct btrfs_path *path)
2385 {
2386 struct btrfs_key key;
2387
2388 btrfs_node_key_to_cpu(node->eb, &key, 0);
2389 return do_relocation(trans, rc, node, &key, path, 0);
2390 }
2391
finish_pending_nodes(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_path * path,int err)2392 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2393 struct reloc_control *rc,
2394 struct btrfs_path *path, int err)
2395 {
2396 LIST_HEAD(list);
2397 struct btrfs_backref_cache *cache = &rc->backref_cache;
2398 struct btrfs_backref_node *node;
2399 int level;
2400 int ret;
2401
2402 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2403 while (!list_empty(&cache->pending[level])) {
2404 node = list_entry(cache->pending[level].next,
2405 struct btrfs_backref_node, list);
2406 list_move_tail(&node->list, &list);
2407 BUG_ON(!node->pending);
2408
2409 if (!err) {
2410 ret = link_to_upper(trans, rc, node, path);
2411 if (ret < 0)
2412 err = ret;
2413 }
2414 }
2415 list_splice_init(&list, &cache->pending[level]);
2416 }
2417 return err;
2418 }
2419
2420 /*
2421 * mark a block and all blocks directly/indirectly reference the block
2422 * as processed.
2423 */
update_processed_blocks(struct reloc_control * rc,struct btrfs_backref_node * node)2424 static void update_processed_blocks(struct reloc_control *rc,
2425 struct btrfs_backref_node *node)
2426 {
2427 struct btrfs_backref_node *next = node;
2428 struct btrfs_backref_edge *edge;
2429 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2430 int index = 0;
2431
2432 while (next) {
2433 cond_resched();
2434 while (1) {
2435 if (next->processed)
2436 break;
2437
2438 mark_block_processed(rc, next);
2439
2440 if (list_empty(&next->upper))
2441 break;
2442
2443 edge = list_entry(next->upper.next,
2444 struct btrfs_backref_edge, list[LOWER]);
2445 edges[index++] = edge;
2446 next = edge->node[UPPER];
2447 }
2448 next = walk_down_backref(edges, &index);
2449 }
2450 }
2451
tree_block_processed(u64 bytenr,struct reloc_control * rc)2452 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2453 {
2454 u32 blocksize = rc->extent_root->fs_info->nodesize;
2455
2456 if (test_range_bit(&rc->processed_blocks, bytenr,
2457 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2458 return 1;
2459 return 0;
2460 }
2461
get_tree_block_key(struct btrfs_fs_info * fs_info,struct tree_block * block)2462 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2463 struct tree_block *block)
2464 {
2465 struct extent_buffer *eb;
2466
2467 eb = read_tree_block(fs_info, block->bytenr, block->key.offset,
2468 block->level, NULL);
2469 if (IS_ERR(eb)) {
2470 return PTR_ERR(eb);
2471 } else if (!extent_buffer_uptodate(eb)) {
2472 free_extent_buffer(eb);
2473 return -EIO;
2474 }
2475 if (block->level == 0)
2476 btrfs_item_key_to_cpu(eb, &block->key, 0);
2477 else
2478 btrfs_node_key_to_cpu(eb, &block->key, 0);
2479 free_extent_buffer(eb);
2480 block->key_ready = 1;
2481 return 0;
2482 }
2483
2484 /*
2485 * helper function to relocate a tree block
2486 */
relocate_tree_block(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node,struct btrfs_key * key,struct btrfs_path * path)2487 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2488 struct reloc_control *rc,
2489 struct btrfs_backref_node *node,
2490 struct btrfs_key *key,
2491 struct btrfs_path *path)
2492 {
2493 struct btrfs_root *root;
2494 int ret = 0;
2495
2496 if (!node)
2497 return 0;
2498
2499 /*
2500 * If we fail here we want to drop our backref_node because we are going
2501 * to start over and regenerate the tree for it.
2502 */
2503 ret = reserve_metadata_space(trans, rc, node);
2504 if (ret)
2505 goto out;
2506
2507 BUG_ON(node->processed);
2508 root = select_one_root(node);
2509 if (root == ERR_PTR(-ENOENT)) {
2510 update_processed_blocks(rc, node);
2511 goto out;
2512 }
2513
2514 if (root) {
2515 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2516 BUG_ON(node->new_bytenr);
2517 BUG_ON(!list_empty(&node->list));
2518 btrfs_record_root_in_trans(trans, root);
2519 root = root->reloc_root;
2520 node->new_bytenr = root->node->start;
2521 btrfs_put_root(node->root);
2522 node->root = btrfs_grab_root(root);
2523 ASSERT(node->root);
2524 list_add_tail(&node->list, &rc->backref_cache.changed);
2525 } else {
2526 path->lowest_level = node->level;
2527 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2528 btrfs_release_path(path);
2529 if (ret > 0)
2530 ret = 0;
2531 }
2532 if (!ret)
2533 update_processed_blocks(rc, node);
2534 } else {
2535 ret = do_relocation(trans, rc, node, key, path, 1);
2536 }
2537 out:
2538 if (ret || node->level == 0 || node->cowonly)
2539 btrfs_backref_cleanup_node(&rc->backref_cache, node);
2540 return ret;
2541 }
2542
2543 /*
2544 * relocate a list of blocks
2545 */
2546 static noinline_for_stack
relocate_tree_blocks(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct rb_root * blocks)2547 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2548 struct reloc_control *rc, struct rb_root *blocks)
2549 {
2550 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2551 struct btrfs_backref_node *node;
2552 struct btrfs_path *path;
2553 struct tree_block *block;
2554 struct tree_block *next;
2555 int ret;
2556 int err = 0;
2557
2558 path = btrfs_alloc_path();
2559 if (!path) {
2560 err = -ENOMEM;
2561 goto out_free_blocks;
2562 }
2563
2564 /* Kick in readahead for tree blocks with missing keys */
2565 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2566 if (!block->key_ready)
2567 readahead_tree_block(fs_info, block->bytenr);
2568 }
2569
2570 /* Get first keys */
2571 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2572 if (!block->key_ready) {
2573 err = get_tree_block_key(fs_info, block);
2574 if (err)
2575 goto out_free_path;
2576 }
2577 }
2578
2579 /* Do tree relocation */
2580 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2581 node = build_backref_tree(rc, &block->key,
2582 block->level, block->bytenr);
2583 if (IS_ERR(node)) {
2584 err = PTR_ERR(node);
2585 goto out;
2586 }
2587
2588 ret = relocate_tree_block(trans, rc, node, &block->key,
2589 path);
2590 if (ret < 0) {
2591 err = ret;
2592 break;
2593 }
2594 }
2595 out:
2596 err = finish_pending_nodes(trans, rc, path, err);
2597
2598 out_free_path:
2599 btrfs_free_path(path);
2600 out_free_blocks:
2601 free_block_list(blocks);
2602 return err;
2603 }
2604
prealloc_file_extent_cluster(struct btrfs_inode * inode,struct file_extent_cluster * cluster)2605 static noinline_for_stack int prealloc_file_extent_cluster(
2606 struct btrfs_inode *inode,
2607 struct file_extent_cluster *cluster)
2608 {
2609 u64 alloc_hint = 0;
2610 u64 start;
2611 u64 end;
2612 u64 offset = inode->index_cnt;
2613 u64 num_bytes;
2614 int nr;
2615 int ret = 0;
2616 u64 prealloc_start = cluster->start - offset;
2617 u64 prealloc_end = cluster->end - offset;
2618 u64 cur_offset = prealloc_start;
2619
2620 BUG_ON(cluster->start != cluster->boundary[0]);
2621 ret = btrfs_alloc_data_chunk_ondemand(inode,
2622 prealloc_end + 1 - prealloc_start);
2623 if (ret)
2624 return ret;
2625
2626 inode_lock(&inode->vfs_inode);
2627 for (nr = 0; nr < cluster->nr; nr++) {
2628 start = cluster->boundary[nr] - offset;
2629 if (nr + 1 < cluster->nr)
2630 end = cluster->boundary[nr + 1] - 1 - offset;
2631 else
2632 end = cluster->end - offset;
2633
2634 lock_extent(&inode->io_tree, start, end);
2635 num_bytes = end + 1 - start;
2636 ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2637 num_bytes, num_bytes,
2638 end + 1, &alloc_hint);
2639 cur_offset = end + 1;
2640 unlock_extent(&inode->io_tree, start, end);
2641 if (ret)
2642 break;
2643 }
2644 inode_unlock(&inode->vfs_inode);
2645
2646 if (cur_offset < prealloc_end)
2647 btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
2648 prealloc_end + 1 - cur_offset);
2649 return ret;
2650 }
2651
2652 static noinline_for_stack
setup_extent_mapping(struct inode * inode,u64 start,u64 end,u64 block_start)2653 int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
2654 u64 block_start)
2655 {
2656 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2657 struct extent_map *em;
2658 int ret = 0;
2659
2660 em = alloc_extent_map();
2661 if (!em)
2662 return -ENOMEM;
2663
2664 em->start = start;
2665 em->len = end + 1 - start;
2666 em->block_len = em->len;
2667 em->block_start = block_start;
2668 set_bit(EXTENT_FLAG_PINNED, &em->flags);
2669
2670 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2671 while (1) {
2672 write_lock(&em_tree->lock);
2673 ret = add_extent_mapping(em_tree, em, 0);
2674 write_unlock(&em_tree->lock);
2675 if (ret != -EEXIST) {
2676 free_extent_map(em);
2677 break;
2678 }
2679 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
2680 }
2681 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2682 return ret;
2683 }
2684
2685 /*
2686 * Allow error injection to test balance cancellation
2687 */
btrfs_should_cancel_balance(struct btrfs_fs_info * fs_info)2688 int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info)
2689 {
2690 return atomic_read(&fs_info->balance_cancel_req) ||
2691 fatal_signal_pending(current);
2692 }
2693 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2694
relocate_file_extent_cluster(struct inode * inode,struct file_extent_cluster * cluster)2695 static int relocate_file_extent_cluster(struct inode *inode,
2696 struct file_extent_cluster *cluster)
2697 {
2698 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2699 u64 page_start;
2700 u64 page_end;
2701 u64 offset = BTRFS_I(inode)->index_cnt;
2702 unsigned long index;
2703 unsigned long last_index;
2704 struct page *page;
2705 struct file_ra_state *ra;
2706 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2707 int nr = 0;
2708 int ret = 0;
2709
2710 if (!cluster->nr)
2711 return 0;
2712
2713 ra = kzalloc(sizeof(*ra), GFP_NOFS);
2714 if (!ra)
2715 return -ENOMEM;
2716
2717 ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster);
2718 if (ret)
2719 goto out;
2720
2721 file_ra_state_init(ra, inode->i_mapping);
2722
2723 ret = setup_extent_mapping(inode, cluster->start - offset,
2724 cluster->end - offset, cluster->start);
2725 if (ret)
2726 goto out;
2727
2728 index = (cluster->start - offset) >> PAGE_SHIFT;
2729 last_index = (cluster->end - offset) >> PAGE_SHIFT;
2730 while (index <= last_index) {
2731 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
2732 PAGE_SIZE);
2733 if (ret)
2734 goto out;
2735
2736 page = find_lock_page(inode->i_mapping, index);
2737 if (!page) {
2738 page_cache_sync_readahead(inode->i_mapping,
2739 ra, NULL, index,
2740 last_index + 1 - index);
2741 page = find_or_create_page(inode->i_mapping, index,
2742 mask);
2743 if (!page) {
2744 btrfs_delalloc_release_metadata(BTRFS_I(inode),
2745 PAGE_SIZE, true);
2746 btrfs_delalloc_release_extents(BTRFS_I(inode),
2747 PAGE_SIZE);
2748 ret = -ENOMEM;
2749 goto out;
2750 }
2751 }
2752
2753 if (PageReadahead(page)) {
2754 page_cache_async_readahead(inode->i_mapping,
2755 ra, NULL, page, index,
2756 last_index + 1 - index);
2757 }
2758
2759 if (!PageUptodate(page)) {
2760 btrfs_readpage(NULL, page);
2761 lock_page(page);
2762 if (!PageUptodate(page)) {
2763 unlock_page(page);
2764 put_page(page);
2765 btrfs_delalloc_release_metadata(BTRFS_I(inode),
2766 PAGE_SIZE, true);
2767 btrfs_delalloc_release_extents(BTRFS_I(inode),
2768 PAGE_SIZE);
2769 ret = -EIO;
2770 goto out;
2771 }
2772 }
2773
2774 page_start = page_offset(page);
2775 page_end = page_start + PAGE_SIZE - 1;
2776
2777 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
2778
2779 set_page_extent_mapped(page);
2780
2781 if (nr < cluster->nr &&
2782 page_start + offset == cluster->boundary[nr]) {
2783 set_extent_bits(&BTRFS_I(inode)->io_tree,
2784 page_start, page_end,
2785 EXTENT_BOUNDARY);
2786 nr++;
2787 }
2788
2789 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start,
2790 page_end, 0, NULL);
2791 if (ret) {
2792 unlock_page(page);
2793 put_page(page);
2794 btrfs_delalloc_release_metadata(BTRFS_I(inode),
2795 PAGE_SIZE, true);
2796 btrfs_delalloc_release_extents(BTRFS_I(inode),
2797 PAGE_SIZE);
2798
2799 clear_extent_bits(&BTRFS_I(inode)->io_tree,
2800 page_start, page_end,
2801 EXTENT_LOCKED | EXTENT_BOUNDARY);
2802 goto out;
2803
2804 }
2805 set_page_dirty(page);
2806
2807 unlock_extent(&BTRFS_I(inode)->io_tree,
2808 page_start, page_end);
2809 unlock_page(page);
2810 put_page(page);
2811
2812 index++;
2813 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
2814 balance_dirty_pages_ratelimited(inode->i_mapping);
2815 btrfs_throttle(fs_info);
2816 if (btrfs_should_cancel_balance(fs_info)) {
2817 ret = -ECANCELED;
2818 goto out;
2819 }
2820 }
2821 WARN_ON(nr != cluster->nr);
2822 out:
2823 kfree(ra);
2824 return ret;
2825 }
2826
2827 static noinline_for_stack
relocate_data_extent(struct inode * inode,struct btrfs_key * extent_key,struct file_extent_cluster * cluster)2828 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
2829 struct file_extent_cluster *cluster)
2830 {
2831 int ret;
2832
2833 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
2834 ret = relocate_file_extent_cluster(inode, cluster);
2835 if (ret)
2836 return ret;
2837 cluster->nr = 0;
2838 }
2839
2840 if (!cluster->nr)
2841 cluster->start = extent_key->objectid;
2842 else
2843 BUG_ON(cluster->nr >= MAX_EXTENTS);
2844 cluster->end = extent_key->objectid + extent_key->offset - 1;
2845 cluster->boundary[cluster->nr] = extent_key->objectid;
2846 cluster->nr++;
2847
2848 if (cluster->nr >= MAX_EXTENTS) {
2849 ret = relocate_file_extent_cluster(inode, cluster);
2850 if (ret)
2851 return ret;
2852 cluster->nr = 0;
2853 }
2854 return 0;
2855 }
2856
2857 /*
2858 * helper to add a tree block to the list.
2859 * the major work is getting the generation and level of the block
2860 */
add_tree_block(struct reloc_control * rc,struct btrfs_key * extent_key,struct btrfs_path * path,struct rb_root * blocks)2861 static int add_tree_block(struct reloc_control *rc,
2862 struct btrfs_key *extent_key,
2863 struct btrfs_path *path,
2864 struct rb_root *blocks)
2865 {
2866 struct extent_buffer *eb;
2867 struct btrfs_extent_item *ei;
2868 struct btrfs_tree_block_info *bi;
2869 struct tree_block *block;
2870 struct rb_node *rb_node;
2871 u32 item_size;
2872 int level = -1;
2873 u64 generation;
2874
2875 eb = path->nodes[0];
2876 item_size = btrfs_item_size_nr(eb, path->slots[0]);
2877
2878 if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
2879 item_size >= sizeof(*ei) + sizeof(*bi)) {
2880 ei = btrfs_item_ptr(eb, path->slots[0],
2881 struct btrfs_extent_item);
2882 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
2883 bi = (struct btrfs_tree_block_info *)(ei + 1);
2884 level = btrfs_tree_block_level(eb, bi);
2885 } else {
2886 level = (int)extent_key->offset;
2887 }
2888 generation = btrfs_extent_generation(eb, ei);
2889 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
2890 btrfs_print_v0_err(eb->fs_info);
2891 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
2892 return -EINVAL;
2893 } else {
2894 BUG();
2895 }
2896
2897 btrfs_release_path(path);
2898
2899 BUG_ON(level == -1);
2900
2901 block = kmalloc(sizeof(*block), GFP_NOFS);
2902 if (!block)
2903 return -ENOMEM;
2904
2905 block->bytenr = extent_key->objectid;
2906 block->key.objectid = rc->extent_root->fs_info->nodesize;
2907 block->key.offset = generation;
2908 block->level = level;
2909 block->key_ready = 0;
2910
2911 rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
2912 if (rb_node)
2913 btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
2914 -EEXIST);
2915
2916 return 0;
2917 }
2918
2919 /*
2920 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
2921 */
__add_tree_block(struct reloc_control * rc,u64 bytenr,u32 blocksize,struct rb_root * blocks)2922 static int __add_tree_block(struct reloc_control *rc,
2923 u64 bytenr, u32 blocksize,
2924 struct rb_root *blocks)
2925 {
2926 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2927 struct btrfs_path *path;
2928 struct btrfs_key key;
2929 int ret;
2930 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2931
2932 if (tree_block_processed(bytenr, rc))
2933 return 0;
2934
2935 if (rb_simple_search(blocks, bytenr))
2936 return 0;
2937
2938 path = btrfs_alloc_path();
2939 if (!path)
2940 return -ENOMEM;
2941 again:
2942 key.objectid = bytenr;
2943 if (skinny) {
2944 key.type = BTRFS_METADATA_ITEM_KEY;
2945 key.offset = (u64)-1;
2946 } else {
2947 key.type = BTRFS_EXTENT_ITEM_KEY;
2948 key.offset = blocksize;
2949 }
2950
2951 path->search_commit_root = 1;
2952 path->skip_locking = 1;
2953 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
2954 if (ret < 0)
2955 goto out;
2956
2957 if (ret > 0 && skinny) {
2958 if (path->slots[0]) {
2959 path->slots[0]--;
2960 btrfs_item_key_to_cpu(path->nodes[0], &key,
2961 path->slots[0]);
2962 if (key.objectid == bytenr &&
2963 (key.type == BTRFS_METADATA_ITEM_KEY ||
2964 (key.type == BTRFS_EXTENT_ITEM_KEY &&
2965 key.offset == blocksize)))
2966 ret = 0;
2967 }
2968
2969 if (ret) {
2970 skinny = false;
2971 btrfs_release_path(path);
2972 goto again;
2973 }
2974 }
2975 if (ret) {
2976 ASSERT(ret == 1);
2977 btrfs_print_leaf(path->nodes[0]);
2978 btrfs_err(fs_info,
2979 "tree block extent item (%llu) is not found in extent tree",
2980 bytenr);
2981 WARN_ON(1);
2982 ret = -EINVAL;
2983 goto out;
2984 }
2985
2986 ret = add_tree_block(rc, &key, path, blocks);
2987 out:
2988 btrfs_free_path(path);
2989 return ret;
2990 }
2991
delete_block_group_cache(struct btrfs_fs_info * fs_info,struct btrfs_block_group * block_group,struct inode * inode,u64 ino)2992 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
2993 struct btrfs_block_group *block_group,
2994 struct inode *inode,
2995 u64 ino)
2996 {
2997 struct btrfs_root *root = fs_info->tree_root;
2998 struct btrfs_trans_handle *trans;
2999 int ret = 0;
3000
3001 if (inode)
3002 goto truncate;
3003
3004 inode = btrfs_iget(fs_info->sb, ino, root);
3005 if (IS_ERR(inode))
3006 return -ENOENT;
3007
3008 truncate:
3009 ret = btrfs_check_trunc_cache_free_space(fs_info,
3010 &fs_info->global_block_rsv);
3011 if (ret)
3012 goto out;
3013
3014 trans = btrfs_join_transaction(root);
3015 if (IS_ERR(trans)) {
3016 ret = PTR_ERR(trans);
3017 goto out;
3018 }
3019
3020 ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3021
3022 btrfs_end_transaction(trans);
3023 btrfs_btree_balance_dirty(fs_info);
3024 out:
3025 iput(inode);
3026 return ret;
3027 }
3028
3029 /*
3030 * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3031 * cache inode, to avoid free space cache data extent blocking data relocation.
3032 */
delete_v1_space_cache(struct extent_buffer * leaf,struct btrfs_block_group * block_group,u64 data_bytenr)3033 static int delete_v1_space_cache(struct extent_buffer *leaf,
3034 struct btrfs_block_group *block_group,
3035 u64 data_bytenr)
3036 {
3037 u64 space_cache_ino;
3038 struct btrfs_file_extent_item *ei;
3039 struct btrfs_key key;
3040 bool found = false;
3041 int i;
3042 int ret;
3043
3044 if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3045 return 0;
3046
3047 for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3048 u8 type;
3049
3050 btrfs_item_key_to_cpu(leaf, &key, i);
3051 if (key.type != BTRFS_EXTENT_DATA_KEY)
3052 continue;
3053 ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3054 type = btrfs_file_extent_type(leaf, ei);
3055
3056 if ((type == BTRFS_FILE_EXTENT_REG ||
3057 type == BTRFS_FILE_EXTENT_PREALLOC) &&
3058 btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3059 found = true;
3060 space_cache_ino = key.objectid;
3061 break;
3062 }
3063 }
3064 if (!found)
3065 return -ENOENT;
3066 ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
3067 space_cache_ino);
3068 return ret;
3069 }
3070
3071 /*
3072 * helper to find all tree blocks that reference a given data extent
3073 */
3074 static noinline_for_stack
add_data_references(struct reloc_control * rc,struct btrfs_key * extent_key,struct btrfs_path * path,struct rb_root * blocks)3075 int add_data_references(struct reloc_control *rc,
3076 struct btrfs_key *extent_key,
3077 struct btrfs_path *path,
3078 struct rb_root *blocks)
3079 {
3080 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3081 struct ulist *leaves = NULL;
3082 struct ulist_iterator leaf_uiter;
3083 struct ulist_node *ref_node = NULL;
3084 const u32 blocksize = fs_info->nodesize;
3085 int ret = 0;
3086
3087 btrfs_release_path(path);
3088 ret = btrfs_find_all_leafs(NULL, fs_info, extent_key->objectid,
3089 0, &leaves, NULL, true);
3090 if (ret < 0)
3091 return ret;
3092
3093 ULIST_ITER_INIT(&leaf_uiter);
3094 while ((ref_node = ulist_next(leaves, &leaf_uiter))) {
3095 struct extent_buffer *eb;
3096
3097 eb = read_tree_block(fs_info, ref_node->val, 0, 0, NULL);
3098 if (IS_ERR(eb)) {
3099 ret = PTR_ERR(eb);
3100 break;
3101 }
3102 ret = delete_v1_space_cache(eb, rc->block_group,
3103 extent_key->objectid);
3104 free_extent_buffer(eb);
3105 if (ret < 0)
3106 break;
3107 ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3108 if (ret < 0)
3109 break;
3110 }
3111 if (ret < 0)
3112 free_block_list(blocks);
3113 ulist_free(leaves);
3114 return ret;
3115 }
3116
3117 /*
3118 * helper to find next unprocessed extent
3119 */
3120 static noinline_for_stack
find_next_extent(struct reloc_control * rc,struct btrfs_path * path,struct btrfs_key * extent_key)3121 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3122 struct btrfs_key *extent_key)
3123 {
3124 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3125 struct btrfs_key key;
3126 struct extent_buffer *leaf;
3127 u64 start, end, last;
3128 int ret;
3129
3130 last = rc->block_group->start + rc->block_group->length;
3131 while (1) {
3132 cond_resched();
3133 if (rc->search_start >= last) {
3134 ret = 1;
3135 break;
3136 }
3137
3138 key.objectid = rc->search_start;
3139 key.type = BTRFS_EXTENT_ITEM_KEY;
3140 key.offset = 0;
3141
3142 path->search_commit_root = 1;
3143 path->skip_locking = 1;
3144 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3145 0, 0);
3146 if (ret < 0)
3147 break;
3148 next:
3149 leaf = path->nodes[0];
3150 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3151 ret = btrfs_next_leaf(rc->extent_root, path);
3152 if (ret != 0)
3153 break;
3154 leaf = path->nodes[0];
3155 }
3156
3157 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3158 if (key.objectid >= last) {
3159 ret = 1;
3160 break;
3161 }
3162
3163 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3164 key.type != BTRFS_METADATA_ITEM_KEY) {
3165 path->slots[0]++;
3166 goto next;
3167 }
3168
3169 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3170 key.objectid + key.offset <= rc->search_start) {
3171 path->slots[0]++;
3172 goto next;
3173 }
3174
3175 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3176 key.objectid + fs_info->nodesize <=
3177 rc->search_start) {
3178 path->slots[0]++;
3179 goto next;
3180 }
3181
3182 ret = find_first_extent_bit(&rc->processed_blocks,
3183 key.objectid, &start, &end,
3184 EXTENT_DIRTY, NULL);
3185
3186 if (ret == 0 && start <= key.objectid) {
3187 btrfs_release_path(path);
3188 rc->search_start = end + 1;
3189 } else {
3190 if (key.type == BTRFS_EXTENT_ITEM_KEY)
3191 rc->search_start = key.objectid + key.offset;
3192 else
3193 rc->search_start = key.objectid +
3194 fs_info->nodesize;
3195 memcpy(extent_key, &key, sizeof(key));
3196 return 0;
3197 }
3198 }
3199 btrfs_release_path(path);
3200 return ret;
3201 }
3202
set_reloc_control(struct reloc_control * rc)3203 static void set_reloc_control(struct reloc_control *rc)
3204 {
3205 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3206
3207 mutex_lock(&fs_info->reloc_mutex);
3208 fs_info->reloc_ctl = rc;
3209 mutex_unlock(&fs_info->reloc_mutex);
3210 }
3211
unset_reloc_control(struct reloc_control * rc)3212 static void unset_reloc_control(struct reloc_control *rc)
3213 {
3214 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3215
3216 mutex_lock(&fs_info->reloc_mutex);
3217 fs_info->reloc_ctl = NULL;
3218 mutex_unlock(&fs_info->reloc_mutex);
3219 }
3220
check_extent_flags(u64 flags)3221 static int check_extent_flags(u64 flags)
3222 {
3223 if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3224 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3225 return 1;
3226 if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3227 !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3228 return 1;
3229 if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3230 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3231 return 1;
3232 return 0;
3233 }
3234
3235 static noinline_for_stack
prepare_to_relocate(struct reloc_control * rc)3236 int prepare_to_relocate(struct reloc_control *rc)
3237 {
3238 struct btrfs_trans_handle *trans;
3239 int ret;
3240
3241 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3242 BTRFS_BLOCK_RSV_TEMP);
3243 if (!rc->block_rsv)
3244 return -ENOMEM;
3245
3246 memset(&rc->cluster, 0, sizeof(rc->cluster));
3247 rc->search_start = rc->block_group->start;
3248 rc->extents_found = 0;
3249 rc->nodes_relocated = 0;
3250 rc->merging_rsv_size = 0;
3251 rc->reserved_bytes = 0;
3252 rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3253 RELOCATION_RESERVED_NODES;
3254 ret = btrfs_block_rsv_refill(rc->extent_root,
3255 rc->block_rsv, rc->block_rsv->size,
3256 BTRFS_RESERVE_FLUSH_ALL);
3257 if (ret)
3258 return ret;
3259
3260 rc->create_reloc_tree = 1;
3261 set_reloc_control(rc);
3262
3263 trans = btrfs_join_transaction(rc->extent_root);
3264 if (IS_ERR(trans)) {
3265 unset_reloc_control(rc);
3266 /*
3267 * extent tree is not a ref_cow tree and has no reloc_root to
3268 * cleanup. And callers are responsible to free the above
3269 * block rsv.
3270 */
3271 return PTR_ERR(trans);
3272 }
3273 btrfs_commit_transaction(trans);
3274 return 0;
3275 }
3276
relocate_block_group(struct reloc_control * rc)3277 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3278 {
3279 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3280 struct rb_root blocks = RB_ROOT;
3281 struct btrfs_key key;
3282 struct btrfs_trans_handle *trans = NULL;
3283 struct btrfs_path *path;
3284 struct btrfs_extent_item *ei;
3285 u64 flags;
3286 u32 item_size;
3287 int ret;
3288 int err = 0;
3289 int progress = 0;
3290
3291 path = btrfs_alloc_path();
3292 if (!path)
3293 return -ENOMEM;
3294 path->reada = READA_FORWARD;
3295
3296 ret = prepare_to_relocate(rc);
3297 if (ret) {
3298 err = ret;
3299 goto out_free;
3300 }
3301
3302 while (1) {
3303 rc->reserved_bytes = 0;
3304 ret = btrfs_block_rsv_refill(rc->extent_root,
3305 rc->block_rsv, rc->block_rsv->size,
3306 BTRFS_RESERVE_FLUSH_ALL);
3307 if (ret) {
3308 err = ret;
3309 break;
3310 }
3311 progress++;
3312 trans = btrfs_start_transaction(rc->extent_root, 0);
3313 if (IS_ERR(trans)) {
3314 err = PTR_ERR(trans);
3315 trans = NULL;
3316 break;
3317 }
3318 restart:
3319 if (update_backref_cache(trans, &rc->backref_cache)) {
3320 btrfs_end_transaction(trans);
3321 trans = NULL;
3322 continue;
3323 }
3324
3325 ret = find_next_extent(rc, path, &key);
3326 if (ret < 0)
3327 err = ret;
3328 if (ret != 0)
3329 break;
3330
3331 rc->extents_found++;
3332
3333 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3334 struct btrfs_extent_item);
3335 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
3336 if (item_size >= sizeof(*ei)) {
3337 flags = btrfs_extent_flags(path->nodes[0], ei);
3338 ret = check_extent_flags(flags);
3339 BUG_ON(ret);
3340 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3341 err = -EINVAL;
3342 btrfs_print_v0_err(trans->fs_info);
3343 btrfs_abort_transaction(trans, err);
3344 break;
3345 } else {
3346 BUG();
3347 }
3348
3349 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3350 ret = add_tree_block(rc, &key, path, &blocks);
3351 } else if (rc->stage == UPDATE_DATA_PTRS &&
3352 (flags & BTRFS_EXTENT_FLAG_DATA)) {
3353 ret = add_data_references(rc, &key, path, &blocks);
3354 } else {
3355 btrfs_release_path(path);
3356 ret = 0;
3357 }
3358 if (ret < 0) {
3359 err = ret;
3360 break;
3361 }
3362
3363 if (!RB_EMPTY_ROOT(&blocks)) {
3364 ret = relocate_tree_blocks(trans, rc, &blocks);
3365 if (ret < 0) {
3366 if (ret != -EAGAIN) {
3367 err = ret;
3368 break;
3369 }
3370 rc->extents_found--;
3371 rc->search_start = key.objectid;
3372 }
3373 }
3374
3375 btrfs_end_transaction_throttle(trans);
3376 btrfs_btree_balance_dirty(fs_info);
3377 trans = NULL;
3378
3379 if (rc->stage == MOVE_DATA_EXTENTS &&
3380 (flags & BTRFS_EXTENT_FLAG_DATA)) {
3381 rc->found_file_extent = 1;
3382 ret = relocate_data_extent(rc->data_inode,
3383 &key, &rc->cluster);
3384 if (ret < 0) {
3385 err = ret;
3386 break;
3387 }
3388 }
3389 if (btrfs_should_cancel_balance(fs_info)) {
3390 err = -ECANCELED;
3391 break;
3392 }
3393 }
3394 if (trans && progress && err == -ENOSPC) {
3395 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3396 if (ret == 1) {
3397 err = 0;
3398 progress = 0;
3399 goto restart;
3400 }
3401 }
3402
3403 btrfs_release_path(path);
3404 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
3405
3406 if (trans) {
3407 btrfs_end_transaction_throttle(trans);
3408 btrfs_btree_balance_dirty(fs_info);
3409 }
3410
3411 if (!err) {
3412 ret = relocate_file_extent_cluster(rc->data_inode,
3413 &rc->cluster);
3414 if (ret < 0)
3415 err = ret;
3416 }
3417
3418 rc->create_reloc_tree = 0;
3419 set_reloc_control(rc);
3420
3421 btrfs_backref_release_cache(&rc->backref_cache);
3422 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3423
3424 /*
3425 * Even in the case when the relocation is cancelled, we should all go
3426 * through prepare_to_merge() and merge_reloc_roots().
3427 *
3428 * For error (including cancelled balance), prepare_to_merge() will
3429 * mark all reloc trees orphan, then queue them for cleanup in
3430 * merge_reloc_roots()
3431 */
3432 err = prepare_to_merge(rc, err);
3433
3434 merge_reloc_roots(rc);
3435
3436 rc->merge_reloc_tree = 0;
3437 unset_reloc_control(rc);
3438 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3439
3440 /* get rid of pinned extents */
3441 trans = btrfs_join_transaction(rc->extent_root);
3442 if (IS_ERR(trans)) {
3443 err = PTR_ERR(trans);
3444 goto out_free;
3445 }
3446 btrfs_commit_transaction(trans);
3447 out_free:
3448 ret = clean_dirty_subvols(rc);
3449 if (ret < 0 && !err)
3450 err = ret;
3451 btrfs_free_block_rsv(fs_info, rc->block_rsv);
3452 btrfs_free_path(path);
3453 return err;
3454 }
3455
__insert_orphan_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid)3456 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3457 struct btrfs_root *root, u64 objectid)
3458 {
3459 struct btrfs_path *path;
3460 struct btrfs_inode_item *item;
3461 struct extent_buffer *leaf;
3462 int ret;
3463
3464 path = btrfs_alloc_path();
3465 if (!path)
3466 return -ENOMEM;
3467
3468 ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3469 if (ret)
3470 goto out;
3471
3472 leaf = path->nodes[0];
3473 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3474 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3475 btrfs_set_inode_generation(leaf, item, 1);
3476 btrfs_set_inode_size(leaf, item, 0);
3477 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3478 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3479 BTRFS_INODE_PREALLOC);
3480 btrfs_mark_buffer_dirty(leaf);
3481 out:
3482 btrfs_free_path(path);
3483 return ret;
3484 }
3485
3486 /*
3487 * helper to create inode for data relocation.
3488 * the inode is in data relocation tree and its link count is 0
3489 */
3490 static noinline_for_stack
create_reloc_inode(struct btrfs_fs_info * fs_info,struct btrfs_block_group * group)3491 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3492 struct btrfs_block_group *group)
3493 {
3494 struct inode *inode = NULL;
3495 struct btrfs_trans_handle *trans;
3496 struct btrfs_root *root;
3497 u64 objectid;
3498 int err = 0;
3499
3500 root = btrfs_grab_root(fs_info->data_reloc_root);
3501 trans = btrfs_start_transaction(root, 6);
3502 if (IS_ERR(trans)) {
3503 btrfs_put_root(root);
3504 return ERR_CAST(trans);
3505 }
3506
3507 err = btrfs_find_free_objectid(root, &objectid);
3508 if (err)
3509 goto out;
3510
3511 err = __insert_orphan_inode(trans, root, objectid);
3512 BUG_ON(err);
3513
3514 inode = btrfs_iget(fs_info->sb, objectid, root);
3515 BUG_ON(IS_ERR(inode));
3516 BTRFS_I(inode)->index_cnt = group->start;
3517
3518 err = btrfs_orphan_add(trans, BTRFS_I(inode));
3519 out:
3520 btrfs_put_root(root);
3521 btrfs_end_transaction(trans);
3522 btrfs_btree_balance_dirty(fs_info);
3523 if (err) {
3524 if (inode)
3525 iput(inode);
3526 inode = ERR_PTR(err);
3527 }
3528 return inode;
3529 }
3530
alloc_reloc_control(struct btrfs_fs_info * fs_info)3531 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3532 {
3533 struct reloc_control *rc;
3534
3535 rc = kzalloc(sizeof(*rc), GFP_NOFS);
3536 if (!rc)
3537 return NULL;
3538
3539 INIT_LIST_HEAD(&rc->reloc_roots);
3540 INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3541 btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1);
3542 mapping_tree_init(&rc->reloc_root_tree);
3543 extent_io_tree_init(fs_info, &rc->processed_blocks,
3544 IO_TREE_RELOC_BLOCKS, NULL);
3545 return rc;
3546 }
3547
free_reloc_control(struct reloc_control * rc)3548 static void free_reloc_control(struct reloc_control *rc)
3549 {
3550 struct mapping_node *node, *tmp;
3551
3552 free_reloc_roots(&rc->reloc_roots);
3553 rbtree_postorder_for_each_entry_safe(node, tmp,
3554 &rc->reloc_root_tree.rb_root, rb_node)
3555 kfree(node);
3556
3557 kfree(rc);
3558 }
3559
3560 /*
3561 * Print the block group being relocated
3562 */
describe_relocation(struct btrfs_fs_info * fs_info,struct btrfs_block_group * block_group)3563 static void describe_relocation(struct btrfs_fs_info *fs_info,
3564 struct btrfs_block_group *block_group)
3565 {
3566 char buf[128] = {'\0'};
3567
3568 btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
3569
3570 btrfs_info(fs_info,
3571 "relocating block group %llu flags %s",
3572 block_group->start, buf);
3573 }
3574
stage_to_string(int stage)3575 static const char *stage_to_string(int stage)
3576 {
3577 if (stage == MOVE_DATA_EXTENTS)
3578 return "move data extents";
3579 if (stage == UPDATE_DATA_PTRS)
3580 return "update data pointers";
3581 return "unknown";
3582 }
3583
3584 /*
3585 * function to relocate all extents in a block group.
3586 */
btrfs_relocate_block_group(struct btrfs_fs_info * fs_info,u64 group_start)3587 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
3588 {
3589 struct btrfs_block_group *bg;
3590 struct btrfs_root *extent_root = fs_info->extent_root;
3591 struct reloc_control *rc;
3592 struct inode *inode;
3593 struct btrfs_path *path;
3594 int ret;
3595 int rw = 0;
3596 int err = 0;
3597
3598 bg = btrfs_lookup_block_group(fs_info, group_start);
3599 if (!bg)
3600 return -ENOENT;
3601
3602 if (btrfs_pinned_by_swapfile(fs_info, bg)) {
3603 btrfs_put_block_group(bg);
3604 return -ETXTBSY;
3605 }
3606
3607 rc = alloc_reloc_control(fs_info);
3608 if (!rc) {
3609 btrfs_put_block_group(bg);
3610 return -ENOMEM;
3611 }
3612
3613 rc->extent_root = extent_root;
3614 rc->block_group = bg;
3615
3616 ret = btrfs_inc_block_group_ro(rc->block_group, true);
3617 if (ret) {
3618 err = ret;
3619 goto out;
3620 }
3621 rw = 1;
3622
3623 path = btrfs_alloc_path();
3624 if (!path) {
3625 err = -ENOMEM;
3626 goto out;
3627 }
3628
3629 inode = lookup_free_space_inode(rc->block_group, path);
3630 btrfs_free_path(path);
3631
3632 if (!IS_ERR(inode))
3633 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
3634 else
3635 ret = PTR_ERR(inode);
3636
3637 if (ret && ret != -ENOENT) {
3638 err = ret;
3639 goto out;
3640 }
3641
3642 rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
3643 if (IS_ERR(rc->data_inode)) {
3644 err = PTR_ERR(rc->data_inode);
3645 rc->data_inode = NULL;
3646 goto out;
3647 }
3648
3649 describe_relocation(fs_info, rc->block_group);
3650
3651 btrfs_wait_block_group_reservations(rc->block_group);
3652 btrfs_wait_nocow_writers(rc->block_group);
3653 btrfs_wait_ordered_roots(fs_info, U64_MAX,
3654 rc->block_group->start,
3655 rc->block_group->length);
3656
3657 while (1) {
3658 int finishes_stage;
3659
3660 mutex_lock(&fs_info->cleaner_mutex);
3661 ret = relocate_block_group(rc);
3662 mutex_unlock(&fs_info->cleaner_mutex);
3663 if (ret < 0)
3664 err = ret;
3665
3666 finishes_stage = rc->stage;
3667 /*
3668 * We may have gotten ENOSPC after we already dirtied some
3669 * extents. If writeout happens while we're relocating a
3670 * different block group we could end up hitting the
3671 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
3672 * btrfs_reloc_cow_block. Make sure we write everything out
3673 * properly so we don't trip over this problem, and then break
3674 * out of the loop if we hit an error.
3675 */
3676 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
3677 ret = btrfs_wait_ordered_range(rc->data_inode, 0,
3678 (u64)-1);
3679 if (ret)
3680 err = ret;
3681 invalidate_mapping_pages(rc->data_inode->i_mapping,
3682 0, -1);
3683 rc->stage = UPDATE_DATA_PTRS;
3684 }
3685
3686 if (err < 0)
3687 goto out;
3688
3689 if (rc->extents_found == 0)
3690 break;
3691
3692 btrfs_info(fs_info, "found %llu extents, stage: %s",
3693 rc->extents_found, stage_to_string(finishes_stage));
3694 }
3695
3696 WARN_ON(rc->block_group->pinned > 0);
3697 WARN_ON(rc->block_group->reserved > 0);
3698 WARN_ON(rc->block_group->used > 0);
3699 out:
3700 if (err && rw)
3701 btrfs_dec_block_group_ro(rc->block_group);
3702 iput(rc->data_inode);
3703 btrfs_put_block_group(rc->block_group);
3704 free_reloc_control(rc);
3705 return err;
3706 }
3707
mark_garbage_root(struct btrfs_root * root)3708 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
3709 {
3710 struct btrfs_fs_info *fs_info = root->fs_info;
3711 struct btrfs_trans_handle *trans;
3712 int ret, err;
3713
3714 trans = btrfs_start_transaction(fs_info->tree_root, 0);
3715 if (IS_ERR(trans))
3716 return PTR_ERR(trans);
3717
3718 memset(&root->root_item.drop_progress, 0,
3719 sizeof(root->root_item.drop_progress));
3720 root->root_item.drop_level = 0;
3721 btrfs_set_root_refs(&root->root_item, 0);
3722 ret = btrfs_update_root(trans, fs_info->tree_root,
3723 &root->root_key, &root->root_item);
3724
3725 err = btrfs_end_transaction(trans);
3726 if (err)
3727 return err;
3728 return ret;
3729 }
3730
3731 /*
3732 * recover relocation interrupted by system crash.
3733 *
3734 * this function resumes merging reloc trees with corresponding fs trees.
3735 * this is important for keeping the sharing of tree blocks
3736 */
btrfs_recover_relocation(struct btrfs_root * root)3737 int btrfs_recover_relocation(struct btrfs_root *root)
3738 {
3739 struct btrfs_fs_info *fs_info = root->fs_info;
3740 LIST_HEAD(reloc_roots);
3741 struct btrfs_key key;
3742 struct btrfs_root *fs_root;
3743 struct btrfs_root *reloc_root;
3744 struct btrfs_path *path;
3745 struct extent_buffer *leaf;
3746 struct reloc_control *rc = NULL;
3747 struct btrfs_trans_handle *trans;
3748 int ret;
3749 int err = 0;
3750
3751 path = btrfs_alloc_path();
3752 if (!path)
3753 return -ENOMEM;
3754 path->reada = READA_BACK;
3755
3756 key.objectid = BTRFS_TREE_RELOC_OBJECTID;
3757 key.type = BTRFS_ROOT_ITEM_KEY;
3758 key.offset = (u64)-1;
3759
3760 while (1) {
3761 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
3762 path, 0, 0);
3763 if (ret < 0) {
3764 err = ret;
3765 goto out;
3766 }
3767 if (ret > 0) {
3768 if (path->slots[0] == 0)
3769 break;
3770 path->slots[0]--;
3771 }
3772 leaf = path->nodes[0];
3773 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3774 btrfs_release_path(path);
3775
3776 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
3777 key.type != BTRFS_ROOT_ITEM_KEY)
3778 break;
3779
3780 reloc_root = btrfs_read_tree_root(root, &key);
3781 if (IS_ERR(reloc_root)) {
3782 err = PTR_ERR(reloc_root);
3783 goto out;
3784 }
3785
3786 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
3787 list_add(&reloc_root->root_list, &reloc_roots);
3788
3789 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
3790 fs_root = btrfs_get_fs_root(fs_info,
3791 reloc_root->root_key.offset, false);
3792 if (IS_ERR(fs_root)) {
3793 ret = PTR_ERR(fs_root);
3794 if (ret != -ENOENT) {
3795 err = ret;
3796 goto out;
3797 }
3798 ret = mark_garbage_root(reloc_root);
3799 if (ret < 0) {
3800 err = ret;
3801 goto out;
3802 }
3803 } else {
3804 btrfs_put_root(fs_root);
3805 }
3806 }
3807
3808 if (key.offset == 0)
3809 break;
3810
3811 key.offset--;
3812 }
3813 btrfs_release_path(path);
3814
3815 if (list_empty(&reloc_roots))
3816 goto out;
3817
3818 rc = alloc_reloc_control(fs_info);
3819 if (!rc) {
3820 err = -ENOMEM;
3821 goto out;
3822 }
3823
3824 rc->extent_root = fs_info->extent_root;
3825
3826 set_reloc_control(rc);
3827
3828 trans = btrfs_join_transaction(rc->extent_root);
3829 if (IS_ERR(trans)) {
3830 err = PTR_ERR(trans);
3831 goto out_unset;
3832 }
3833
3834 rc->merge_reloc_tree = 1;
3835
3836 while (!list_empty(&reloc_roots)) {
3837 reloc_root = list_entry(reloc_roots.next,
3838 struct btrfs_root, root_list);
3839 list_del(&reloc_root->root_list);
3840
3841 if (btrfs_root_refs(&reloc_root->root_item) == 0) {
3842 list_add_tail(&reloc_root->root_list,
3843 &rc->reloc_roots);
3844 continue;
3845 }
3846
3847 fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
3848 false);
3849 if (IS_ERR(fs_root)) {
3850 err = PTR_ERR(fs_root);
3851 list_add_tail(&reloc_root->root_list, &reloc_roots);
3852 btrfs_end_transaction(trans);
3853 goto out_unset;
3854 }
3855
3856 err = __add_reloc_root(reloc_root);
3857 BUG_ON(err < 0); /* -ENOMEM or logic error */
3858 fs_root->reloc_root = btrfs_grab_root(reloc_root);
3859 btrfs_put_root(fs_root);
3860 }
3861
3862 err = btrfs_commit_transaction(trans);
3863 if (err)
3864 goto out_unset;
3865
3866 merge_reloc_roots(rc);
3867
3868 unset_reloc_control(rc);
3869
3870 trans = btrfs_join_transaction(rc->extent_root);
3871 if (IS_ERR(trans)) {
3872 err = PTR_ERR(trans);
3873 goto out_clean;
3874 }
3875 err = btrfs_commit_transaction(trans);
3876 out_clean:
3877 ret = clean_dirty_subvols(rc);
3878 if (ret < 0 && !err)
3879 err = ret;
3880 out_unset:
3881 unset_reloc_control(rc);
3882 free_reloc_control(rc);
3883 out:
3884 free_reloc_roots(&reloc_roots);
3885
3886 btrfs_free_path(path);
3887
3888 if (err == 0) {
3889 /* cleanup orphan inode in data relocation tree */
3890 fs_root = btrfs_grab_root(fs_info->data_reloc_root);
3891 ASSERT(fs_root);
3892 err = btrfs_orphan_cleanup(fs_root);
3893 btrfs_put_root(fs_root);
3894 }
3895 return err;
3896 }
3897
3898 /*
3899 * helper to add ordered checksum for data relocation.
3900 *
3901 * cloning checksum properly handles the nodatasum extents.
3902 * it also saves CPU time to re-calculate the checksum.
3903 */
btrfs_reloc_clone_csums(struct btrfs_inode * inode,u64 file_pos,u64 len)3904 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len)
3905 {
3906 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3907 struct btrfs_ordered_sum *sums;
3908 struct btrfs_ordered_extent *ordered;
3909 int ret;
3910 u64 disk_bytenr;
3911 u64 new_bytenr;
3912 LIST_HEAD(list);
3913
3914 ordered = btrfs_lookup_ordered_extent(inode, file_pos);
3915 BUG_ON(ordered->file_offset != file_pos || ordered->num_bytes != len);
3916
3917 disk_bytenr = file_pos + inode->index_cnt;
3918 ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
3919 disk_bytenr + len - 1, &list, 0);
3920 if (ret)
3921 goto out;
3922
3923 while (!list_empty(&list)) {
3924 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
3925 list_del_init(&sums->list);
3926
3927 /*
3928 * We need to offset the new_bytenr based on where the csum is.
3929 * We need to do this because we will read in entire prealloc
3930 * extents but we may have written to say the middle of the
3931 * prealloc extent, so we need to make sure the csum goes with
3932 * the right disk offset.
3933 *
3934 * We can do this because the data reloc inode refers strictly
3935 * to the on disk bytes, so we don't have to worry about
3936 * disk_len vs real len like with real inodes since it's all
3937 * disk length.
3938 */
3939 new_bytenr = ordered->disk_bytenr + sums->bytenr - disk_bytenr;
3940 sums->bytenr = new_bytenr;
3941
3942 btrfs_add_ordered_sum(ordered, sums);
3943 }
3944 out:
3945 btrfs_put_ordered_extent(ordered);
3946 return ret;
3947 }
3948
btrfs_reloc_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * cow)3949 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
3950 struct btrfs_root *root, struct extent_buffer *buf,
3951 struct extent_buffer *cow)
3952 {
3953 struct btrfs_fs_info *fs_info = root->fs_info;
3954 struct reloc_control *rc;
3955 struct btrfs_backref_node *node;
3956 int first_cow = 0;
3957 int level;
3958 int ret = 0;
3959
3960 rc = fs_info->reloc_ctl;
3961 if (!rc)
3962 return 0;
3963
3964 BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
3965 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
3966
3967 level = btrfs_header_level(buf);
3968 if (btrfs_header_generation(buf) <=
3969 btrfs_root_last_snapshot(&root->root_item))
3970 first_cow = 1;
3971
3972 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
3973 rc->create_reloc_tree) {
3974 WARN_ON(!first_cow && level == 0);
3975
3976 node = rc->backref_cache.path[level];
3977 BUG_ON(node->bytenr != buf->start &&
3978 node->new_bytenr != buf->start);
3979
3980 btrfs_backref_drop_node_buffer(node);
3981 atomic_inc(&cow->refs);
3982 node->eb = cow;
3983 node->new_bytenr = cow->start;
3984
3985 if (!node->pending) {
3986 list_move_tail(&node->list,
3987 &rc->backref_cache.pending[level]);
3988 node->pending = 1;
3989 }
3990
3991 if (first_cow)
3992 mark_block_processed(rc, node);
3993
3994 if (first_cow && level > 0)
3995 rc->nodes_relocated += buf->len;
3996 }
3997
3998 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
3999 ret = replace_file_extents(trans, rc, root, cow);
4000 return ret;
4001 }
4002
4003 /*
4004 * called before creating snapshot. it calculates metadata reservation
4005 * required for relocating tree blocks in the snapshot
4006 */
btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot * pending,u64 * bytes_to_reserve)4007 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4008 u64 *bytes_to_reserve)
4009 {
4010 struct btrfs_root *root = pending->root;
4011 struct reloc_control *rc = root->fs_info->reloc_ctl;
4012
4013 if (!rc || !have_reloc_root(root))
4014 return;
4015
4016 if (!rc->merge_reloc_tree)
4017 return;
4018
4019 root = root->reloc_root;
4020 BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4021 /*
4022 * relocation is in the stage of merging trees. the space
4023 * used by merging a reloc tree is twice the size of
4024 * relocated tree nodes in the worst case. half for cowing
4025 * the reloc tree, half for cowing the fs tree. the space
4026 * used by cowing the reloc tree will be freed after the
4027 * tree is dropped. if we create snapshot, cowing the fs
4028 * tree may use more space than it frees. so we need
4029 * reserve extra space.
4030 */
4031 *bytes_to_reserve += rc->nodes_relocated;
4032 }
4033
4034 /*
4035 * called after snapshot is created. migrate block reservation
4036 * and create reloc root for the newly created snapshot
4037 *
4038 * This is similar to btrfs_init_reloc_root(), we come out of here with two
4039 * references held on the reloc_root, one for root->reloc_root and one for
4040 * rc->reloc_roots.
4041 */
btrfs_reloc_post_snapshot(struct btrfs_trans_handle * trans,struct btrfs_pending_snapshot * pending)4042 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4043 struct btrfs_pending_snapshot *pending)
4044 {
4045 struct btrfs_root *root = pending->root;
4046 struct btrfs_root *reloc_root;
4047 struct btrfs_root *new_root;
4048 struct reloc_control *rc = root->fs_info->reloc_ctl;
4049 int ret;
4050
4051 if (!rc || !have_reloc_root(root))
4052 return 0;
4053
4054 rc = root->fs_info->reloc_ctl;
4055 rc->merging_rsv_size += rc->nodes_relocated;
4056
4057 if (rc->merge_reloc_tree) {
4058 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4059 rc->block_rsv,
4060 rc->nodes_relocated, true);
4061 if (ret)
4062 return ret;
4063 }
4064
4065 new_root = pending->snap;
4066 reloc_root = create_reloc_root(trans, root->reloc_root,
4067 new_root->root_key.objectid);
4068 if (IS_ERR(reloc_root))
4069 return PTR_ERR(reloc_root);
4070
4071 ret = __add_reloc_root(reloc_root);
4072 BUG_ON(ret < 0);
4073 new_root->reloc_root = btrfs_grab_root(reloc_root);
4074
4075 if (rc->create_reloc_tree)
4076 ret = clone_backref_node(trans, rc, root, reloc_root);
4077 return ret;
4078 }
4079