• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<html>
2<head>
3<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
4<title>Sets</title>
5<link rel="stylesheet" href="../../../../../../doc/src/boostbook.css" type="text/css">
6<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
7<link rel="home" href="../../index.html" title="Chapter 1. Boost.Icl">
8<link rel="up" href="../semantics.html" title="Semantics">
9<link rel="prev" href="../semantics.html" title="Semantics">
10<link rel="next" href="maps.html" title="Maps">
11</head>
12<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
13<table cellpadding="2" width="100%"><tr>
14<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../boost.png"></td>
15<td align="center"><a href="../../../../../../index.html">Home</a></td>
16<td align="center"><a href="../../../../../libraries.htm">Libraries</a></td>
17<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
18<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
19<td align="center"><a href="../../../../../../more/index.htm">More</a></td>
20</tr></table>
21<hr>
22<div class="spirit-nav">
23<a accesskey="p" href="../semantics.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../semantics.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="maps.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
24</div>
25<div class="section">
26<div class="titlepage"><div><div><h3 class="title">
27<a name="boost_icl.semantics.sets"></a><a class="link" href="sets.html" title="Sets">Sets</a>
28</h3></div></div></div>
29<p>
30        For all set types <code class="computeroutput"><span class="identifier">S</span></code> that
31        are models concept <code class="computeroutput"><span class="identifier">Set</span></code> (<a href="http://www.cplusplus.com/reference/stl/set/" target="_top"><code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">set</span></code>
32        </a>, <code class="computeroutput"><a class="link" href="../../boost/icl/interval_set.html" title="Class template interval_set">interval_set</a></code>,
33        <code class="computeroutput"><a class="link" href="../../boost/icl/separate_interval_set.html" title="Class template separate_interval_set">separate_interval_set</a></code>
34        and <code class="computeroutput"><a class="link" href="../../boost/icl/split_interval_set.html" title="Class template split_interval_set">split_interval_set</a></code>)
35        most of the well known mathematical <a href="http://en.wikipedia.org/wiki/Algebra_of_sets" target="_top">laws
36        on sets</a> were successfully checked via LaBatea. The next tables are
37        giving an overview over the checked laws ordered by operations. If possible,
38        the laws are formulated with the stronger lexicographical equality (<code class="computeroutput"><span class="keyword">operator</span> <span class="special">==</span></code>)
39        which implies the law's validity for the weaker element equality <code class="computeroutput"><span class="identifier">is_element_equal</span></code>. Throughout this chapter
40        we will denote element equality as <code class="computeroutput"><span class="special">=</span><span class="identifier">e</span><span class="special">=</span></code> instead
41        of <code class="computeroutput"><span class="identifier">is_element_equal</span></code> where
42        a short notation is advantageous.
43      </p>
44<h6>
45<a name="boost_icl.semantics.sets.h0"></a>
46        <span class="phrase"><a name="boost_icl.semantics.sets.laws_on_set_union"></a></span><a class="link" href="sets.html#boost_icl.semantics.sets.laws_on_set_union">Laws
47        on set union</a>
48      </h6>
49<p>
50        For the operation <span class="emphasis"><em><span class="bold"><strong>set union</strong></span></em></span>
51        available as <code class="computeroutput"><span class="keyword">operator</span> <span class="special">+,</span>
52        <span class="special">+=,</span> <span class="special">|,</span> <span class="special">|=</span></code> and the neutral element <code class="computeroutput"><span class="identifier">identity_element</span><span class="special">&lt;</span><span class="identifier">S</span><span class="special">&gt;::</span><span class="identifier">value</span><span class="special">()</span></code>
53        which is the empty set <code class="computeroutput"><span class="identifier">S</span><span class="special">()</span></code> these laws hold:
54</p>
55<pre class="programlisting"><span class="identifier">Associativity</span><span class="special">&lt;</span><span class="identifier">S</span><span class="special">,+,==</span> <span class="special">&gt;:</span> <span class="identifier">S</span> <span class="identifier">a</span><span class="special">,</span><span class="identifier">b</span><span class="special">,</span><span class="identifier">c</span><span class="special">;</span> <span class="identifier">a</span><span class="special">+(</span><span class="identifier">b</span><span class="special">+</span><span class="identifier">c</span><span class="special">)</span> <span class="special">==</span> <span class="special">(</span><span class="identifier">a</span><span class="special">+</span><span class="identifier">b</span><span class="special">)+</span><span class="identifier">c</span>
56<span class="identifier">Neutrality</span><span class="special">&lt;</span><span class="identifier">S</span><span class="special">,+,==</span> <span class="special">&gt;</span>   <span class="special">:</span> <span class="identifier">S</span> <span class="identifier">a</span><span class="special">;</span>       <span class="identifier">a</span><span class="special">+</span><span class="identifier">S</span><span class="special">()</span> <span class="special">==</span> <span class="identifier">a</span>
57<span class="identifier">Commutativity</span><span class="special">&lt;</span><span class="identifier">S</span><span class="special">,+,==</span> <span class="special">&gt;:</span> <span class="identifier">S</span> <span class="identifier">a</span><span class="special">,</span><span class="identifier">b</span><span class="special">;</span>       <span class="identifier">a</span><span class="special">+</span><span class="identifier">b</span> <span class="special">==</span> <span class="identifier">b</span><span class="special">+</span><span class="identifier">a</span>
58</pre>
59<p>
60      </p>
61<h6>
62<a name="boost_icl.semantics.sets.h1"></a>
63        <span class="phrase"><a name="boost_icl.semantics.sets.laws_on_set_intersection"></a></span><a class="link" href="sets.html#boost_icl.semantics.sets.laws_on_set_intersection">Laws
64        on set intersection</a>
65      </h6>
66<p>
67        For the operation <span class="emphasis"><em><span class="bold"><strong>set intersection</strong></span></em></span>
68        available as <code class="computeroutput"><span class="keyword">operator</span> <span class="special">&amp;,</span>
69        <span class="special">&amp;=</span></code> these laws were validated:
70      </p>
71<p>
72</p>
73<pre class="programlisting"><span class="identifier">Associativity</span><span class="special">&lt;</span><span class="identifier">S</span><span class="special">,&amp;,==</span> <span class="special">&gt;:</span> <span class="identifier">S</span> <span class="identifier">a</span><span class="special">,</span><span class="identifier">b</span><span class="special">,</span><span class="identifier">c</span><span class="special">;</span> <span class="identifier">a</span><span class="special">&amp;(</span><span class="identifier">b</span><span class="special">&amp;</span><span class="identifier">c</span><span class="special">)</span> <span class="special">==</span> <span class="special">(</span><span class="identifier">a</span><span class="special">&amp;</span><span class="identifier">b</span><span class="special">)&amp;</span><span class="identifier">c</span>
74<span class="identifier">Commutativity</span><span class="special">&lt;</span><span class="identifier">S</span><span class="special">,&amp;,==</span> <span class="special">&gt;:</span> <span class="identifier">S</span> <span class="identifier">a</span><span class="special">,</span><span class="identifier">b</span><span class="special">;</span>       <span class="identifier">a</span><span class="special">&amp;</span><span class="identifier">b</span> <span class="special">==</span> <span class="identifier">b</span><span class="special">&amp;</span><span class="identifier">a</span>
75</pre>
76<p>
77      </p>
78<h6>
79<a name="boost_icl.semantics.sets.h2"></a>
80        <span class="phrase"><a name="boost_icl.semantics.sets.laws_on_set_difference"></a></span><a class="link" href="sets.html#boost_icl.semantics.sets.laws_on_set_difference">Laws
81        on set difference</a>
82      </h6>
83<p>
84        For set difference there are only these laws. It is not associative and not
85        commutative. It's neutrality is non symmetrical.
86      </p>
87<p>
88</p>
89<pre class="programlisting"><span class="identifier">RightNeutrality</span><span class="special">&lt;</span><span class="identifier">S</span><span class="special">,-,==</span> <span class="special">&gt;</span> <span class="special">:</span> <span class="identifier">S</span> <span class="identifier">a</span><span class="special">;</span>   <span class="identifier">a</span><span class="special">-</span><span class="identifier">S</span><span class="special">()</span> <span class="special">==</span> <span class="identifier">a</span>
90<span class="identifier">Inversion</span><span class="special">&lt;</span><span class="identifier">S</span><span class="special">,-,==</span> <span class="special">&gt;:</span>        <span class="identifier">S</span> <span class="identifier">a</span><span class="special">;</span>   <span class="identifier">a</span> <span class="special">-</span> <span class="identifier">a</span> <span class="special">==</span> <span class="identifier">S</span><span class="special">()</span>
91</pre>
92<p>
93      </p>
94<p>
95        Summarized in the next table are laws that use <code class="computeroutput"><span class="special">+</span></code>,
96        <code class="computeroutput"><span class="special">&amp;</span></code> and <code class="computeroutput"><span class="special">-</span></code>
97        as a single operation. For all validated laws, the left and right hand sides
98        of the equations are lexicographically equal, as denoted by <code class="computeroutput"><span class="special">==</span></code> in the cells of the table.
99      </p>
100<p>
101</p>
102<pre class="programlisting">                 <span class="special">+</span>    <span class="special">&amp;</span>   <span class="special">-</span>
103<span class="identifier">Associativity</span>    <span class="special">==</span>   <span class="special">==</span>
104<span class="identifier">Neutrality</span>       <span class="special">==</span>       <span class="special">==</span>
105<span class="identifier">Commutativity</span>    <span class="special">==</span>   <span class="special">==</span>
106<span class="identifier">Inversion</span>                 <span class="special">==</span>
107</pre>
108<p>
109      </p>
110<h6>
111<a name="boost_icl.semantics.sets.h3"></a>
112        <span class="phrase"><a name="boost_icl.semantics.sets.distributivity_laws"></a></span><a class="link" href="sets.html#boost_icl.semantics.sets.distributivity_laws">Distributivity
113        Laws</a>
114      </h6>
115<p>
116        Laws, like distributivity, that use more than one operation can sometimes
117        be instantiated for different sequences of operators as can be seen below.
118        In the two instantiations of the distributivity laws operators <code class="computeroutput"><span class="special">+</span></code> and <code class="computeroutput"><span class="special">&amp;</span></code>
119        are swapped. So we can have small operator signatures like <code class="computeroutput"><span class="special">+,&amp;</span></code> and <code class="computeroutput"><span class="special">&amp;,+</span></code>
120        to describe such instantiations, which will be used below. Not all instances
121        of distributivity laws hold for lexicographical equality. Therefore they
122        are denoted using a <span class="emphasis"><em>variable</em></span> equality <code class="computeroutput"><span class="special">=</span><span class="identifier">v</span><span class="special">=</span></code>
123        below.
124      </p>
125<p>
126</p>
127<pre class="programlisting">     <span class="identifier">Distributivity</span><span class="special">&lt;</span><span class="identifier">S</span><span class="special">,+,&amp;,=</span><span class="identifier">v</span><span class="special">=</span> <span class="special">&gt;</span> <span class="special">:</span> <span class="identifier">S</span> <span class="identifier">a</span><span class="special">,</span><span class="identifier">b</span><span class="special">,</span><span class="identifier">c</span><span class="special">;</span> <span class="identifier">a</span> <span class="special">+</span> <span class="special">(</span><span class="identifier">b</span> <span class="special">&amp;</span> <span class="identifier">c</span><span class="special">)</span> <span class="special">=</span><span class="identifier">v</span><span class="special">=</span> <span class="special">(</span><span class="identifier">a</span> <span class="special">+</span> <span class="identifier">b</span><span class="special">)</span> <span class="special">&amp;</span> <span class="special">(</span><span class="identifier">a</span> <span class="special">+</span> <span class="identifier">c</span><span class="special">)</span>
128     <span class="identifier">Distributivity</span><span class="special">&lt;</span><span class="identifier">S</span><span class="special">,&amp;,+,=</span><span class="identifier">v</span><span class="special">=</span> <span class="special">&gt;</span> <span class="special">:</span> <span class="identifier">S</span> <span class="identifier">a</span><span class="special">,</span><span class="identifier">b</span><span class="special">,</span><span class="identifier">c</span><span class="special">;</span> <span class="identifier">a</span> <span class="special">&amp;</span> <span class="special">(</span><span class="identifier">b</span> <span class="special">+</span> <span class="identifier">c</span><span class="special">)</span> <span class="special">=</span><span class="identifier">v</span><span class="special">=</span> <span class="special">(</span><span class="identifier">a</span> <span class="special">&amp;</span> <span class="identifier">b</span><span class="special">)</span> <span class="special">+</span> <span class="special">(</span><span class="identifier">a</span> <span class="special">&amp;</span> <span class="identifier">c</span><span class="special">)</span>
129<span class="identifier">RightDistributivity</span><span class="special">&lt;</span><span class="identifier">S</span><span class="special">,+,-,=</span><span class="identifier">v</span><span class="special">=</span> <span class="special">&gt;</span> <span class="special">:</span> <span class="identifier">S</span> <span class="identifier">a</span><span class="special">,</span><span class="identifier">b</span><span class="special">,</span><span class="identifier">c</span><span class="special">;</span> <span class="special">(</span><span class="identifier">a</span> <span class="special">+</span> <span class="identifier">b</span><span class="special">)</span> <span class="special">-</span> <span class="identifier">c</span> <span class="special">=</span><span class="identifier">v</span><span class="special">=</span> <span class="special">(</span><span class="identifier">a</span> <span class="special">-</span> <span class="identifier">c</span><span class="special">)</span> <span class="special">+</span> <span class="special">(</span><span class="identifier">b</span> <span class="special">-</span> <span class="identifier">c</span><span class="special">)</span>
130<span class="identifier">RightDistributivity</span><span class="special">&lt;</span><span class="identifier">S</span><span class="special">,&amp;,-,=</span><span class="identifier">v</span><span class="special">=</span> <span class="special">&gt;</span> <span class="special">:</span> <span class="identifier">S</span> <span class="identifier">a</span><span class="special">,</span><span class="identifier">b</span><span class="special">,</span><span class="identifier">c</span><span class="special">;</span> <span class="special">(</span><span class="identifier">a</span> <span class="special">&amp;</span> <span class="identifier">b</span><span class="special">)</span> <span class="special">-</span> <span class="identifier">c</span> <span class="special">=</span><span class="identifier">v</span><span class="special">=</span> <span class="special">(</span><span class="identifier">a</span> <span class="special">-</span> <span class="identifier">c</span><span class="special">)</span> <span class="special">&amp;</span> <span class="special">(</span><span class="identifier">b</span> <span class="special">-</span> <span class="identifier">c</span><span class="special">)</span>
131</pre>
132<p>
133      </p>
134<p>
135        The next table shows the relationship between law instances, <a class="link" href="../../index.html#boost_icl.introduction.interval_combining_styles" title="Interval Combining Styles">interval
136        combining style</a> and the used equality relation.
137      </p>
138<p>
139</p>
140<pre class="programlisting">                                  <span class="special">+,&amp;</span>    <span class="special">&amp;,+</span>
141     <span class="identifier">Distributivity</span>  <span class="identifier">joining</span>      <span class="special">==</span>     <span class="special">==</span>
142                     <span class="identifier">separating</span>   <span class="special">==</span>     <span class="special">==</span>
143                     <span class="identifier">splitting</span>    <span class="special">=</span><span class="identifier">e</span><span class="special">=</span>    <span class="special">=</span><span class="identifier">e</span><span class="special">=</span>
144
145                                  <span class="special">+,-</span>    <span class="special">&amp;,-</span>
146<span class="identifier">RightDistributivity</span>  <span class="identifier">joining</span>      <span class="special">==</span>     <span class="special">==</span>
147                     <span class="identifier">separating</span>   <span class="special">==</span>     <span class="special">==</span>
148                     <span class="identifier">splitting</span>    <span class="special">=</span><span class="identifier">e</span><span class="special">=</span>    <span class="special">==</span>
149</pre>
150<p>
151      </p>
152<p>
153        The table gives an overview over 12 instantiations of the four distributivity
154        laws and shows the equalities which the instantiations holds for. For instance
155        <code class="computeroutput"><span class="identifier">RightDistributivity</span></code> with
156        operator signature <code class="computeroutput"><span class="special">+,-</span></code> instantiated
157        for <code class="computeroutput"><a class="link" href="../../boost/icl/split_interval_set.html" title="Class template split_interval_set">split_interval_sets</a></code>
158        holds only for element equality (denoted as <code class="computeroutput"><span class="special">=</span><span class="identifier">e</span><span class="special">=</span></code>):
159</p>
160<pre class="programlisting"><span class="identifier">RightDistributivity</span><span class="special">&lt;</span><span class="identifier">S</span><span class="special">,+,-,=</span><span class="identifier">e</span><span class="special">=</span> <span class="special">&gt;</span> <span class="special">:</span> <span class="identifier">S</span> <span class="identifier">a</span><span class="special">,</span><span class="identifier">b</span><span class="special">,</span><span class="identifier">c</span><span class="special">;</span> <span class="special">(</span><span class="identifier">a</span> <span class="special">+</span> <span class="identifier">b</span><span class="special">)</span> <span class="special">-</span> <span class="identifier">c</span> <span class="special">=</span><span class="identifier">e</span><span class="special">=</span> <span class="special">(</span><span class="identifier">a</span> <span class="special">-</span> <span class="identifier">c</span><span class="special">)</span> <span class="special">+</span> <span class="special">(</span><span class="identifier">b</span> <span class="special">-</span> <span class="identifier">c</span><span class="special">)</span>
161</pre>
162<p>
163        The remaining five instantiations of <code class="computeroutput"><span class="identifier">RightDistributivity</span></code>
164        are valid for lexicographical equality (demoted as <code class="computeroutput"><span class="special">==</span></code>)
165        as well.
166      </p>
167<p>
168        <a class="link" href="../../index.html#boost_icl.introduction.interval_combining_styles" title="Interval Combining Styles">Interval
169        combining styles</a> correspond to containers according to
170</p>
171<pre class="programlisting"><span class="identifier">style</span>       <span class="identifier">set</span>
172<span class="identifier">joining</span>     <span class="identifier">interval_set</span>
173<span class="identifier">separating</span>  <span class="identifier">separate_interval_set</span>
174<span class="identifier">splitting</span>   <span class="identifier">split_interval_set</span>
175</pre>
176<p>
177      </p>
178<p>
179        Finally there are two laws that combine all three major set operations: De
180        Mogans Law and Symmetric Difference.
181      </p>
182<h6>
183<a name="boost_icl.semantics.sets.h4"></a>
184        <span class="phrase"><a name="boost_icl.semantics.sets.demorgan_s_law"></a></span><a class="link" href="sets.html#boost_icl.semantics.sets.demorgan_s_law">DeMorgan's
185        Law</a>
186      </h6>
187<p>
188        De Morgans Law is better known in an incarnation where the unary complement
189        operation <code class="computeroutput"><span class="special">~</span></code> is used. <code class="computeroutput"><span class="special">~(</span><span class="identifier">a</span><span class="special">+</span><span class="identifier">b</span><span class="special">)</span> <span class="special">==</span>
190        <span class="special">~</span><span class="identifier">a</span> <span class="special">*</span> <span class="special">~</span><span class="identifier">b</span></code>.
191        The version below is an adaption for the binary set difference <code class="computeroutput"><span class="special">-</span></code>, which is also called <span class="emphasis"><em><span class="bold"><strong>relative complement</strong></span></em></span>.
192</p>
193<pre class="programlisting"><span class="identifier">DeMorgan</span><span class="special">&lt;</span><span class="identifier">S</span><span class="special">,+,&amp;,=</span><span class="identifier">v</span><span class="special">=</span> <span class="special">&gt;</span> <span class="special">:</span> <span class="identifier">S</span> <span class="identifier">a</span><span class="special">,</span><span class="identifier">b</span><span class="special">,</span><span class="identifier">c</span><span class="special">;</span> <span class="identifier">a</span> <span class="special">-</span> <span class="special">(</span><span class="identifier">b</span> <span class="special">+</span> <span class="identifier">c</span><span class="special">)</span> <span class="special">=</span><span class="identifier">v</span><span class="special">=</span> <span class="special">(</span><span class="identifier">a</span> <span class="special">-</span> <span class="identifier">b</span><span class="special">)</span> <span class="special">&amp;</span> <span class="special">(</span><span class="identifier">a</span> <span class="special">-</span> <span class="identifier">c</span><span class="special">)</span>
194<span class="identifier">DeMorgan</span><span class="special">&lt;</span><span class="identifier">S</span><span class="special">,&amp;,+,=</span><span class="identifier">v</span><span class="special">=</span> <span class="special">&gt;</span> <span class="special">:</span> <span class="identifier">S</span> <span class="identifier">a</span><span class="special">,</span><span class="identifier">b</span><span class="special">,</span><span class="identifier">c</span><span class="special">;</span> <span class="identifier">a</span> <span class="special">-</span> <span class="special">(</span><span class="identifier">b</span> <span class="special">&amp;</span> <span class="identifier">c</span><span class="special">)</span> <span class="special">=</span><span class="identifier">v</span><span class="special">=</span> <span class="special">(</span><span class="identifier">a</span> <span class="special">-</span> <span class="identifier">b</span><span class="special">)</span> <span class="special">+</span> <span class="special">(</span><span class="identifier">a</span> <span class="special">-</span> <span class="identifier">c</span><span class="special">)</span>
195</pre>
196<p>
197      </p>
198<p>
199</p>
200<pre class="programlisting">                         <span class="special">+,&amp;</span>     <span class="special">&amp;,+</span>
201<span class="identifier">DeMorgan</span>  <span class="identifier">joining</span>        <span class="special">==</span>      <span class="special">==</span>
202          <span class="identifier">separating</span>     <span class="special">==</span>      <span class="special">=</span><span class="identifier">e</span><span class="special">=</span>
203          <span class="identifier">splitting</span>      <span class="special">==</span>      <span class="special">=</span><span class="identifier">e</span><span class="special">=</span>
204</pre>
205<p>
206      </p>
207<p>
208        Again not all law instances are valid for lexicographical equality. The second
209        instantiations only holds for element equality, if the interval sets are
210        non joining.
211      </p>
212<h6>
213<a name="boost_icl.semantics.sets.h5"></a>
214        <span class="phrase"><a name="boost_icl.semantics.sets.symmetric_difference"></a></span><a class="link" href="sets.html#boost_icl.semantics.sets.symmetric_difference">Symmetric
215        Difference</a>
216      </h6>
217<p>
218</p>
219<pre class="programlisting"><span class="identifier">SymmetricDifference</span><span class="special">&lt;</span><span class="identifier">S</span><span class="special">,==</span> <span class="special">&gt;</span> <span class="special">:</span> <span class="identifier">S</span> <span class="identifier">a</span><span class="special">,</span><span class="identifier">b</span><span class="special">,</span><span class="identifier">c</span><span class="special">;</span> <span class="special">(</span><span class="identifier">a</span> <span class="special">+</span> <span class="identifier">b</span><span class="special">)</span> <span class="special">-</span> <span class="special">(</span><span class="identifier">a</span> <span class="special">&amp;</span> <span class="identifier">b</span><span class="special">)</span> <span class="special">==</span> <span class="special">(</span><span class="identifier">a</span> <span class="special">-</span> <span class="identifier">b</span><span class="special">)</span> <span class="special">+</span> <span class="special">(</span><span class="identifier">b</span> <span class="special">-</span> <span class="identifier">a</span><span class="special">)</span>
220</pre>
221<p>
222      </p>
223<p>
224        Finally Symmetric Difference holds for all of icl set types and lexicographical
225        equality.
226      </p>
227</div>
228<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
229<td align="left"></td>
230<td align="right"><div class="copyright-footer">Copyright © 2007-2010 Joachim
231      Faulhaber<br>Copyright © 1999-2006 Cortex Software
232      GmbH<p>
233        Distributed under the Boost Software License, Version 1.0. (See accompanying
234        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
235      </p>
236</div></td>
237</tr></table>
238<hr>
239<div class="spirit-nav">
240<a accesskey="p" href="../semantics.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../semantics.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="maps.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
241</div>
242</body>
243</html>
244