1 // root_finding_example.cpp
2
3 // Copyright Paul A. Bristow 2010, 2015
4
5 // Use, modification and distribution are subject to the
6 // Boost Software License, Version 1.0.
7 // (See accompanying file LICENSE_1_0.txt
8 // or copy at http://www.boost.org/LICENSE_1_0.txt)
9
10 // Example of finding roots using Newton-Raphson, Halley.
11
12 // Note that this file contains Quickbook mark-up as well as code
13 // and comments, don't change any of the special comment mark-ups!
14
15 //#define BOOST_MATH_INSTRUMENT
16
17 /*
18 This example demonstrates how to use the various tools for root finding
19 taking the simple cube root function (`cbrt`) as an example.
20
21 It shows how use of derivatives can improve the speed.
22 (But is only a demonstration and does not try to make the ultimate improvements of 'real-life'
23 implementation of `boost::math::cbrt`, mainly by using a better computed initial 'guess'
24 at `<boost/math/special_functions/cbrt.hpp>`).
25
26 Then we show how a higher root (fifth) can be computed,
27 and in `root_finding_n_example.cpp` a generic method
28 for the ['n]th root that constructs the derivatives at compile-time,
29
30 These methods should be applicable to other functions that can be differentiated easily.
31
32 First some `#includes` that will be needed.
33
34 [tip For clarity, `using` statements are provided to list what functions are being used in this example:
35 you can of course partly or fully qualify the names in other ways.
36 (For your application, you may wish to extract some parts into header files,
37 but you should never use `using` statements globally in header files).]
38 */
39
40 //[root_finding_include_1
41
42 #include <boost/math/tools/roots.hpp>
43 //using boost::math::policies::policy;
44 //using boost::math::tools::newton_raphson_iterate;
45 //using boost::math::tools::halley_iterate; //
46 //using boost::math::tools::eps_tolerance; // Binary functor for specified number of bits.
47 //using boost::math::tools::bracket_and_solve_root;
48 //using boost::math::tools::toms748_solve;
49
50 #include <boost/math/special_functions/next.hpp> // For float_distance.
51 #include <tuple> // for std::tuple and std::make_tuple.
52 #include <boost/math/special_functions/cbrt.hpp> // For boost::math::cbrt.
53
54 //] [/root_finding_include_1]
55
56 // using boost::math::tuple;
57 // using boost::math::make_tuple;
58 // using boost::math::tie;
59 // which provide convenient aliases for various implementations,
60 // including std::tr1, depending on what is available.
61
62 #include <iostream>
63 //using std::cout; using std::endl;
64 #include <iomanip>
65 //using std::setw; using std::setprecision;
66 #include <limits>
67 //using std::numeric_limits;
68
69 /*
70
71 Let's suppose we want to find the root of a number ['a], and to start, compute the cube root.
72
73 So the equation we want to solve is:
74
75 __spaces ['f](x) = x[cubed] - a
76
77 We will first solve this without using any information
78 about the slope or curvature of the cube root function.
79
80 We then show how adding what we can know about this function, first just the slope,
81 the 1st derivation /f'(x)/, will speed homing in on the solution.
82
83 Lastly we show how adding the curvature /f''(x)/ too will speed convergence even more.
84
85 */
86
87 //[root_finding_noderiv_1
88
89 template <class T>
90 struct cbrt_functor_noderiv
91 {
92 // cube root of x using only function - no derivatives.
cbrt_functor_noderivcbrt_functor_noderiv93 cbrt_functor_noderiv(T const& to_find_root_of) : a(to_find_root_of)
94 { /* Constructor just stores value a to find root of. */ }
operator ()cbrt_functor_noderiv95 T operator()(T const& x)
96 {
97 T fx = x*x*x - a; // Difference (estimate x^3 - a).
98 return fx;
99 }
100 private:
101 T a; // to be 'cube_rooted'.
102 };
103 //] [/root_finding_noderiv_1
104
105 /*
106 Implementing the cube root function itself is fairly trivial now:
107 the hardest part is finding a good approximation to begin with.
108 In this case we'll just divide the exponent by three.
109 (There are better but more complex guess algorithms used in 'real-life'.)
110
111 Cube root function is 'Really Well Behaved' in that it is monotonic
112 and has only one root (we leave negative values 'as an exercise for the student').
113 */
114
115 //[root_finding_noderiv_2
116
117 template <class T>
cbrt_noderiv(T x)118 T cbrt_noderiv(T x)
119 {
120 // return cube root of x using bracket_and_solve (no derivatives).
121 using namespace std; // Help ADL of std functions.
122 using namespace boost::math::tools; // For bracket_and_solve_root.
123
124 int exponent;
125 frexp(x, &exponent); // Get exponent of z (ignore mantissa).
126 T guess = ldexp(1., exponent/3); // Rough guess is to divide the exponent by three.
127 T factor = 2; // How big steps to take when searching.
128
129 const boost::uintmax_t maxit = 20; // Limit to maximum iterations.
130 boost::uintmax_t it = maxit; // Initially our chosen max iterations, but updated with actual.
131 bool is_rising = true; // So if result if guess^3 is too low, then try increasing guess.
132 int digits = std::numeric_limits<T>::digits; // Maximum possible binary digits accuracy for type T.
133 // Some fraction of digits is used to control how accurate to try to make the result.
134 int get_digits = digits - 3; // We have to have a non-zero interval at each step, so
135 // maximum accuracy is digits - 1. But we also have to
136 // allow for inaccuracy in f(x), otherwise the last few
137 // iterations just thrash around.
138 eps_tolerance<T> tol(get_digits); // Set the tolerance.
139 std::pair<T, T> r = bracket_and_solve_root(cbrt_functor_noderiv<T>(x), guess, factor, is_rising, tol, it);
140 return r.first + (r.second - r.first)/2; // Midway between brackets is our result, if necessary we could
141 // return the result as an interval here.
142 }
143
144 /*`
145
146 [note The final parameter specifying a maximum number of iterations is optional.
147 However, it defaults to `boost::uintmax_t maxit = (std::numeric_limits<boost::uintmax_t>::max)();`
148 which is `18446744073709551615` and is more than anyone would wish to wait for!
149
150 So it may be wise to chose some reasonable estimate of how many iterations may be needed,
151 In this case the function is so well behaved that we can chose a low value of 20.
152
153 Internally when Boost.Math uses these functions, it sets the maximum iterations to
154 `policies::get_max_root_iterations<Policy>();`.]
155
156 Should we have wished we can show how many iterations were used in `bracket_and_solve_root`
157 (this information is lost outside `cbrt_noderiv`), for example with:
158
159 if (it >= maxit)
160 {
161 std::cout << "Unable to locate solution in " << maxit << " iterations:"
162 " Current best guess is between " << r.first << " and " << r.second << std::endl;
163 }
164 else
165 {
166 std::cout << "Converged after " << it << " (from maximum of " << maxit << " iterations)." << std::endl;
167 }
168
169 for output like
170
171 Converged after 11 (from maximum of 20 iterations).
172 */
173 //] [/root_finding_noderiv_2]
174
175
176 // Cube root with 1st derivative (slope)
177
178 /*
179 We now solve the same problem, but using more information about the function,
180 to show how this can speed up finding the best estimate of the root.
181
182 For the root function, the 1st differential (the slope of the tangent to a curve at any point) is known.
183
184 If you need some reminders then
185 [@http://en.wikipedia.org/wiki/Derivative#Derivatives_of_elementary_functions Derivatives of elementary functions]
186 may help.
187
188 Using the rule that the derivative of ['x[super n]] for positive n (actually all nonzero n) is ['n x[super n-1]],
189 allows us to get the 1st differential as ['3x[super 2]].
190
191 To see how this extra information is used to find a root, view
192 [@http://en.wikipedia.org/wiki/Newton%27s_method Newton-Raphson iterations]
193 and the [@http://en.wikipedia.org/wiki/Newton%27s_method#mediaviewer/File:NewtonIteration_Ani.gif animation].
194
195 We need to define a different functor `cbrt_functor_deriv` that returns
196 both the evaluation of the function to solve, along with its first derivative:
197
198 To \'return\' two values, we use a `std::pair` of floating-point values
199 (though we could equally have used a std::tuple):
200 */
201
202 //[root_finding_1_deriv_1
203
204 template <class T>
205 struct cbrt_functor_deriv
206 { // Functor also returning 1st derivative.
cbrt_functor_derivcbrt_functor_deriv207 cbrt_functor_deriv(T const& to_find_root_of) : a(to_find_root_of)
208 { // Constructor stores value a to find root of,
209 // for example: calling cbrt_functor_deriv<T>(a) to use to get cube root of a.
210 }
operator ()cbrt_functor_deriv211 std::pair<T, T> operator()(T const& x)
212 {
213 // Return both f(x) and f'(x).
214 T fx = x*x*x - a; // Difference (estimate x^3 - value).
215 T dx = 3 * x*x; // 1st derivative = 3x^2.
216 return std::make_pair(fx, dx); // 'return' both fx and dx.
217 }
218 private:
219 T a; // Store value to be 'cube_rooted'.
220 };
221
222 /*`Our cube root function is now:*/
223
224 template <class T>
cbrt_deriv(T x)225 T cbrt_deriv(T x)
226 {
227 // return cube root of x using 1st derivative and Newton_Raphson.
228 using namespace boost::math::tools;
229 int exponent;
230 frexp(x, &exponent); // Get exponent of z (ignore mantissa).
231 T guess = ldexp(1., exponent/3); // Rough guess is to divide the exponent by three.
232 T min = ldexp(0.5, exponent/3); // Minimum possible value is half our guess.
233 T max = ldexp(2., exponent/3); // Maximum possible value is twice our guess.
234 const int digits = std::numeric_limits<T>::digits; // Maximum possible binary digits accuracy for type T.
235 int get_digits = static_cast<int>(digits * 0.6); // Accuracy doubles with each step, so stop when we have
236 // just over half the digits correct.
237 const boost::uintmax_t maxit = 20;
238 boost::uintmax_t it = maxit;
239 T result = newton_raphson_iterate(cbrt_functor_deriv<T>(x), guess, min, max, get_digits, it);
240 return result;
241 }
242
243 //] [/root_finding_1_deriv_1]
244
245
246 /*
247 [h3:cbrt_2_derivatives Cube root with 1st & 2nd derivative (slope & curvature)]
248
249 Finally we define yet another functor `cbrt_functor_2deriv` that returns
250 both the evaluation of the function to solve,
251 along with its first *and second* derivatives:
252
253 __spaces[''f](x) = 6x
254
255 To \'return\' three values, we use a `tuple` of three floating-point values:
256 */
257
258 //[root_finding_2deriv_1
259
260 template <class T>
261 struct cbrt_functor_2deriv
262 {
263 // Functor returning both 1st and 2nd derivatives.
cbrt_functor_2derivcbrt_functor_2deriv264 cbrt_functor_2deriv(T const& to_find_root_of) : a(to_find_root_of)
265 { // Constructor stores value a to find root of, for example:
266 // calling cbrt_functor_2deriv<T>(x) to get cube root of x,
267 }
operator ()cbrt_functor_2deriv268 std::tuple<T, T, T> operator()(T const& x)
269 {
270 // Return both f(x) and f'(x) and f''(x).
271 T fx = x*x*x - a; // Difference (estimate x^3 - value).
272 T dx = 3 * x*x; // 1st derivative = 3x^2.
273 T d2x = 6 * x; // 2nd derivative = 6x.
274 return std::make_tuple(fx, dx, d2x); // 'return' fx, dx and d2x.
275 }
276 private:
277 T a; // to be 'cube_rooted'.
278 };
279
280 /*`Our cube root function is now:*/
281
282 template <class T>
cbrt_2deriv(T x)283 T cbrt_2deriv(T x)
284 {
285 // return cube root of x using 1st and 2nd derivatives and Halley.
286 //using namespace std; // Help ADL of std functions.
287 using namespace boost::math::tools;
288 int exponent;
289 frexp(x, &exponent); // Get exponent of z (ignore mantissa).
290 T guess = ldexp(1., exponent/3); // Rough guess is to divide the exponent by three.
291 T min = ldexp(0.5, exponent/3); // Minimum possible value is half our guess.
292 T max = ldexp(2., exponent/3); // Maximum possible value is twice our guess.
293 const int digits = std::numeric_limits<T>::digits; // Maximum possible binary digits accuracy for type T.
294 // digits used to control how accurate to try to make the result.
295 int get_digits = static_cast<int>(digits * 0.4); // Accuracy triples with each step, so stop when just
296 // over one third of the digits are correct.
297 boost::uintmax_t maxit = 20;
298 T result = halley_iterate(cbrt_functor_2deriv<T>(x), guess, min, max, get_digits, maxit);
299 return result;
300 }
301
302 //] [/root_finding_2deriv_1]
303
304 //[root_finding_2deriv_lambda
305
306 template <class T>
cbrt_2deriv_lambda(T x)307 T cbrt_2deriv_lambda(T x)
308 {
309 // return cube root of x using 1st and 2nd derivatives and Halley.
310 //using namespace std; // Help ADL of std functions.
311 using namespace boost::math::tools;
312 int exponent;
313 frexp(x, &exponent); // Get exponent of z (ignore mantissa).
314 T guess = ldexp(1., exponent / 3); // Rough guess is to divide the exponent by three.
315 T min = ldexp(0.5, exponent / 3); // Minimum possible value is half our guess.
316 T max = ldexp(2., exponent / 3); // Maximum possible value is twice our guess.
317 const int digits = std::numeric_limits<T>::digits; // Maximum possible binary digits accuracy for type T.
318 // digits used to control how accurate to try to make the result.
319 int get_digits = static_cast<int>(digits * 0.4); // Accuracy triples with each step, so stop when just
320 // over one third of the digits are correct.
321 boost::uintmax_t maxit = 20;
322 T result = halley_iterate(
323 // lambda function:
324 [x](const T& g){ return std::make_tuple(g * g * g - x, 3 * g * g, 6 * g); },
325 guess, min, max, get_digits, maxit);
326 return result;
327 }
328
329 //] [/root_finding_2deriv_lambda]
330 /*
331
332 [h3 Fifth-root function]
333 Let's now suppose we want to find the [*fifth root] of a number ['a].
334
335 The equation we want to solve is :
336
337 __spaces['f](x) = x[super 5] - a
338
339 If your differentiation is a little rusty
340 (or you are faced with an equation whose complexity is daunting),
341 then you can get help, for example from the invaluable
342 [@http://www.wolframalpha.com/ WolframAlpha site.]
343
344 For example, entering the command: `differentiate x ^ 5`
345
346 or the Wolfram Language command: ` D[x ^ 5, x]`
347
348 gives the output: `d/dx(x ^ 5) = 5 x ^ 4`
349
350 and to get the second differential, enter: `second differentiate x ^ 5`
351
352 or the Wolfram Language command: `D[x ^ 5, { x, 2 }]`
353
354 to get the output: `d ^ 2 / dx ^ 2(x ^ 5) = 20 x ^ 3`
355
356 To get a reference value, we can enter: [^fifth root 3126]
357
358 or: `N[3126 ^ (1 / 5), 50]`
359
360 to get a result with a precision of 50 decimal digits:
361
362 5.0003199590478625588206333405631053401128722314376
363
364 (We could also get a reference value using Boost.Multiprecision - see below).
365
366 The 1st and 2nd derivatives of x[super 5] are:
367
368 __spaces['f]\'(x) = 5x[super 4]
369
370 __spaces['f]\'\'(x) = 20x[super 3]
371
372 */
373
374 //[root_finding_fifth_1
375 //] [/root_finding_fifth_1]
376
377
378 //[root_finding_fifth_functor_2deriv
379
380 /*`Using these expressions for the derivatives, the functor is:
381 */
382
383 template <class T>
384 struct fifth_functor_2deriv
385 {
386 // Functor returning both 1st and 2nd derivatives.
fifth_functor_2derivfifth_functor_2deriv387 fifth_functor_2deriv(T const& to_find_root_of) : a(to_find_root_of)
388 { /* Constructor stores value a to find root of, for example: */ }
389
operator ()fifth_functor_2deriv390 std::tuple<T, T, T> operator()(T const& x)
391 {
392 // Return both f(x) and f'(x) and f''(x).
393 T fx = boost::math::pow<5>(x) - a; // Difference (estimate x^3 - value).
394 T dx = 5 * boost::math::pow<4>(x); // 1st derivative = 5x^4.
395 T d2x = 20 * boost::math::pow<3>(x); // 2nd derivative = 20 x^3
396 return std::make_tuple(fx, dx, d2x); // 'return' fx, dx and d2x.
397 }
398 private:
399 T a; // to be 'fifth_rooted'.
400 }; // struct fifth_functor_2deriv
401
402 //] [/root_finding_fifth_functor_2deriv]
403
404 //[root_finding_fifth_2deriv
405
406 /*`Our fifth-root function is now:
407 */
408
409 template <class T>
fifth_2deriv(T x)410 T fifth_2deriv(T x)
411 {
412 // return fifth root of x using 1st and 2nd derivatives and Halley.
413 using namespace std; // Help ADL of std functions.
414 using namespace boost::math::tools; // for halley_iterate.
415
416 int exponent;
417 frexp(x, &exponent); // Get exponent of z (ignore mantissa).
418 T guess = ldexp(1., exponent / 5); // Rough guess is to divide the exponent by five.
419 T min = ldexp(0.5, exponent / 5); // Minimum possible value is half our guess.
420 T max = ldexp(2., exponent / 5); // Maximum possible value is twice our guess.
421 // Stop when slightly more than one of the digits are correct:
422 const int digits = static_cast<int>(std::numeric_limits<T>::digits * 0.4);
423 const boost::uintmax_t maxit = 50;
424 boost::uintmax_t it = maxit;
425 T result = halley_iterate(fifth_functor_2deriv<T>(x), guess, min, max, digits, it);
426 return result;
427 }
428
429 //] [/root_finding_fifth_2deriv]
430
431
main()432 int main()
433 {
434 std::cout << "Root finding Examples." << std::endl;
435 std::cout.precision(std::numeric_limits<double>::max_digits10);
436 // Show all possibly significant decimal digits for double.
437 // std::cout.precision(std::numeric_limits<double>::digits10);
438 // Show all guaranteed significant decimal digits for double.
439
440
441 //[root_finding_main_1
442 try
443 {
444 double threecubed = 27.; // Value that has an *exactly representable* integer cube root.
445 double threecubedp1 = 28.; // Value whose cube root is *not* exactly representable.
446
447 std::cout << "cbrt(28) " << boost::math::cbrt(28.) << std::endl; // boost::math:: version of cbrt.
448 std::cout << "std::cbrt(28) " << std::cbrt(28.) << std::endl; // std:: version of cbrt.
449 std::cout <<" cast double " << static_cast<double>(3.0365889718756625194208095785056696355814539772481111) << std::endl;
450
451 // Cube root using bracketing:
452 double r = cbrt_noderiv(threecubed);
453 std::cout << "cbrt_noderiv(" << threecubed << ") = " << r << std::endl;
454 r = cbrt_noderiv(threecubedp1);
455 std::cout << "cbrt_noderiv(" << threecubedp1 << ") = " << r << std::endl;
456 //] [/root_finding_main_1]
457 //[root_finding_main_2
458
459 // Cube root using 1st differential Newton-Raphson:
460 r = cbrt_deriv(threecubed);
461 std::cout << "cbrt_deriv(" << threecubed << ") = " << r << std::endl;
462 r = cbrt_deriv(threecubedp1);
463 std::cout << "cbrt_deriv(" << threecubedp1 << ") = " << r << std::endl;
464
465 // Cube root using Halley with 1st and 2nd differentials.
466 r = cbrt_2deriv(threecubed);
467 std::cout << "cbrt_2deriv(" << threecubed << ") = " << r << std::endl;
468 r = cbrt_2deriv(threecubedp1);
469 std::cout << "cbrt_2deriv(" << threecubedp1 << ") = " << r << std::endl;
470
471 // Cube root using lambda's:
472 r = cbrt_2deriv_lambda(threecubed);
473 std::cout << "cbrt_2deriv(" << threecubed << ") = " << r << std::endl;
474 r = cbrt_2deriv_lambda(threecubedp1);
475 std::cout << "cbrt_2deriv(" << threecubedp1 << ") = " << r << std::endl;
476
477 // Fifth root.
478
479 double fivepowfive = 3125; // Example of a value that has an exact integer fifth root.
480 // Exact value of fifth root is exactly 5.
481 std::cout << "Fifth root of " << fivepowfive << " is " << 5 << std::endl;
482
483 double fivepowfivep1 = fivepowfive + 1; // Example of a value whose fifth root is *not* exactly representable.
484 // Value of fifth root is 5.0003199590478625588206333405631053401128722314376 (50 decimal digits precision)
485 // and to std::numeric_limits<double>::max_digits10 double precision (usually 17) is
486
487 double root5v2 = static_cast<double>(5.0003199590478625588206333405631053401128722314376);
488 std::cout << "Fifth root of " << fivepowfivep1 << " is " << root5v2 << std::endl;
489
490 // Using Halley with 1st and 2nd differentials.
491 r = fifth_2deriv(fivepowfive);
492 std::cout << "fifth_2deriv(" << fivepowfive << ") = " << r << std::endl;
493 r = fifth_2deriv(fivepowfivep1);
494 std::cout << "fifth_2deriv(" << fivepowfivep1 << ") = " << r << std::endl;
495 //] [/root_finding_main_?]
496 }
497 catch(const std::exception& e)
498 { // Always useful to include try & catch blocks because default policies
499 // are to throw exceptions on arguments that cause errors like underflow, overflow.
500 // Lacking try & catch blocks, the program will abort without a message below,
501 // which may give some helpful clues as to the cause of the exception.
502 std::cout <<
503 "\n""Message from thrown exception was:\n " << e.what() << std::endl;
504 }
505 return 0;
506 } // int main()
507
508 //[root_finding_example_output
509 /*`
510 Normal output is:
511
512 [pre
513 root_finding_example.cpp
514 Generating code
515 Finished generating code
516 root_finding_example.vcxproj -> J:\Cpp\MathToolkit\test\Math_test\Release\root_finding_example.exe
517 Cube Root finding (cbrt) Example.
518 Iterations 10
519 cbrt_1(27) = 3
520 Iterations 10
521 Unable to locate solution in chosen iterations: Current best guess is between 3.0365889718756613 and 3.0365889718756627
522 cbrt_1(28) = 3.0365889718756618
523 cbrt_1(27) = 3
524 cbrt_2(28) = 3.0365889718756627
525 Iterations 4
526 cbrt_3(27) = 3
527 Iterations 5
528 cbrt_3(28) = 3.0365889718756627
529
530 ] [/pre]
531
532 to get some (much!) diagnostic output we can add
533
534 #define BOOST_MATH_INSTRUMENT
535
536 [pre
537
538 ]
539 */
540 //] [/root_finding_example_output]
541
542 /*
543
544 cbrt(28) 3.0365889718756622
545 std::cbrt(28) 3.0365889718756627
546
547 */
548