• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * Copyright 2020 Huawei Technologies Co., Ltd
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  * http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "src/runtime/kernel/arm/base/tile_base.h"
18 #include "src/kernel_registry.h"
19 #include "nnacl/nnacl_common.h"
20 #include "include/errorcode.h"
21 #include "nnacl/errorcode.h"
22 
23 using mindspore::lite::KernelRegistrar;
24 using mindspore::lite::RET_ERROR;
25 using mindspore::lite::RET_OK;
26 using mindspore::schema::PrimitiveType_TileFusion;
27 
28 namespace mindspore::kernel {
29 namespace {
30 constexpr size_t kDoubleInputsSize = 2;
31 }
Init()32 int TileCPUKernel::Init() {
33   CHECK_LESS_RETURN(in_tensors_.size(), 1);
34   CHECK_LESS_RETURN(out_tensors_.size(), 1);
35   if (!InferShapeDone()) {
36     return RET_OK;
37   }
38   return ReSize();
39 }
40 
ReSize()41 int TileCPUKernel::ReSize() {
42   tile_parameter_ = reinterpret_cast<TileParameter *>(op_parameter_);
43   CHECK_NULL_RETURN(tile_parameter_);
44   if (in_tensors_.size() == kDoubleInputsSize) {
45     if (in_tensors_[1]->ElementsNum() > static_cast<int>(in_tensors_[0]->shape().size())) {
46       MS_LOG(ERROR) << "tile's input1 data_num cannot be larger than input0's shape_size.";
47       return RET_ERROR;
48     }
49     if (in_tensors_[1]->data_type() != kNumberTypeInt && in_tensors_[1]->data_type() != kNumberTypeInt32) {
50       MS_LOG(ERROR) << "in_tensors_[1]->data_type():" << in_tensors_[1]->data_type()
51                     << " must be kNumberTypeInt32 or kNumberTypeInt!";
52       return RET_ERROR;
53     }
54     auto input1_addr = reinterpret_cast<int *>(in_tensors_[1]->data());
55     for (int i = 0; i < in_tensors_[1]->ElementsNum(); ++i) {
56       tile_parameter_->dims_[i] = i;
57       tile_parameter_->multiples_[i] = input1_addr[i];
58     }
59   }
60   tile_parameter_->in_dim_ = in_tensors_.at(0)->shape().size();
61   CHECK_LESS_RETURN(tile_parameter_->in_dim_, 1);
62   for (int i = 0; i < tile_parameter_->in_dim_; ++i) {
63     tile_parameter_->in_shape_[i] = in_tensors_.at(0)->shape().at(i);
64     tile_parameter_->out_shape_[i] = out_tensors_.at(0)->shape().at(i);
65   }
66   ComputeStrides(tile_parameter_->in_shape_, tile_parameter_->in_strides_, tile_parameter_->in_dim_);
67   ComputeStrides(tile_parameter_->out_shape_, tile_parameter_->out_strides_, tile_parameter_->in_dim_);
68 
69   auto data_type = in_tensors_.at(0)->data_type();
70   if (data_type == kNumberTypeFloat32 || data_type == kNumberTypeInt32) {
71     tile_parameter_->data_size_ = sizeof(float);
72   } else if (data_type == kNumberTypeFloat16) {
73     tile_parameter_->data_size_ = sizeof(float) / 2;
74   } else {
75     MS_LOG(ERROR) << "tile not support data type: " << data_type;
76     return RET_ERROR;
77   }
78 
79   return FillOneDimTileParam();
80 }
81 
SimpleTile(void * cdata,int task_id,float lhs_scale,float rhs_scale)82 int SimpleTile(void *cdata, int task_id, float lhs_scale, float rhs_scale) {
83   CHECK_NULL_RETURN(cdata);
84   auto kernel = reinterpret_cast<TileCPUKernel *>(cdata);
85   auto ret = kernel->SimpleTileImpl(task_id);
86   if (ret != RET_OK) {
87     MS_LOG(ERROR) << "SimpleTile error task_id[" << task_id << "] error_code[" << ret << "]";
88     return ret;
89   }
90   return RET_OK;
91 }
92 
FillOneDimTileParam()93 int TileCPUKernel::FillOneDimTileParam() {
94   // check if tile exact one dim
95   int large_one_multiple_count = 0;
96   int multiple = 0;
97   int mul_index = 0;
98   CHECK_LESS_RETURN(MAX_TILE_DIM_SIZE - 1, tile_parameter_->in_dim_);
99   for (auto i = 0; i < tile_parameter_->in_dim_; ++i) {
100     if (tile_parameter_->multiples_[i] > 1) {
101       large_one_multiple_count++;
102       multiple = tile_parameter_->multiples_[i];
103       mul_index = i;
104     }
105   }
106   one_dim_tile_ = large_one_multiple_count == 1;
107   if (one_dim_tile_) {
108     tile_parameter_->fast_multiple_ = static_cast<size_t>(multiple);
109     MS_CHECK_FALSE(INT_MUL_OVERFLOW(tile_parameter_->in_shape_[mul_index], tile_parameter_->in_strides_[mul_index]),
110                    mindspore::lite::RET_ERROR);
111     tile_parameter_->fast_stride_ =
112       static_cast<size_t>(tile_parameter_->in_shape_[mul_index] * tile_parameter_->in_strides_[mul_index]);
113     CHECK_LESS_RETURN(tile_parameter_->fast_stride_, 1);
114     tile_parameter_->fast_outer_size_ =
115       static_cast<size_t>(in_tensors_.at(0)->ElementsNum()) / tile_parameter_->fast_stride_;
116   }
117   return RET_OK;
118 }
119 
SimpleTileImpl(int task_id)120 int TileCPUKernel::SimpleTileImpl(int task_id) {
121   CHECK_LESS_RETURN(static_cast<size_t>(op_parameter_->thread_num_), 1);
122   size_t unit = UP_DIV(tile_parameter_->fast_outer_size_, static_cast<size_t>(op_parameter_->thread_num_));
123   if (unit == 0 && task_id > 0) {
124     return RET_OK;
125   }
126   MS_CHECK_FALSE(INT_MUL_OVERFLOW(unit, static_cast<size_t>(task_id)), RET_ERROR);
127   size_t begin = unit * static_cast<size_t>(task_id);
128   size_t end = MSMIN(begin + unit, tile_parameter_->fast_outer_size_);
129   TileSimple(input_addr_, output_addr_, begin, end, tile_parameter_);
130   return RET_OK;
131 }
132 
RunSimpleTile()133 int TileCPUKernel::RunSimpleTile() {
134   auto ret = ParallelLaunch(this->ms_context_, SimpleTile, this, op_parameter_->thread_num_);
135   if (ret != RET_OK) {
136     MS_LOG(ERROR) << "RunSimpleTile error code[" << ret << "]";
137     return ret;
138   }
139   return RET_OK;
140 }
141 
Run()142 int TileCPUKernel::Run() {
143   auto data_type = in_tensors_.at(0)->data_type();
144   tile_parameter_->data_size_ = lite::DataTypeSize(data_type);
145   input_addr_ = reinterpret_cast<uint8_t *>(in_tensors_.at(0)->data());
146   output_addr_ = reinterpret_cast<uint8_t *>(out_tensors_.at(0)->data());
147   CHECK_NULL_RETURN(input_addr_);
148   CHECK_NULL_RETURN(output_addr_);
149   if (one_dim_tile_) {
150     return RunSimpleTile();
151   }
152   Tile(input_addr_, output_addr_, reinterpret_cast<TileParameter *>(op_parameter_));
153   return RET_OK;
154 }
155 
156 REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_TileFusion, LiteKernelCreator<TileCPUKernel>)
157 REG_KERNEL(kCPU, kNumberTypeInt32, PrimitiveType_TileFusion, LiteKernelCreator<TileCPUKernel>)
158 REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_TileFusion, LiteKernelCreator<TileCPUKernel>)
159 }  // namespace mindspore::kernel
160