• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * Copyright 2021 Huawei Technologies Co., Ltd
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  * http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 #include "src/runtime/kernel/arm/fp16/layer_norm_fp16.h"
17 #include <vector>
18 #include "schema/model_generated.h"
19 #include "src/kernel_registry.h"
20 #include "include/errorcode.h"
21 #include "nnacl/fp16/layer_norm_fp16.h"
22 
23 using mindspore::kernel::KERNEL_ARCH;
24 using mindspore::lite::KernelRegistrar;
25 using mindspore::lite::RET_ERROR;
26 using mindspore::lite::RET_OK;
27 using mindspore::schema::PrimitiveType_LayerNormFusion;
28 
29 namespace mindspore::kernel {
Init()30 int LayerNormFp16CPUKernel::Init() {
31   CHECK_LESS_RETURN(in_tensors_.size(), 3);
32   CHECK_LESS_RETURN(out_tensors_.size(), 1);
33   CHECK_NULL_RETURN(param_);
34   if (!InferShapeDone()) {
35     return RET_OK;
36   }
37   return ReSize();
38 }
39 
ReSize()40 int LayerNormFp16CPUKernel::ReSize() {
41   auto input = in_tensors_.front();
42   CHECK_NULL_RETURN(input);
43   auto shape = input->shape();
44   param_->begin_norm_axis_ =
45     param_->begin_norm_axis_ > 0 ? param_->begin_norm_axis_ : param_->begin_norm_axis_ + shape.size();
46   param_->begin_params_axis_ =
47     param_->begin_params_axis_ > 0 ? param_->begin_params_axis_ : param_->begin_params_axis_ + shape.size();
48 
49   param_->norm_outer_size_ = 1;
50   for (int i = 0; i < param_->begin_norm_axis_; ++i) {
51     param_->norm_outer_size_ *= shape.at(i);
52   }
53   param_->norm_inner_size_ = 1;
54   for (size_t i = param_->begin_norm_axis_; i < shape.size(); ++i) {
55     param_->norm_inner_size_ *= shape.at(i);
56   }
57   param_->params_outer_size_ = 1;
58   for (int i = 0; i < param_->begin_params_axis_; ++i) {
59     param_->params_outer_size_ *= shape.at(i);
60   }
61   param_->params_inner_size_ = 1;
62   for (size_t i = param_->begin_params_axis_; i < shape.size(); ++i) {
63     param_->params_inner_size_ *= shape.at(i);
64   }
65   op_parameter_->thread_num_ = MSMIN(param_->norm_outer_size_, op_parameter_->thread_num_);
66   return RET_OK;
67 }
68 
DoLayerNormFp16(int thread_id)69 int LayerNormFp16CPUKernel::DoLayerNormFp16(int thread_id) {
70   auto ret = LayerNormFp16(src_data_, gamma_data_, beta_data_, dst_data_, mean_data_, var_data_, param_, thread_id);
71   if (ret != RET_OK) {
72     MS_LOG(ERROR) << "DoLayerNorm error error_code[" << ret << "]";
73     return ret;
74   }
75   return RET_OK;
76 }
77 
LayerNormFp16Run(void * cdata,int task_id,float lhs_scale,float rhs_scale)78 int LayerNormFp16Run(void *cdata, int task_id, float lhs_scale, float rhs_scale) {
79   auto kernel = reinterpret_cast<LayerNormFp16CPUKernel *>(cdata);
80   CHECK_NULL_RETURN(kernel);
81   auto ret = kernel->DoLayerNormFp16(task_id);
82   if (ret != RET_OK) {
83     MS_LOG(ERROR) << "LayerNormFp16Run error task_id[" << task_id << "] error_code[" << ret << "]";
84     return RET_ERROR;
85   }
86   return RET_OK;
87 }
88 
Run()89 int LayerNormFp16CPUKernel::Run() {
90   src_data_ = reinterpret_cast<float16_t *>(in_tensors_.at(0)->data());
91   CHECK_NULL_RETURN(src_data_);
92   gamma_data_ = reinterpret_cast<float16_t *>(in_tensors_.at(1)->data());
93   CHECK_NULL_RETURN(gamma_data_);
94   beta_data_ = reinterpret_cast<float16_t *>(in_tensors_.at(2)->data());
95   CHECK_NULL_RETURN(beta_data_);
96   dst_data_ = reinterpret_cast<float16_t *>(out_tensors_.at(0)->data());
97   CHECK_NULL_RETURN(dst_data_);
98 
99   if (out_tensors_.size() == 3) {
100     mean_data_ = reinterpret_cast<float16_t *>(out_tensors_.at(1)->data());
101     CHECK_NULL_RETURN(mean_data_);
102     var_data_ = reinterpret_cast<float16_t *>(out_tensors_.at(2)->data());
103     CHECK_NULL_RETURN(var_data_);
104   } else if (out_tensors_.size() != 1) {
105     MS_LOG(ERROR) << "LayerNorm should have 1 or 3 output tensors";
106     return RET_ERROR;
107   }
108   auto ret = ParallelLaunch(this->ms_context_, LayerNormFp16Run, this, op_parameter_->thread_num_);
109   return ret;
110 }
111 
112 REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_LayerNormFusion, LiteKernelCreator<LayerNormFp16CPUKernel>)
113 }  // namespace mindspore::kernel
114