• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * Copyright 2021 Huawei Technologies Co., Ltd
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  * http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "src/runtime/kernel/arm/fp32/log_softmax_fp32.h"
18 #include <cstring>
19 #include <vector>
20 #include "nnacl/fp32/log_softmax_fp32.h"
21 #include "schema/model_generated.h"
22 #include "src/kernel_registry.h"
23 #include "include/errorcode.h"
24 
25 using mindspore::kernel::KERNEL_ARCH;
26 using mindspore::lite::KernelRegistrar;
27 using mindspore::lite::RET_ERROR;
28 using mindspore::lite::RET_OK;
29 using mindspore::schema::PrimitiveType_LogSoftmax;
30 
31 namespace mindspore::kernel {
~LogSoftmaxCPUKernel()32 LogSoftmaxCPUKernel::~LogSoftmaxCPUKernel() {
33   if (tmp_data_ != nullptr) {
34     free(tmp_data_);
35     tmp_data_ = nullptr;
36   }
37 }
38 
Init()39 int LogSoftmaxCPUKernel::Init() {
40   auto ret = SoftmaxBaseCPUKernel::Init();
41   if (ret != RET_OK) {
42     return ret;
43   }
44 
45   if (!InferShapeDone()) {
46     return RET_OK;
47   }
48   return ReSize();
49 }
50 
ReSize()51 int LogSoftmaxCPUKernel::ReSize() {
52   auto ret = SoftmaxBaseCPUKernel::ReSize();
53   if (ret != RET_OK) {
54     return ret;
55   }
56   auto n_dim = softmax_param_->n_dim_;
57   auto axis = softmax_param_->axis_;
58   auto in_shape = in_tensors_.front()->shape();
59   int out_plane_size = 1;
60   for (int i = 0; i < axis; ++i) {
61     out_plane_size *= in_shape.at(i);
62   }
63   int in_plane_size = 1;
64   for (int i = axis + 1; i < n_dim; i++) {
65     in_plane_size *= in_shape.at(i);
66   }
67   in_plane_size_ = in_plane_size;
68   out_plane_size_ = out_plane_size;
69   auto tmp_data_size =
70     in_plane_size == 1 ? out_plane_size * in_plane_size * in_shape.at(axis) : out_plane_size * in_plane_size;
71   if (tmp_data_ != nullptr) {
72     free(tmp_data_);
73   }
74   tmp_data_ = reinterpret_cast<float *>(malloc(tmp_data_size * sizeof(float)));
75   if (tmp_data_ == nullptr) {
76     MS_LOG(ERROR) << "malloc data for log_softmax fail!";
77     return RET_ERROR;
78   }
79   return RET_OK;
80 }
81 
DoLogSoftmaxLastAxis(int task_id)82 int LogSoftmaxCPUKernel::DoLogSoftmaxLastAxis(int task_id) {
83   MS_CHECK_FALSE(op_parameter_->thread_num_ == 0, RET_ERROR);
84   int unit = UP_DIV(out_plane_size_, op_parameter_->thread_num_);
85   int begin = task_id * unit;
86   int end = MSMIN(begin + unit, out_plane_size_);
87   int channel = softmax_param_->input_shape_[softmax_param_->axis_];
88   int offset = begin * channel;
89   auto input_ptr = reinterpret_cast<float *>(in_tensors_.at(kInputIndex)->data());
90   CHECK_NULL_RETURN(input_ptr);
91   auto output_ptr = reinterpret_cast<float *>(out_tensors_.at(kOutputIndex)->data());
92   CHECK_NULL_RETURN(output_ptr);
93   LogSoftmaxLastAxis(input_ptr + offset, output_ptr + offset, tmp_data_ + offset, end - begin, channel);
94   return RET_OK;
95 }
96 
LogSoftmaxLastAxisRun(void * cdata,int task_id,float lhs_scale,float rhs_scale)97 int LogSoftmaxLastAxisRun(void *cdata, int task_id, float lhs_scale, float rhs_scale) {
98   auto kernel = reinterpret_cast<LogSoftmaxCPUKernel *>(cdata);
99   CHECK_NULL_RETURN(kernel);
100   auto ret = kernel->DoLogSoftmaxLastAxis(task_id);
101   if (ret != RET_OK) {
102     MS_LOG(ERROR) << "DoLogSoftmaxLastAxis error task_id: " << task_id << ", ret: " << ret;
103   }
104   return ret;
105 }
106 
Run()107 int LogSoftmaxCPUKernel::Run() {
108   int ret = RET_OK;
109   if (in_plane_size_ == 1) {
110     ret = ParallelLaunch(this->ms_context_, LogSoftmaxLastAxisRun, this, op_parameter_->thread_num_);
111     if (ret != RET_OK) {
112       MS_LOG(ERROR) << "LogSoftmaxCPUKernel ParallelLaunch failed, ret: " << ret;
113     }
114   } else {
115     auto input_ptr = reinterpret_cast<float *>(in_tensors_.at(kInputIndex)->data());
116     CHECK_NULL_RETURN(input_ptr);
117     auto output_ptr = reinterpret_cast<float *>(out_tensors_.at(kOutputIndex)->data());
118     CHECK_NULL_RETURN(output_ptr);
119     CHECK_NULL_RETURN(tmp_data_);
120     LogSoftmax(input_ptr, output_ptr, tmp_data_, softmax_param_);
121   }
122   return ret;
123 }
124 
125 REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_LogSoftmax, LiteKernelCreator<LogSoftmaxCPUKernel>)
126 }  // namespace mindspore::kernel
127