• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * Copyright 2020 Huawei Technologies Co., Ltd
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  * http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "src/runtime/kernel/arm/fp32/unstack_fp32.h"
18 #include "src/kernel_registry.h"
19 #include "include/errorcode.h"
20 
21 using mindspore::lite::KernelRegistrar;
22 using mindspore::lite::RET_ERROR;
23 using mindspore::lite::RET_OK;
24 using mindspore::schema::PrimitiveType_Unstack;
25 
26 namespace mindspore::kernel {
Init()27 int UnstackCPUKernel::Init() {
28   MS_CHECK_TRUE_RET(in_tensors_.size() == 1, RET_ERROR);
29   MS_CHECK_TRUE_RET(out_tensors_.size() >= 1, RET_ERROR);
30   CHECK_NULL_RETURN(in_tensors_.front());
31   CHECK_NULL_RETURN(out_tensors_.front());
32   CHECK_NULL_RETURN(op_parameter_);
33   if (!InferShapeDone()) {
34     return RET_OK;
35   }
36   return ReSize();
37 }
38 
ReSize()39 int UnstackCPUKernel::ReSize() {
40   auto input = in_tensors_.at(0);
41   size_t shape_size = input->shape().size();
42 
43   auto para = reinterpret_cast<UnstackParameter *>(op_parameter_);
44   para->pre_dims_ = 1;
45   para->axis_dim_ = 1;
46   para->after_dims_ = 1;
47   if (para->axis_ < 0) {
48     para->axis_ += static_cast<int>(shape_size);
49   }
50 
51   for (size_t i = 0; i < shape_size; i++) {
52     if (static_cast<int>(i) < para->axis_) {
53       para->pre_dims_ *= input->DimensionSize(i);
54     } else if (static_cast<int>(i) > para->axis_) {
55       para->after_dims_ *= input->DimensionSize(i);
56     } else {
57       para->axis_dim_ = input->DimensionSize(i);
58     }
59   }
60   if (output_addr_array_ != nullptr) {
61     free(output_addr_array_);
62     output_addr_array_ = nullptr;
63   }
64   MS_CHECK_FALSE_MSG(SIZE_MUL_OVERFLOW(sizeof(void *), out_tensors_.size()), RET_ERROR, "mul overflow");
65   output_addr_array_ = reinterpret_cast<void **>(malloc(sizeof(void *) * out_tensors_.size()));
66   if (output_addr_array_ == nullptr) {
67     MS_LOG(ERROR) << "Failed to malloc memory";
68     return lite::RET_ERROR;
69   }
70   return RET_OK;
71 }
72 
Run()73 int UnstackCPUKernel::Run() {
74   float *input = reinterpret_cast<float *>(in_tensors_.at(0)->MutableData());
75   CHECK_NULL_RETURN(input);
76   size_t out_num = out_tensors_.size();
77   for (size_t i = 0; i < out_num; i++) {
78     output_addr_array_[i] = out_tensors_.at(i)->data();
79     CHECK_NULL_RETURN(output_addr_array_[i]);
80   }
81   auto para = reinterpret_cast<UnstackParameter *>(op_parameter_);
82   para->num_ = static_cast<int>(out_num);
83   Unstack(input, output_addr_array_, para, sizeof(float));
84   return RET_OK;
85 }
86 
87 REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Unstack, LiteKernelCreator<UnstackCPUKernel>)
88 }  // namespace mindspore::kernel
89