• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2015 Thomas Helland
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include "nir.h"
25 #include "nir_constant_expressions.h"
26 #include "nir_loop_analyze.h"
27 #include "util/bitset.h"
28 
29 typedef enum {
30    undefined,
31    invariant,
32    not_invariant,
33    basic_induction
34 } nir_loop_variable_type;
35 
36 typedef struct nir_basic_induction_var {
37    nir_alu_instr *alu;                      /* The def of the alu-operation */
38    nir_ssa_def *def_outside_loop;           /* The phi-src outside the loop */
39 } nir_basic_induction_var;
40 
41 typedef struct {
42    /* A link for the work list */
43    struct list_head process_link;
44 
45    bool in_loop;
46 
47    /* The ssa_def associated with this info */
48    nir_ssa_def *def;
49 
50    /* The type of this ssa_def */
51    nir_loop_variable_type type;
52 
53    /* If this is of type basic_induction */
54    struct nir_basic_induction_var *ind;
55 
56    /* True if variable is in an if branch */
57    bool in_if_branch;
58 
59    /* True if variable is in a nested loop */
60    bool in_nested_loop;
61 
62    /* Could be a basic_induction if following uniforms are inlined */
63    nir_src *init_src;
64    nir_alu_src *update_src;
65 } nir_loop_variable;
66 
67 typedef struct {
68    /* The loop we store information for */
69    nir_loop *loop;
70 
71    /* Loop_variable for all ssa_defs in function */
72    nir_loop_variable *loop_vars;
73    BITSET_WORD *loop_vars_init;
74 
75    /* A list of the loop_vars to analyze */
76    struct list_head process_list;
77 
78    nir_variable_mode indirect_mask;
79 
80 } loop_info_state;
81 
82 static nir_loop_variable *
get_loop_var(nir_ssa_def * value,loop_info_state * state)83 get_loop_var(nir_ssa_def *value, loop_info_state *state)
84 {
85    nir_loop_variable *var = &(state->loop_vars[value->index]);
86 
87    if (!BITSET_TEST(state->loop_vars_init, value->index)) {
88       var->in_loop = false;
89       var->def = value;
90       var->in_if_branch = false;
91       var->in_nested_loop = false;
92       var->init_src = NULL;
93       var->update_src = NULL;
94       if (value->parent_instr->type == nir_instr_type_load_const)
95          var->type = invariant;
96       else
97          var->type = undefined;
98 
99       BITSET_SET(state->loop_vars_init, value->index);
100    }
101 
102    return var;
103 }
104 
105 typedef struct {
106    loop_info_state *state;
107    bool in_if_branch;
108    bool in_nested_loop;
109 } init_loop_state;
110 
111 static bool
init_loop_def(nir_ssa_def * def,void * void_init_loop_state)112 init_loop_def(nir_ssa_def *def, void *void_init_loop_state)
113 {
114    init_loop_state *loop_init_state = void_init_loop_state;
115    nir_loop_variable *var = get_loop_var(def, loop_init_state->state);
116 
117    if (loop_init_state->in_nested_loop) {
118       var->in_nested_loop = true;
119    } else if (loop_init_state->in_if_branch) {
120       var->in_if_branch = true;
121    } else {
122       /* Add to the tail of the list. That way we start at the beginning of
123        * the defs in the loop instead of the end when walking the list. This
124        * means less recursive calls. Only add defs that are not in nested
125        * loops or conditional blocks.
126        */
127       list_addtail(&var->process_link, &loop_init_state->state->process_list);
128    }
129 
130    var->in_loop = true;
131 
132    return true;
133 }
134 
135 /** Calculate an estimated cost in number of instructions
136  *
137  * We do this so that we don't unroll loops which will later get massively
138  * inflated due to int64 or fp64 lowering.  The estimates provided here don't
139  * have to be massively accurate; they just have to be good enough that loop
140  * unrolling doesn't cause things to blow up too much.
141  */
142 static unsigned
instr_cost(nir_instr * instr,const nir_shader_compiler_options * options)143 instr_cost(nir_instr *instr, const nir_shader_compiler_options *options)
144 {
145    if (instr->type == nir_instr_type_intrinsic ||
146        instr->type == nir_instr_type_tex)
147       return 1;
148 
149    if (instr->type != nir_instr_type_alu)
150       return 0;
151 
152    nir_alu_instr *alu = nir_instr_as_alu(instr);
153    const nir_op_info *info = &nir_op_infos[alu->op];
154    unsigned cost = 1;
155 
156    if (alu->op == nir_op_flrp) {
157       if ((options->lower_flrp16 && nir_dest_bit_size(alu->dest.dest) == 16) ||
158           (options->lower_flrp32 && nir_dest_bit_size(alu->dest.dest) == 32) ||
159           (options->lower_flrp64 && nir_dest_bit_size(alu->dest.dest) == 64))
160          cost *= 3;
161    }
162 
163    /* Assume everything 16 or 32-bit is cheap.
164     *
165     * There are no 64-bit ops that don't have a 64-bit thing as their
166     * destination or first source.
167     */
168    if (nir_dest_bit_size(alu->dest.dest) < 64 &&
169        nir_src_bit_size(alu->src[0].src) < 64)
170       return cost;
171 
172    bool is_fp64 = nir_dest_bit_size(alu->dest.dest) == 64 &&
173       nir_alu_type_get_base_type(info->output_type) == nir_type_float;
174    for (unsigned i = 0; i < info->num_inputs; i++) {
175       if (nir_src_bit_size(alu->src[i].src) == 64 &&
176           nir_alu_type_get_base_type(info->input_types[i]) == nir_type_float)
177          is_fp64 = true;
178    }
179 
180    if (is_fp64) {
181       /* If it's something lowered normally, it's expensive. */
182       if (options->lower_doubles_options &
183           nir_lower_doubles_op_to_options_mask(alu->op))
184          cost *= 20;
185 
186       /* If it's full software, it's even more expensive */
187       if (options->lower_doubles_options & nir_lower_fp64_full_software)
188          cost *= 100;
189 
190       return cost;
191    } else {
192       if (options->lower_int64_options &
193           nir_lower_int64_op_to_options_mask(alu->op)) {
194          /* These require a doing the division algorithm. */
195          if (alu->op == nir_op_idiv || alu->op == nir_op_udiv ||
196              alu->op == nir_op_imod || alu->op == nir_op_umod ||
197              alu->op == nir_op_irem)
198             return cost * 100;
199 
200          /* Other int64 lowering isn't usually all that expensive */
201          return cost * 5;
202       }
203 
204       return cost;
205    }
206 }
207 
208 static bool
init_loop_block(nir_block * block,loop_info_state * state,bool in_if_branch,bool in_nested_loop,const nir_shader_compiler_options * options)209 init_loop_block(nir_block *block, loop_info_state *state,
210                 bool in_if_branch, bool in_nested_loop,
211                 const nir_shader_compiler_options *options)
212 {
213    init_loop_state init_state = {.in_if_branch = in_if_branch,
214                                  .in_nested_loop = in_nested_loop,
215                                  .state = state };
216 
217    nir_foreach_instr(instr, block) {
218       state->loop->info->instr_cost += instr_cost(instr, options);
219       nir_foreach_ssa_def(instr, init_loop_def, &init_state);
220    }
221 
222    return true;
223 }
224 
225 static inline bool
is_var_alu(nir_loop_variable * var)226 is_var_alu(nir_loop_variable *var)
227 {
228    return var->def->parent_instr->type == nir_instr_type_alu;
229 }
230 
231 static inline bool
is_var_phi(nir_loop_variable * var)232 is_var_phi(nir_loop_variable *var)
233 {
234    return var->def->parent_instr->type == nir_instr_type_phi;
235 }
236 
237 static inline bool
mark_invariant(nir_ssa_def * def,loop_info_state * state)238 mark_invariant(nir_ssa_def *def, loop_info_state *state)
239 {
240    nir_loop_variable *var = get_loop_var(def, state);
241 
242    if (var->type == invariant)
243       return true;
244 
245    if (!var->in_loop) {
246       var->type = invariant;
247       return true;
248    }
249 
250    if (var->type == not_invariant)
251       return false;
252 
253    if (is_var_alu(var)) {
254       nir_alu_instr *alu = nir_instr_as_alu(def->parent_instr);
255 
256       for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++) {
257          if (!mark_invariant(alu->src[i].src.ssa, state)) {
258             var->type = not_invariant;
259             return false;
260          }
261       }
262       var->type = invariant;
263       return true;
264    }
265 
266    /* Phis shouldn't be invariant except if one operand is invariant, and the
267     * other is the phi itself. These should be removed by opt_remove_phis.
268     * load_consts are already set to invariant and constant during init,
269     * and so should return earlier. Remaining op_codes are set undefined.
270     */
271    var->type = not_invariant;
272    return false;
273 }
274 
275 static void
compute_invariance_information(loop_info_state * state)276 compute_invariance_information(loop_info_state *state)
277 {
278    /* An expression is invariant in a loop L if:
279     *  (base cases)
280     *    – it’s a constant
281     *    – it’s a variable use, all of whose single defs are outside of L
282     *  (inductive cases)
283     *    – it’s a pure computation all of whose args are loop invariant
284     *    – it’s a variable use whose single reaching def, and the
285     *      rhs of that def is loop-invariant
286     */
287    list_for_each_entry_safe(nir_loop_variable, var, &state->process_list,
288                             process_link) {
289       assert(!var->in_if_branch && !var->in_nested_loop);
290 
291       if (mark_invariant(var->def, state))
292          list_del(&var->process_link);
293    }
294 }
295 
296 /* If all of the instruction sources point to identical ALU instructions (as
297  * per nir_instrs_equal), return one of the ALU instructions.  Otherwise,
298  * return NULL.
299  */
300 static nir_alu_instr *
phi_instr_as_alu(nir_phi_instr * phi)301 phi_instr_as_alu(nir_phi_instr *phi)
302 {
303    nir_alu_instr *first = NULL;
304    nir_foreach_phi_src(src, phi) {
305       assert(src->src.is_ssa);
306       if (src->src.ssa->parent_instr->type != nir_instr_type_alu)
307          return NULL;
308 
309       nir_alu_instr *alu = nir_instr_as_alu(src->src.ssa->parent_instr);
310       if (first == NULL) {
311          first = alu;
312       } else {
313          if (!nir_instrs_equal(&first->instr, &alu->instr))
314             return NULL;
315       }
316    }
317 
318    return first;
319 }
320 
321 static bool
alu_src_has_identity_swizzle(nir_alu_instr * alu,unsigned src_idx)322 alu_src_has_identity_swizzle(nir_alu_instr *alu, unsigned src_idx)
323 {
324    assert(nir_op_infos[alu->op].input_sizes[src_idx] == 0);
325    assert(alu->dest.dest.is_ssa);
326    for (unsigned i = 0; i < alu->dest.dest.ssa.num_components; i++) {
327       if (alu->src[src_idx].swizzle[i] != i)
328          return false;
329    }
330 
331    return true;
332 }
333 
334 static bool
is_only_uniform_src(nir_src * src)335 is_only_uniform_src(nir_src *src)
336 {
337    if (!src->is_ssa)
338       return false;
339 
340    nir_instr *instr = src->ssa->parent_instr;
341 
342    switch (instr->type) {
343    case nir_instr_type_alu: {
344       /* Return true if all sources return true. */
345       nir_alu_instr *alu = nir_instr_as_alu(instr);
346       for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++) {
347          if (!is_only_uniform_src(&alu->src[i].src))
348              return false;
349       }
350       return true;
351    }
352 
353    case nir_instr_type_intrinsic: {
354       nir_intrinsic_instr *inst = nir_instr_as_intrinsic(instr);
355       /* current uniform inline only support load ubo */
356       return inst->intrinsic == nir_intrinsic_load_ubo;
357    }
358 
359    case nir_instr_type_load_const:
360       /* Always return true for constants. */
361       return true;
362 
363    default:
364       return false;
365    }
366 }
367 
368 static bool
compute_induction_information(loop_info_state * state)369 compute_induction_information(loop_info_state *state)
370 {
371    bool found_induction_var = false;
372    unsigned num_induction_vars = 0;
373 
374    list_for_each_entry_safe(nir_loop_variable, var, &state->process_list,
375                             process_link) {
376 
377       /* It can't be an induction variable if it is invariant. Invariants and
378        * things in nested loops or conditionals should have been removed from
379        * the list by compute_invariance_information().
380        */
381       assert(!var->in_if_branch && !var->in_nested_loop &&
382              var->type != invariant);
383 
384       /* We are only interested in checking phis for the basic induction
385        * variable case as its simple to detect. All basic induction variables
386        * have a phi node
387        */
388       if (!is_var_phi(var))
389          continue;
390 
391       nir_phi_instr *phi = nir_instr_as_phi(var->def->parent_instr);
392       nir_basic_induction_var *biv = rzalloc(state, nir_basic_induction_var);
393 
394       nir_src *init_src = NULL;
395       nir_loop_variable *alu_src_var = NULL;
396       nir_foreach_phi_src(src, phi) {
397          nir_loop_variable *src_var = get_loop_var(src->src.ssa, state);
398 
399          /* If one of the sources is in an if branch or nested loop then don't
400           * attempt to go any further.
401           */
402          if (src_var->in_if_branch || src_var->in_nested_loop)
403             break;
404 
405          /* Detect inductions variables that are incremented in both branches
406           * of an unnested if rather than in a loop block.
407           */
408          if (is_var_phi(src_var)) {
409             nir_phi_instr *src_phi =
410                nir_instr_as_phi(src_var->def->parent_instr);
411             nir_alu_instr *src_phi_alu = phi_instr_as_alu(src_phi);
412             if (src_phi_alu) {
413                src_var = get_loop_var(&src_phi_alu->dest.dest.ssa, state);
414                if (!src_var->in_if_branch)
415                   break;
416             }
417          }
418 
419          if (!src_var->in_loop && !biv->def_outside_loop) {
420             biv->def_outside_loop = src_var->def;
421             init_src = &src->src;
422          } else if (is_var_alu(src_var) && !biv->alu) {
423             alu_src_var = src_var;
424             nir_alu_instr *alu = nir_instr_as_alu(src_var->def->parent_instr);
425 
426             /* Check for unsupported alu operations */
427             if (alu->op != nir_op_iadd && alu->op != nir_op_fadd)
428                break;
429 
430             if (nir_op_infos[alu->op].num_inputs == 2) {
431                for (unsigned i = 0; i < 2; i++) {
432                   /* Is one of the operands const or uniform, and the other the phi.
433                    * The phi source can't be swizzled in any way.
434                    */
435                   if (alu->src[1-i].src.ssa == &phi->dest.ssa &&
436                       alu_src_has_identity_swizzle(alu, 1 - i)) {
437                      nir_src *src = &alu->src[i].src;
438                      if (nir_src_is_const(*src))
439                         biv->alu = alu;
440                      else if (is_only_uniform_src(src)) {
441                         /* Update value of induction variable is a statement
442                          * contains only uniform and constant
443                          */
444                         var->update_src = alu->src + i;
445                         biv->alu = alu;
446                      }
447                   }
448                }
449             }
450 
451             if (!biv->alu)
452                break;
453          } else {
454             biv->alu = NULL;
455             break;
456          }
457       }
458 
459       if (biv->alu && biv->def_outside_loop) {
460          nir_instr *inst = biv->def_outside_loop->parent_instr;
461          if (inst->type == nir_instr_type_load_const)  {
462             /* Initial value of induction variable is a constant */
463             if (var->update_src) {
464                alu_src_var->update_src = var->update_src;
465                ralloc_free(biv);
466             } else {
467                alu_src_var->type = basic_induction;
468                alu_src_var->ind = biv;
469                var->type = basic_induction;
470                var->ind = biv;
471 
472                found_induction_var = true;
473             }
474             num_induction_vars += 2;
475          } else if (is_only_uniform_src(init_src)) {
476             /* Initial value of induction variable is a uniform */
477             var->init_src = init_src;
478 
479             alu_src_var->init_src = var->init_src;
480             alu_src_var->update_src = var->update_src;
481 
482             num_induction_vars += 2;
483             ralloc_free(biv);
484          } else {
485             var->update_src = NULL;
486             ralloc_free(biv);
487          }
488       } else {
489          var->update_src = NULL;
490          ralloc_free(biv);
491       }
492    }
493 
494    nir_loop_info *info = state->loop->info;
495    ralloc_free(info->induction_vars);
496    info->num_induction_vars = 0;
497 
498    /* record induction variables into nir_loop_info */
499    if (num_induction_vars) {
500       info->induction_vars = ralloc_array(info, nir_loop_induction_variable,
501                                           num_induction_vars);
502 
503       list_for_each_entry(nir_loop_variable, var, &state->process_list,
504                           process_link) {
505          if (var->type == basic_induction || var->init_src || var->update_src) {
506             nir_loop_induction_variable *ivar =
507                &info->induction_vars[info->num_induction_vars++];
508              ivar->def = var->def;
509              ivar->init_src = var->init_src;
510              ivar->update_src = var->update_src;
511          }
512       }
513       /* don't overflow */
514       assert(info->num_induction_vars <= num_induction_vars);
515    }
516 
517    return found_induction_var;
518 }
519 
520 static bool
find_loop_terminators(loop_info_state * state)521 find_loop_terminators(loop_info_state *state)
522 {
523    bool success = false;
524    foreach_list_typed_safe(nir_cf_node, node, node, &state->loop->body) {
525       if (node->type == nir_cf_node_if) {
526          nir_if *nif = nir_cf_node_as_if(node);
527 
528          nir_block *break_blk = NULL;
529          nir_block *continue_from_blk = NULL;
530          bool continue_from_then = true;
531 
532          nir_block *last_then = nir_if_last_then_block(nif);
533          nir_block *last_else = nir_if_last_else_block(nif);
534          if (nir_block_ends_in_break(last_then)) {
535             break_blk = last_then;
536             continue_from_blk = last_else;
537             continue_from_then = false;
538          } else if (nir_block_ends_in_break(last_else)) {
539             break_blk = last_else;
540             continue_from_blk = last_then;
541          }
542 
543          /* If there is a break then we should find a terminator. If we can
544           * not find a loop terminator, but there is a break-statement then
545           * we should return false so that we do not try to find trip-count
546           */
547          if (!nir_is_trivial_loop_if(nif, break_blk)) {
548             state->loop->info->complex_loop = true;
549             return false;
550          }
551 
552          /* Continue if the if contained no jumps at all */
553          if (!break_blk)
554             continue;
555 
556          if (nif->condition.ssa->parent_instr->type == nir_instr_type_phi) {
557             state->loop->info->complex_loop = true;
558             return false;
559          }
560 
561          nir_loop_terminator *terminator =
562             rzalloc(state->loop->info, nir_loop_terminator);
563 
564          list_addtail(&terminator->loop_terminator_link,
565                       &state->loop->info->loop_terminator_list);
566 
567          terminator->nif = nif;
568          terminator->break_block = break_blk;
569          terminator->continue_from_block = continue_from_blk;
570          terminator->continue_from_then = continue_from_then;
571          terminator->conditional_instr = nif->condition.ssa->parent_instr;
572 
573          success = true;
574       }
575    }
576 
577    return success;
578 }
579 
580 /* This function looks for an array access within a loop that uses an
581  * induction variable for the array index. If found it returns the size of the
582  * array, otherwise 0 is returned. If we find an induction var we pass it back
583  * to the caller via array_index_out.
584  */
585 static unsigned
find_array_access_via_induction(loop_info_state * state,nir_deref_instr * deref,nir_loop_variable ** array_index_out)586 find_array_access_via_induction(loop_info_state *state,
587                                 nir_deref_instr *deref,
588                                 nir_loop_variable **array_index_out)
589 {
590    for (nir_deref_instr *d = deref; d; d = nir_deref_instr_parent(d)) {
591       if (d->deref_type != nir_deref_type_array)
592          continue;
593 
594       assert(d->arr.index.is_ssa);
595       nir_loop_variable *array_index = get_loop_var(d->arr.index.ssa, state);
596 
597       if (array_index->type != basic_induction)
598          continue;
599 
600       if (array_index_out)
601          *array_index_out = array_index;
602 
603       nir_deref_instr *parent = nir_deref_instr_parent(d);
604       if (glsl_type_is_array_or_matrix(parent->type)) {
605          return glsl_get_length(parent->type);
606       } else {
607          assert(glsl_type_is_vector(parent->type));
608          return glsl_get_vector_elements(parent->type);
609       }
610    }
611 
612    return 0;
613 }
614 
615 static bool
guess_loop_limit(loop_info_state * state,nir_const_value * limit_val,nir_ssa_scalar basic_ind)616 guess_loop_limit(loop_info_state *state, nir_const_value *limit_val,
617                  nir_ssa_scalar basic_ind)
618 {
619    unsigned min_array_size = 0;
620 
621    nir_foreach_block_in_cf_node(block, &state->loop->cf_node) {
622       nir_foreach_instr(instr, block) {
623          if (instr->type != nir_instr_type_intrinsic)
624             continue;
625 
626          nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
627 
628          /* Check for arrays variably-indexed by a loop induction variable. */
629          if (intrin->intrinsic == nir_intrinsic_load_deref ||
630              intrin->intrinsic == nir_intrinsic_store_deref ||
631              intrin->intrinsic == nir_intrinsic_copy_deref) {
632 
633             nir_loop_variable *array_idx = NULL;
634             unsigned array_size =
635                find_array_access_via_induction(state,
636                                                nir_src_as_deref(intrin->src[0]),
637                                                &array_idx);
638             if (array_idx && basic_ind.def == array_idx->def &&
639                 (min_array_size == 0 || min_array_size > array_size)) {
640                /* Array indices are scalars */
641                assert(basic_ind.def->num_components == 1);
642                min_array_size = array_size;
643             }
644 
645             if (intrin->intrinsic != nir_intrinsic_copy_deref)
646                continue;
647 
648             array_size =
649                find_array_access_via_induction(state,
650                                                nir_src_as_deref(intrin->src[1]),
651                                                &array_idx);
652             if (array_idx && basic_ind.def == array_idx->def &&
653                 (min_array_size == 0 || min_array_size > array_size)) {
654                /* Array indices are scalars */
655                assert(basic_ind.def->num_components == 1);
656                min_array_size = array_size;
657             }
658          }
659       }
660    }
661 
662    if (min_array_size) {
663       *limit_val = nir_const_value_for_uint(min_array_size,
664                                             basic_ind.def->bit_size);
665       return true;
666    }
667 
668    return false;
669 }
670 
671 static bool
try_find_limit_of_alu(nir_ssa_scalar limit,nir_const_value * limit_val,nir_loop_terminator * terminator,loop_info_state * state)672 try_find_limit_of_alu(nir_ssa_scalar limit, nir_const_value *limit_val,
673                       nir_loop_terminator *terminator, loop_info_state *state)
674 {
675    if (!nir_ssa_scalar_is_alu(limit))
676       return false;
677 
678    nir_op limit_op = nir_ssa_scalar_alu_op(limit);
679    if (limit_op == nir_op_imin || limit_op == nir_op_fmin) {
680       for (unsigned i = 0; i < 2; i++) {
681          nir_ssa_scalar src = nir_ssa_scalar_chase_alu_src(limit, i);
682          if (nir_ssa_scalar_is_const(src)) {
683             *limit_val = nir_ssa_scalar_as_const_value(src);
684             terminator->exact_trip_count_unknown = true;
685             return true;
686          }
687       }
688    }
689 
690    return false;
691 }
692 
693 static nir_const_value
eval_const_unop(nir_op op,unsigned bit_size,nir_const_value src0,unsigned execution_mode)694 eval_const_unop(nir_op op, unsigned bit_size, nir_const_value src0,
695                 unsigned execution_mode)
696 {
697    assert(nir_op_infos[op].num_inputs == 1);
698    nir_const_value dest;
699    nir_const_value *src[1] = { &src0 };
700    nir_eval_const_opcode(op, &dest, 1, bit_size, src, execution_mode);
701    return dest;
702 }
703 
704 static nir_const_value
eval_const_binop(nir_op op,unsigned bit_size,nir_const_value src0,nir_const_value src1,unsigned execution_mode)705 eval_const_binop(nir_op op, unsigned bit_size,
706                  nir_const_value src0, nir_const_value src1,
707                  unsigned execution_mode)
708 {
709    assert(nir_op_infos[op].num_inputs == 2);
710    nir_const_value dest;
711    nir_const_value *src[2] = { &src0, &src1 };
712    nir_eval_const_opcode(op, &dest, 1, bit_size, src, execution_mode);
713    return dest;
714 }
715 
716 static int32_t
get_iteration(nir_op cond_op,nir_const_value initial,nir_const_value step,nir_const_value limit,unsigned bit_size,unsigned execution_mode)717 get_iteration(nir_op cond_op, nir_const_value initial, nir_const_value step,
718               nir_const_value limit, unsigned bit_size,
719               unsigned execution_mode)
720 {
721    nir_const_value span, iter;
722 
723    switch (cond_op) {
724    case nir_op_ige:
725    case nir_op_ilt:
726    case nir_op_ieq:
727    case nir_op_ine:
728       span = eval_const_binop(nir_op_isub, bit_size, limit, initial,
729                               execution_mode);
730       iter = eval_const_binop(nir_op_idiv, bit_size, span, step,
731                               execution_mode);
732       break;
733 
734    case nir_op_uge:
735    case nir_op_ult:
736       span = eval_const_binop(nir_op_isub, bit_size, limit, initial,
737                               execution_mode);
738       iter = eval_const_binop(nir_op_udiv, bit_size, span, step,
739                               execution_mode);
740       break;
741 
742    case nir_op_fge:
743    case nir_op_flt:
744    case nir_op_feq:
745    case nir_op_fneu:
746       span = eval_const_binop(nir_op_fsub, bit_size, limit, initial,
747                               execution_mode);
748       iter = eval_const_binop(nir_op_fdiv, bit_size, span,
749                               step, execution_mode);
750       iter = eval_const_unop(nir_op_f2i64, bit_size, iter, execution_mode);
751       break;
752 
753    default:
754       return -1;
755    }
756 
757    uint64_t iter_u64 = nir_const_value_as_uint(iter, bit_size);
758    return iter_u64 > INT_MAX ? -1 : (int)iter_u64;
759 }
760 
761 static bool
will_break_on_first_iteration(nir_const_value step,nir_alu_type induction_base_type,unsigned trip_offset,nir_op cond_op,unsigned bit_size,nir_const_value initial,nir_const_value limit,bool limit_rhs,bool invert_cond,unsigned execution_mode)762 will_break_on_first_iteration(nir_const_value step,
763                               nir_alu_type induction_base_type,
764                               unsigned trip_offset,
765                               nir_op cond_op, unsigned bit_size,
766                               nir_const_value initial,
767                               nir_const_value limit,
768                               bool limit_rhs, bool invert_cond,
769                               unsigned execution_mode)
770 {
771    if (trip_offset == 1) {
772       nir_op add_op;
773       switch (induction_base_type) {
774       case nir_type_float:
775          add_op = nir_op_fadd;
776          break;
777       case nir_type_int:
778       case nir_type_uint:
779          add_op = nir_op_iadd;
780          break;
781       default:
782          unreachable("Unhandled induction variable base type!");
783       }
784 
785       initial = eval_const_binop(add_op, bit_size, initial, step,
786                                  execution_mode);
787    }
788 
789    nir_const_value *src[2];
790    src[limit_rhs ? 0 : 1] = &initial;
791    src[limit_rhs ? 1 : 0] = &limit;
792 
793    /* Evaluate the loop exit condition */
794    nir_const_value result;
795    nir_eval_const_opcode(cond_op, &result, 1, bit_size, src, execution_mode);
796 
797    return invert_cond ? !result.b : result.b;
798 }
799 
800 static bool
test_iterations(int32_t iter_int,nir_const_value step,nir_const_value limit,nir_op cond_op,unsigned bit_size,nir_alu_type induction_base_type,nir_const_value initial,bool limit_rhs,bool invert_cond,unsigned execution_mode)801 test_iterations(int32_t iter_int, nir_const_value step,
802                 nir_const_value limit, nir_op cond_op, unsigned bit_size,
803                 nir_alu_type induction_base_type,
804                 nir_const_value initial, bool limit_rhs, bool invert_cond,
805                 unsigned execution_mode)
806 {
807    assert(nir_op_infos[cond_op].num_inputs == 2);
808 
809    nir_const_value iter_src;
810    nir_op mul_op;
811    nir_op add_op;
812    switch (induction_base_type) {
813    case nir_type_float:
814       iter_src = nir_const_value_for_float(iter_int, bit_size);
815       mul_op = nir_op_fmul;
816       add_op = nir_op_fadd;
817       break;
818    case nir_type_int:
819    case nir_type_uint:
820       iter_src = nir_const_value_for_int(iter_int, bit_size);
821       mul_op = nir_op_imul;
822       add_op = nir_op_iadd;
823       break;
824    default:
825       unreachable("Unhandled induction variable base type!");
826    }
827 
828    /* Multiple the iteration count we are testing by the number of times we
829     * step the induction variable each iteration.
830     */
831    nir_const_value mul_result =
832       eval_const_binop(mul_op, bit_size, iter_src, step, execution_mode);
833 
834    /* Add the initial value to the accumulated induction variable total */
835    nir_const_value add_result =
836       eval_const_binop(add_op, bit_size, mul_result, initial, execution_mode);
837 
838    nir_const_value *src[2];
839    src[limit_rhs ? 0 : 1] = &add_result;
840    src[limit_rhs ? 1 : 0] = &limit;
841 
842    /* Evaluate the loop exit condition */
843    nir_const_value result;
844    nir_eval_const_opcode(cond_op, &result, 1, bit_size, src, execution_mode);
845 
846    return invert_cond ? !result.b : result.b;
847 }
848 
849 static int
calculate_iterations(nir_const_value initial,nir_const_value step,nir_const_value limit,nir_alu_instr * alu,nir_ssa_scalar cond,nir_op alu_op,bool limit_rhs,bool invert_cond,unsigned execution_mode)850 calculate_iterations(nir_const_value initial, nir_const_value step,
851                      nir_const_value limit, nir_alu_instr *alu,
852                      nir_ssa_scalar cond, nir_op alu_op, bool limit_rhs,
853                      bool invert_cond, unsigned execution_mode)
854 {
855    /* nir_op_isub should have been lowered away by this point */
856    assert(alu->op != nir_op_isub);
857 
858    /* Make sure the alu type for our induction variable is compatible with the
859     * conditional alus input type. If its not something has gone really wrong.
860     */
861    nir_alu_type induction_base_type =
862       nir_alu_type_get_base_type(nir_op_infos[alu->op].output_type);
863    if (induction_base_type == nir_type_int || induction_base_type == nir_type_uint) {
864       assert(nir_alu_type_get_base_type(nir_op_infos[alu_op].input_types[1]) == nir_type_int ||
865              nir_alu_type_get_base_type(nir_op_infos[alu_op].input_types[1]) == nir_type_uint);
866    } else {
867       assert(nir_alu_type_get_base_type(nir_op_infos[alu_op].input_types[0]) ==
868              induction_base_type);
869    }
870 
871    /* Only variable with these update ops were marked as induction. */
872    assert(alu->op == nir_op_iadd || alu->op == nir_op_fadd);
873 
874    /* do-while loops can increment the starting value before the condition is
875     * checked. e.g.
876     *
877     *    do {
878     *        ndx++;
879     *     } while (ndx < 3);
880     *
881     * Here we check if the induction variable is used directly by the loop
882     * condition and if so we assume we need to step the initial value.
883     */
884    unsigned trip_offset = 0;
885    nir_alu_instr *cond_alu = nir_instr_as_alu(cond.def->parent_instr);
886    if (cond_alu->src[0].src.ssa == &alu->dest.dest.ssa ||
887        cond_alu->src[1].src.ssa == &alu->dest.dest.ssa) {
888       trip_offset = 1;
889    }
890 
891    assert(nir_src_bit_size(alu->src[0].src) ==
892           nir_src_bit_size(alu->src[1].src));
893    unsigned bit_size = nir_src_bit_size(alu->src[0].src);
894 
895    /* get_iteration works under assumption that iterator will be
896     * incremented or decremented until it hits the limit,
897     * however if the loop condition is false on the first iteration
898     * get_iteration's assumption is broken. Handle such loops first.
899     */
900    if (will_break_on_first_iteration(step, induction_base_type, trip_offset,
901                                      alu_op, bit_size, initial,
902                                      limit, limit_rhs, invert_cond,
903                                      execution_mode)) {
904       return 0;
905    }
906 
907    int iter_int = get_iteration(alu_op, initial, step, limit, bit_size,
908                                 execution_mode);
909 
910    /* If iter_int is negative the loop is ill-formed or is the conditional is
911     * unsigned with a huge iteration count so don't bother going any further.
912     */
913    if (iter_int < 0)
914       return -1;
915 
916    /* An explanation from the GLSL unrolling pass:
917     *
918     * Make sure that the calculated number of iterations satisfies the exit
919     * condition.  This is needed to catch off-by-one errors and some types of
920     * ill-formed loops.  For example, we need to detect that the following
921     * loop does not have a maximum iteration count.
922     *
923     *    for (float x = 0.0; x != 0.9; x += 0.2);
924     */
925    for (int bias = -1; bias <= 1; bias++) {
926       const int iter_bias = iter_int + bias;
927 
928       if (test_iterations(iter_bias, step, limit, alu_op, bit_size,
929                           induction_base_type, initial,
930                           limit_rhs, invert_cond, execution_mode)) {
931          return iter_bias > 0 ? iter_bias - trip_offset : iter_bias;
932       }
933    }
934 
935    return -1;
936 }
937 
938 static nir_op
inverse_comparison(nir_op alu_op)939 inverse_comparison(nir_op alu_op)
940 {
941    switch (alu_op) {
942    case nir_op_fge:
943       return nir_op_flt;
944    case nir_op_ige:
945       return nir_op_ilt;
946    case nir_op_uge:
947       return nir_op_ult;
948    case nir_op_flt:
949       return nir_op_fge;
950    case nir_op_ilt:
951       return nir_op_ige;
952    case nir_op_ult:
953       return nir_op_uge;
954    case nir_op_feq:
955       return nir_op_fneu;
956    case nir_op_ieq:
957       return nir_op_ine;
958    case nir_op_fneu:
959       return nir_op_feq;
960    case nir_op_ine:
961       return nir_op_ieq;
962    default:
963       unreachable("Unsuported comparison!");
964    }
965 }
966 
967 static bool
get_induction_and_limit_vars(nir_ssa_scalar cond,nir_ssa_scalar * ind,nir_ssa_scalar * limit,bool * limit_rhs,loop_info_state * state)968 get_induction_and_limit_vars(nir_ssa_scalar cond,
969                              nir_ssa_scalar *ind,
970                              nir_ssa_scalar *limit,
971                              bool *limit_rhs,
972                              loop_info_state *state)
973 {
974    nir_ssa_scalar rhs, lhs;
975    lhs = nir_ssa_scalar_chase_alu_src(cond, 0);
976    rhs = nir_ssa_scalar_chase_alu_src(cond, 1);
977 
978    if (get_loop_var(lhs.def, state)->type == basic_induction) {
979       *ind = lhs;
980       *limit = rhs;
981       *limit_rhs = true;
982       return true;
983    } else if (get_loop_var(rhs.def, state)->type == basic_induction) {
984       *ind = rhs;
985       *limit = lhs;
986       *limit_rhs = false;
987       return true;
988    } else {
989       return false;
990    }
991 }
992 
993 static bool
try_find_trip_count_vars_in_iand(nir_ssa_scalar * cond,nir_ssa_scalar * ind,nir_ssa_scalar * limit,bool * limit_rhs,loop_info_state * state)994 try_find_trip_count_vars_in_iand(nir_ssa_scalar *cond,
995                                  nir_ssa_scalar *ind,
996                                  nir_ssa_scalar *limit,
997                                  bool *limit_rhs,
998                                  loop_info_state *state)
999 {
1000    const nir_op alu_op = nir_ssa_scalar_alu_op(*cond);
1001    assert(alu_op == nir_op_ieq || alu_op == nir_op_inot);
1002 
1003    nir_ssa_scalar iand = nir_ssa_scalar_chase_alu_src(*cond, 0);
1004 
1005    if (alu_op == nir_op_ieq) {
1006       nir_ssa_scalar zero = nir_ssa_scalar_chase_alu_src(*cond, 1);
1007 
1008       if (!nir_ssa_scalar_is_alu(iand) || !nir_ssa_scalar_is_const(zero)) {
1009          /* Maybe we had it the wrong way, flip things around */
1010          nir_ssa_scalar tmp = zero;
1011          zero = iand;
1012          iand = tmp;
1013 
1014          /* If we still didn't find what we need then return */
1015          if (!nir_ssa_scalar_is_const(zero))
1016             return false;
1017       }
1018 
1019       /* If the loop is not breaking on (x && y) == 0 then return */
1020       if (nir_ssa_scalar_as_uint(zero) != 0)
1021          return false;
1022    }
1023 
1024    if (!nir_ssa_scalar_is_alu(iand))
1025       return false;
1026 
1027    if (nir_ssa_scalar_alu_op(iand) != nir_op_iand)
1028       return false;
1029 
1030    /* Check if iand src is a terminator condition and try get induction var
1031     * and trip limit var.
1032     */
1033    bool found_induction_var = false;
1034    for (unsigned i = 0; i < 2; i++) {
1035       nir_ssa_scalar src = nir_ssa_scalar_chase_alu_src(iand, i);
1036       if (nir_is_supported_terminator_condition(src) &&
1037           get_induction_and_limit_vars(src, ind, limit, limit_rhs, state)) {
1038          *cond = src;
1039          found_induction_var = true;
1040 
1041          /* If we've found one with a constant limit, stop. */
1042          if (nir_ssa_scalar_is_const(*limit))
1043             return true;
1044       }
1045    }
1046 
1047    return found_induction_var;
1048 }
1049 
1050 /* Run through each of the terminators of the loop and try to infer a possible
1051  * trip-count. We need to check them all, and set the lowest trip-count as the
1052  * trip-count of our loop. If one of the terminators has an undecidable
1053  * trip-count we can not safely assume anything about the duration of the
1054  * loop.
1055  */
1056 static void
find_trip_count(loop_info_state * state,unsigned execution_mode)1057 find_trip_count(loop_info_state *state, unsigned execution_mode)
1058 {
1059    bool trip_count_known = true;
1060    bool guessed_trip_count = false;
1061    nir_loop_terminator *limiting_terminator = NULL;
1062    int max_trip_count = -1;
1063 
1064    list_for_each_entry(nir_loop_terminator, terminator,
1065                        &state->loop->info->loop_terminator_list,
1066                        loop_terminator_link) {
1067       assert(terminator->nif->condition.is_ssa);
1068       nir_ssa_scalar cond = { terminator->nif->condition.ssa, 0 };
1069 
1070       if (!nir_ssa_scalar_is_alu(cond)) {
1071          /* If we get here the loop is dead and will get cleaned up by the
1072           * nir_opt_dead_cf pass.
1073           */
1074          trip_count_known = false;
1075          continue;
1076       }
1077 
1078       nir_op alu_op = nir_ssa_scalar_alu_op(cond);
1079 
1080       bool limit_rhs;
1081       nir_ssa_scalar basic_ind = { NULL, 0 };
1082       nir_ssa_scalar limit;
1083       if ((alu_op == nir_op_inot || alu_op == nir_op_ieq) &&
1084           try_find_trip_count_vars_in_iand(&cond, &basic_ind, &limit,
1085                                            &limit_rhs, state)) {
1086 
1087          /* The loop is exiting on (x && y) == 0 so we need to get the
1088           * inverse of x or y (i.e. which ever contained the induction var) in
1089           * order to compute the trip count.
1090           */
1091          alu_op = inverse_comparison(nir_ssa_scalar_alu_op(cond));
1092          trip_count_known = false;
1093          terminator->exact_trip_count_unknown = true;
1094       }
1095 
1096       if (!basic_ind.def) {
1097          if (nir_is_supported_terminator_condition(cond)) {
1098             get_induction_and_limit_vars(cond, &basic_ind,
1099                                          &limit, &limit_rhs, state);
1100          }
1101       }
1102 
1103       /* The comparison has to have a basic induction variable for us to be
1104        * able to find trip counts.
1105        */
1106       if (!basic_ind.def) {
1107          trip_count_known = false;
1108          continue;
1109       }
1110 
1111       terminator->induction_rhs = !limit_rhs;
1112 
1113       /* Attempt to find a constant limit for the loop */
1114       nir_const_value limit_val;
1115       if (nir_ssa_scalar_is_const(limit)) {
1116          limit_val = nir_ssa_scalar_as_const_value(limit);
1117       } else {
1118          trip_count_known = false;
1119 
1120          if (!try_find_limit_of_alu(limit, &limit_val, terminator, state)) {
1121             /* Guess loop limit based on array access */
1122             if (!guess_loop_limit(state, &limit_val, basic_ind)) {
1123                continue;
1124             }
1125 
1126             guessed_trip_count = true;
1127          }
1128       }
1129 
1130       /* We have determined that we have the following constants:
1131        * (With the typical int i = 0; i < x; i++; as an example)
1132        *    - Upper limit.
1133        *    - Starting value
1134        *    - Step / iteration size
1135        * Thats all thats needed to calculate the trip-count
1136        */
1137 
1138       nir_basic_induction_var *ind_var =
1139          get_loop_var(basic_ind.def, state)->ind;
1140 
1141       /* The basic induction var might be a vector but, because we guarantee
1142        * earlier that the phi source has a scalar swizzle, we can take the
1143        * component from basic_ind.
1144        */
1145       nir_ssa_scalar initial_s = { ind_var->def_outside_loop, basic_ind.comp };
1146       nir_ssa_scalar alu_s = { &ind_var->alu->dest.dest.ssa, basic_ind.comp };
1147 
1148       nir_const_value initial_val = nir_ssa_scalar_as_const_value(initial_s);
1149 
1150       /* We are guaranteed by earlier code that at least one of these sources
1151        * is a constant but we don't know which.
1152        */
1153       nir_const_value step_val;
1154       memset(&step_val, 0, sizeof(step_val));
1155       UNUSED bool found_step_value = false;
1156       assert(nir_op_infos[ind_var->alu->op].num_inputs == 2);
1157       for (unsigned i = 0; i < 2; i++) {
1158          nir_ssa_scalar alu_src = nir_ssa_scalar_chase_alu_src(alu_s, i);
1159          if (nir_ssa_scalar_is_const(alu_src)) {
1160             found_step_value = true;
1161             step_val = nir_ssa_scalar_as_const_value(alu_src);
1162             break;
1163          }
1164       }
1165       assert(found_step_value);
1166 
1167       int iterations = calculate_iterations(initial_val, step_val, limit_val,
1168                                             ind_var->alu, cond,
1169                                             alu_op, limit_rhs,
1170                                             terminator->continue_from_then,
1171                                             execution_mode);
1172 
1173       /* Where we not able to calculate the iteration count */
1174       if (iterations == -1) {
1175          trip_count_known = false;
1176          guessed_trip_count = false;
1177          continue;
1178       }
1179 
1180       if (guessed_trip_count) {
1181          guessed_trip_count = false;
1182          if (state->loop->info->guessed_trip_count == 0 ||
1183              state->loop->info->guessed_trip_count > iterations)
1184             state->loop->info->guessed_trip_count = iterations;
1185 
1186          continue;
1187       }
1188 
1189       /* If this is the first run or we have found a smaller amount of
1190        * iterations than previously (we have identified a more limiting
1191        * terminator) set the trip count and limiting terminator.
1192        */
1193       if (max_trip_count == -1 || iterations < max_trip_count) {
1194          max_trip_count = iterations;
1195          limiting_terminator = terminator;
1196       }
1197    }
1198 
1199    state->loop->info->exact_trip_count_known = trip_count_known;
1200    if (max_trip_count > -1)
1201       state->loop->info->max_trip_count = max_trip_count;
1202    state->loop->info->limiting_terminator = limiting_terminator;
1203 }
1204 
1205 static bool
force_unroll_array_access(loop_info_state * state,nir_deref_instr * deref)1206 force_unroll_array_access(loop_info_state *state, nir_deref_instr *deref)
1207 {
1208    unsigned array_size = find_array_access_via_induction(state, deref, NULL);
1209    if (array_size) {
1210       if ((array_size == state->loop->info->max_trip_count) &&
1211           nir_deref_mode_must_be(deref, nir_var_shader_in |
1212                                         nir_var_shader_out |
1213                                         nir_var_shader_temp |
1214                                         nir_var_function_temp))
1215          return true;
1216 
1217       if (nir_deref_mode_must_be(deref, state->indirect_mask))
1218          return true;
1219    }
1220 
1221    return false;
1222 }
1223 
1224 static bool
force_unroll_heuristics(loop_info_state * state,nir_block * block)1225 force_unroll_heuristics(loop_info_state *state, nir_block *block)
1226 {
1227    nir_foreach_instr(instr, block) {
1228       if (instr->type != nir_instr_type_intrinsic)
1229          continue;
1230 
1231       nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
1232 
1233       /* Check for arrays variably-indexed by a loop induction variable.
1234        * Unrolling the loop may convert that access into constant-indexing.
1235        */
1236       if (intrin->intrinsic == nir_intrinsic_load_deref ||
1237           intrin->intrinsic == nir_intrinsic_store_deref ||
1238           intrin->intrinsic == nir_intrinsic_copy_deref) {
1239          if (force_unroll_array_access(state,
1240                                        nir_src_as_deref(intrin->src[0])))
1241             return true;
1242 
1243          if (intrin->intrinsic == nir_intrinsic_copy_deref &&
1244              force_unroll_array_access(state,
1245                                        nir_src_as_deref(intrin->src[1])))
1246             return true;
1247       }
1248    }
1249 
1250    return false;
1251 }
1252 
1253 static void
get_loop_info(loop_info_state * state,nir_function_impl * impl)1254 get_loop_info(loop_info_state *state, nir_function_impl *impl)
1255 {
1256    nir_shader *shader = impl->function->shader;
1257    const nir_shader_compiler_options *options = shader->options;
1258 
1259    /* Add all entries in the outermost part of the loop to the processing list
1260     * Mark the entries in conditionals or in nested loops accordingly
1261     */
1262    foreach_list_typed_safe(nir_cf_node, node, node, &state->loop->body) {
1263       switch (node->type) {
1264 
1265       case nir_cf_node_block:
1266          init_loop_block(nir_cf_node_as_block(node), state,
1267                          false, false, options);
1268          break;
1269 
1270       case nir_cf_node_if:
1271          nir_foreach_block_in_cf_node(block, node)
1272             init_loop_block(block, state, true, false, options);
1273          break;
1274 
1275       case nir_cf_node_loop:
1276          nir_foreach_block_in_cf_node(block, node) {
1277             init_loop_block(block, state, false, true, options);
1278          }
1279          break;
1280 
1281       case nir_cf_node_function:
1282          break;
1283       }
1284    }
1285 
1286    /* Try to find all simple terminators of the loop. If we can't find any,
1287     * or we find possible terminators that have side effects then bail.
1288     */
1289    if (!find_loop_terminators(state)) {
1290       list_for_each_entry_safe(nir_loop_terminator, terminator,
1291                                &state->loop->info->loop_terminator_list,
1292                                loop_terminator_link) {
1293          list_del(&terminator->loop_terminator_link);
1294          ralloc_free(terminator);
1295       }
1296       return;
1297    }
1298 
1299    /* Induction analysis needs invariance information so get that first */
1300    compute_invariance_information(state);
1301 
1302    /* We have invariance information so try to find induction variables */
1303    if (!compute_induction_information(state))
1304       return;
1305 
1306    /* Run through each of the terminators and try to compute a trip-count */
1307    find_trip_count(state, impl->function->shader->info.float_controls_execution_mode);
1308 
1309    nir_foreach_block_in_cf_node(block, &state->loop->cf_node) {
1310       if (force_unroll_heuristics(state, block)) {
1311          state->loop->info->force_unroll = true;
1312          break;
1313       }
1314    }
1315 }
1316 
1317 static loop_info_state *
initialize_loop_info_state(nir_loop * loop,void * mem_ctx,nir_function_impl * impl)1318 initialize_loop_info_state(nir_loop *loop, void *mem_ctx,
1319                            nir_function_impl *impl)
1320 {
1321    loop_info_state *state = rzalloc(mem_ctx, loop_info_state);
1322    state->loop_vars = ralloc_array(mem_ctx, nir_loop_variable,
1323                                    impl->ssa_alloc);
1324    state->loop_vars_init = rzalloc_array(mem_ctx, BITSET_WORD,
1325                                          BITSET_WORDS(impl->ssa_alloc));
1326    state->loop = loop;
1327 
1328    list_inithead(&state->process_list);
1329 
1330    if (loop->info)
1331      ralloc_free(loop->info);
1332 
1333    loop->info = rzalloc(loop, nir_loop_info);
1334 
1335    list_inithead(&loop->info->loop_terminator_list);
1336 
1337    return state;
1338 }
1339 
1340 static void
process_loops(nir_cf_node * cf_node,nir_variable_mode indirect_mask)1341 process_loops(nir_cf_node *cf_node, nir_variable_mode indirect_mask)
1342 {
1343    switch (cf_node->type) {
1344    case nir_cf_node_block:
1345       return;
1346    case nir_cf_node_if: {
1347       nir_if *if_stmt = nir_cf_node_as_if(cf_node);
1348       foreach_list_typed(nir_cf_node, nested_node, node, &if_stmt->then_list)
1349          process_loops(nested_node, indirect_mask);
1350       foreach_list_typed(nir_cf_node, nested_node, node, &if_stmt->else_list)
1351          process_loops(nested_node, indirect_mask);
1352       return;
1353    }
1354    case nir_cf_node_loop: {
1355       nir_loop *loop = nir_cf_node_as_loop(cf_node);
1356       foreach_list_typed(nir_cf_node, nested_node, node, &loop->body)
1357          process_loops(nested_node, indirect_mask);
1358       break;
1359    }
1360    default:
1361       unreachable("unknown cf node type");
1362    }
1363 
1364    nir_loop *loop = nir_cf_node_as_loop(cf_node);
1365    nir_function_impl *impl = nir_cf_node_get_function(cf_node);
1366    void *mem_ctx = ralloc_context(NULL);
1367 
1368    loop_info_state *state = initialize_loop_info_state(loop, mem_ctx, impl);
1369    state->indirect_mask = indirect_mask;
1370 
1371    get_loop_info(state, impl);
1372 
1373    ralloc_free(mem_ctx);
1374 }
1375 
1376 void
nir_loop_analyze_impl(nir_function_impl * impl,nir_variable_mode indirect_mask)1377 nir_loop_analyze_impl(nir_function_impl *impl,
1378                       nir_variable_mode indirect_mask)
1379 {
1380    nir_index_ssa_defs(impl);
1381    foreach_list_typed(nir_cf_node, node, node, &impl->body)
1382       process_loops(node, indirect_mask);
1383 }
1384