• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright Paul A. Bristow 2016, 2017, 2018.
2 // Copyright John Maddock 2016.
3 
4 // Use, modification and distribution are subject to the
5 // Boost Software License, Version 1.0.
6 // (See accompanying file LICENSE_1_0.txt
7 // or copy at http://www.boost.org/LICENSE_1_0.txt)
8 
9 // test_lambert_w.cpp
10 //! \brief Basic sanity tests for Lambert W function using algorithms
11 // informed by Thomas Luu, Darko Veberic and Tosio Fukushima for W0
12 // and rational polynomials by John Maddock.
13 
14 // #define BOOST_MATH_TEST_MULTIPRECISION  // Add tests for several multiprecision types (not just built-in).
15 // #define BOOST_MATH_TEST_FLOAT128 // Add test using float128 type (GCC only, needing gnu++17 and quadmath library).
16 
17 #ifdef BOOST_MATH_TEST_FLOAT128
18 #include <boost/cstdfloat.hpp> // For float_64_t, float128_t. Must be first include!
19 #endif // #ifdef #ifdef BOOST_MATH_TEST_FLOAT128
20 // Needs gnu++17 for BOOST_HAS_FLOAT128
21 #include <boost/config.hpp>   // for BOOST_MSVC definition etc.
22 #include <boost/version.hpp>   // for BOOST_MSVC versions.
23 
24 // Boost macros
25 #define BOOST_TEST_MAIN
26 #define BOOST_LIB_DIAGNOSTIC "on" // Report library file details.
27 //#define BOOST_TEST_LOG_LEVEL all  // Appears not to work???
28 // run with --log_level="message"
29 
30 #include <boost/test/included/unit_test.hpp> // Boost.Test
31 // #include <boost/test/unit_test.hpp> // Boost.Test
32 #include <boost/test/tools/floating_point_comparison.hpp>
33 
34 #include <boost/array.hpp>
35 #include <boost/lexical_cast.hpp>
36 #include <boost/type_traits/is_constructible.hpp>
37 
38 #ifdef BOOST_MATH_TEST_MULTIPRECISION
39 #include <boost/multiprecision/cpp_dec_float.hpp> // boost::multiprecision::cpp_dec_float_50
40 using boost::multiprecision::cpp_dec_float_50;
41 
42 #include <boost/multiprecision/cpp_bin_float.hpp>
43 using boost::multiprecision::cpp_bin_float_quad;
44 
45 #include <boost/math/concepts/real_concept.hpp>
46 
47 #ifdef BOOST_MATH_TEST_FLOAT128
48 
49 #ifdef BOOST_HAS_FLOAT128
50 // Including this header below without float128 triggers:
51 // fatal error C1189: #error:  "Sorry compiler is neither GCC, not Intel, don't know how to configure this header."
52 #include <boost/multiprecision/float128.hpp>
53 using boost::multiprecision::float128;
54 #endif // ifdef BOOST_HAS_FLOAT128
55 #endif // #ifdef #ifdef BOOST_MATH_TEST_FLOAT128
56 
57 #endif //   #ifdef BOOST_MATH_TEST_MULTIPRECISION
58 
59 //#include <boost/fixed_point/fixed_point.hpp> // If available.
60 
61 #include <boost/math/concepts/real_concept.hpp> // for real_concept tests.
62 #include <boost/math/special_functions/fpclassify.hpp> // isnan, isfinite.
63 #include <boost/math/special_functions/next.hpp> // float_next, float_prior
64 using boost::math::float_next;
65 using boost::math::float_prior;
66 #include <boost/math/special_functions/ulp.hpp>  // ulp
67 
68 #include <boost/math/tools/test_value.hpp>  // for create_test_value and macro BOOST_MATH_TEST_VALUE.
69 #include <boost/math/policies/policy.hpp>
70 using boost::math::policies::digits2;
71 using boost::math::policies::digits10;
72 #include <boost/math/special_functions/lambert_w.hpp> // For Lambert W lambert_w function.
73 using boost::math::lambert_wm1;
74 using boost::math::lambert_w0;
75 
76 #include "table_type.hpp"
77 
78 #ifndef SC_
79 #  define SC_(x) boost::lexical_cast<typename table_type<T>::type>(BOOST_STRINGIZE(x))
80 #endif
81 
82 
83 #include <limits>
84 #include <cmath>
85 #include <typeinfo>
86 #include <iostream>
87 #include <exception>
88 
89 std::string show_versions(void);
90 
91 //! Build a message of information about build, architecture, address model, platform, ...
show_versions(void)92 std::string show_versions(void)
93 {
94   // Some of this information can also be obtained from running with a Custom Post-build step
95   // adding the option --build_info=yes
96     // "$(TargetDir)$(TargetName).exe" --build_info=yes
97 
98   std::ostringstream message;
99 
100   message << "Program: " << __FILE__ << "\n";
101 #ifdef __TIMESTAMP__
102   message << __TIMESTAMP__;
103 #endif
104   message << "\nBuildInfo:\n" "  Platform " << BOOST_PLATFORM;
105   // http://stackoverflow.com/questions/1505582/determining-32-vs-64-bit-in-c
106 #if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) && !defined(__ILP32__) ) || defined(_M_X64) || defined(__ia64) || defined (_M_IA64) || defined(__aarch64__) || defined(__powerpc64__)
107   message << ", 64-bit.";
108 #else
109   message << ", 32-bit.";
110 #endif
111 
112   message << "\n  Compiler " BOOST_COMPILER;
113 #ifdef BOOST_MSC_VER
114 #ifdef _MSC_FULL_VER
115   message << "\n  MSVC version " << BOOST_STRINGIZE(_MSC_FULL_VER) << ".";
116 #endif
117 #ifdef __WIN64
118   mess age << "\n WIN64" << std::endl;
119 #endif // __WIN64
120 #ifdef _WIN32
121   message << "\n WIN32" << std::endl;
122 #endif  // __WIN32
123 #endif
124 #ifdef __GNUC__
125   //PRINT_MACRO(__GNUC__);
126   //PRINT_MACRO(__GNUC_MINOR__);
127   //PRINT_MACRO(__GNUC_PATCH__);
128   std::cout << "GCC " << __VERSION__ << std::endl;
129   //PRINT_MACRO(LONG_MAX);
130 #endif // __GNUC__
131 
132 #ifdef __MINGW64__
133 std::cout << "MINGW64 " << __MINGW32_MAJOR_VERSION << __MINGW32_MINOR_VERSION << std::endl;
134 //
135 //  << __MINGW64_MAJOR_VERSION << __MINGW64_MINOR_VERSION << std::endl; not declared in this scope???
136 #endif // __MINGW64__
137 
138 #ifdef __MINGW32__
139 std::cout << "MINGW64 " << __MINGW32_MAJOR_VERSION << __MINGW32_MINOR_VERSION << std::endl;
140 #endif // __MINGW32__
141 
142   message << "\n  STL " << BOOST_STDLIB;
143   message << "\n  Boost version " << BOOST_VERSION / 100000 << "." << BOOST_VERSION / 100 % 1000 << "." << BOOST_VERSION % 100;
144 
145 #ifdef BOOST_MATH_TEST_MULTIPRECISION
146   message << "\nBOOST_MATH_TEST_MULTIPRECISION defined for multiprecision tests. " << std::endl;
147 #else
148  message << "\nBOOST_MATH_TEST_MULTIPRECISION not defined so NO multiprecision tests. " << std::endl;
149 #endif // BOOST_MATH_TEST_MULTIPRECISION
150 
151 #ifdef BOOST_HAS_FLOAT128
152   message << "BOOST_HAS_FLOAT128 is defined." << std::endl;
153 #endif // ifdef BOOST_HAS_FLOAT128
154 
155   message << std::endl;
156   return message.str();
157 } // std::string show_versions()
158 
159 
160 template <class T>
wolfram_test_moderate_values()161 void wolfram_test_moderate_values()
162 {
163    //
164    // Spots of moderate value http://www.wolframalpha.com/input/?i=TABLE%5B%5BN%5B-1%2Fe%2Bi,+50%5D,+N%5BLambertW%5B-1%2Fe%2Bi%5D,+50%5D%5D,+%7Bi,+1%2F8,+6,+1%2F8%7D%5D
165    //
166    static const boost::array<boost::array<typename table_type<T>::type, 2>, 96/2> wolfram_test_small_neg =
167    {{
168       {{ SC_(-0.24287944117144232159552377016146086744581113103177), SC_(-0.34187241316000572901412382650748493957063539755395) }},{{ SC_(-0.11787944117144232159552377016146086744581113103177), SC_(-0.13490446826612135454875992607636577833255418182633) }},{{ SC_(0.0071205588285576784044762298385391325541888689682322), SC_(0.0070703912528860797819274709355398032954165697080076) }},{{ SC_(0.13212055882855767840447622983853913255418886896823), SC_(0.11747650174894814471295063763686399700941650918302) }},{{ SC_(0.25712055882855767840447622983853913255418886896823), SC_(0.20869089404810562424547046857454995304964242368484) }},{{ SC_(0.38212055882855767840447622983853913255418886896823), SC_(0.28683366713002653952708635029764106993377156175310) }},{{ SC_(0.50712055882855767840447622983853913255418886896823), SC_(0.35542749308004931507852679571061486656821523044053) }},{{ SC_(0.63212055882855767840447622983853913255418886896823), SC_(0.41670399881776590750659327292575356285757792776250) }},{{ SC_(0.75712055882855767840447622983853913255418886896823), SC_(0.47217430075943420437939326812963066971059146681283) }},{{ SC_(0.88212055882855767840447622983853913255418886896823), SC_(0.52291321715862065064992942239384690347359852107504) }},{{ SC_(1.0071205588285576784044762298385391325541888689682), SC_(0.56971477154593975582335630229323210831843899740884) }},{{ SC_(1.1321205588285576784044762298385391325541888689682), SC_(0.61318350578224462394572352964726524514921241969798) }},{{ SC_(1.2571205588285576784044762298385391325541888689682), SC_(0.65379115237566259933564436658873734121781110980034) }},{{ SC_(1.3821205588285576784044762298385391325541888689682), SC_(0.69191341320406026236753559968630177636780741203666) }},{{ SC_(1.5071205588285576784044762298385391325541888689682), SC_(0.72785472286747598788295903283683432537852776142064) }},{{ SC_(1.6321205588285576784044762298385391325541888689682), SC_(0.76186544538805130363636977458614856100481979440639) }},{{ SC_(1.7571205588285576784044762298385391325541888689682), SC_(0.79415413501531119849043049331889268136479923750037) }},{{ SC_(1.8821205588285576784044762298385391325541888689682), SC_(0.82489647878345700122288701550494847447982817483512) }},{{ SC_(2.0071205588285576784044762298385391325541888689682), SC_(0.85424194939386899439722948096520865643710851410970) }},{{ SC_(2.1321205588285576784044762298385391325541888689682), SC_(0.88231884173371311472940735780441644004275449741412) }},{{ SC_(2.2571205588285576784044762298385391325541888689682), SC_(0.90923814516532488963517314558961057510689871415824) }},{{ SC_(2.3821205588285576784044762298385391325541888689682), SC_(0.93509656212104191797135657485515114635876341802516) }},{{ SC_(2.5071205588285576784044762298385391325541888689682), SC_(0.95997889061117906067636869169049106690165665554172) }},{{ SC_(2.6321205588285576784044762298385391325541888689682), SC_(0.98395992590529701946948066548039809917492328184099) }},{{ SC_(2.7571205588285576784044762298385391325541888689682), SC_(1.0071059939771381126732041109492705496242899774655) }},{{ SC_(2.8821205588285576784044762298385391325541888689682), SC_(1.0294761995723706229651673877352399077168142413723) }},{{ SC_(3.0071205588285576784044762298385391325541888689682), SC_(1.0511234507020167125769191146012321442040919222298) }},{{ SC_(3.1321205588285576784044762298385391325541888689682), SC_(1.0720953062286332723365148290552887215464891915069) }},{{ SC_(3.2571205588285576784044762298385391325541888689682), SC_(1.0924346821831089228990349517861599064007594751702) }},{{ SC_(3.3821205588285576784044762298385391325541888689682), SC_(1.1121804443118533629930276674418322662764569673766) }},{{ SC_(3.5071205588285576784044762298385391325541888689682), SC_(1.1313679082795201044696522785560810652358663683706) }},{{ SC_(3.6321205588285576784044762298385391325541888689682), SC_(1.1500292643692387775614691790201052907317404963905) }},{{ SC_(3.7571205588285576784044762298385391325541888689682), SC_(1.1681939400299161555212785901786587344721733034978) }},{{ SC_(3.8821205588285576784044762298385391325541888689682), SC_(1.1858889109341735194685896928615740804115521714257) }},{{ SC_(4.0071205588285576784044762298385391325541888689682), SC_(1.2031389691267953962289622785796365085402661808452) }},{{ SC_(4.1321205588285576784044762298385391325541888689682), SC_(1.2199669552139996161903252772502362264684476580522) }},{{ SC_(4.2571205588285576784044762298385391325541888689682), SC_(1.2363939602597347325278067608637615539794532870296) }},{{ SC_(4.3821205588285576784044762298385391325541888689682), SC_(1.2524395020361026107226019920575290018966524482736) }},{{ SC_(4.5071205588285576784044762298385391325541888689682), SC_(1.2681216794607666389159742215265331040507889789444) }},{{ SC_(4.6321205588285576784044762298385391325541888689682), SC_(1.2834573083995295018572263393035905604511320189369) }},{{ SC_(4.7571205588285576784044762298385391325541888689682), SC_(1.2984620414827281167361144981111712803667945033184) }},{{ SC_(4.8821205588285576784044762298385391325541888689682), SC_(1.3131504741533499076663954559108617687274731330916) }},{{ SC_(5.0071205588285576784044762298385391325541888689682), SC_(1.3275362388125116267199919229657120782894307415376) }},{{ SC_(5.1321205588285576784044762298385391325541888689682), SC_(1.3416320886383928057123774168081846145768561516693) }},{{ SC_(5.2571205588285576784044762298385391325541888689682), SC_(1.3554499724155634924134183248962114419200302481356) }},{{ SC_(5.3821205588285576784044762298385391325541888689682), SC_(1.3690011015132087699425938733927188719869603184010) }},{{ SC_(5.5071205588285576784044762298385391325541888689682), SC_(1.3822960099853765706075495327819109601506356054327) }},{{ SC_(5.6321205588285576784044762298385391325541888689682), SC_(1.3953446086279755263512146907828727538440007615239) }}
169    }};
170    T tolerance = boost::math::tools::epsilon<T>() * 3;
171    if (std::numeric_limits<T>::digits10 > 40)
172       tolerance *= 4;  // arbitrary precision types have lower accuracy on exp(z).
173    for (unsigned i = 0; i < wolfram_test_small_neg.size(); ++i)
174    {
175       BOOST_CHECK_CLOSE_FRACTION(boost::math::lambert_w0(T(wolfram_test_small_neg[i][0])), T(wolfram_test_small_neg[i][1]), tolerance);
176    }
177 }
178 
179 template <class T>
wolfram_test_small_pos()180 void wolfram_test_small_pos()
181 {
182    //
183    // Spots near zero and positive http://www.wolframalpha.com/input/?i=TABLE%5B%5BN%5BPi+*+10%5Ei,+50%5D,+N%5BLambertW%5BPi+*+10%5Ei%5D,+50%5D%5D,+%7Bi,+-25,+-1%7D%5D
184    //
185    static const boost::array<boost::array<typename table_type<T>::type, 2>, 25> wolfram_test_small_neg =
186    {{
187       {{ SC_(3.1415926535897932384626433832795028841971693993751e-25), SC_(3.1415926535897932384626423963190627752613075159265e-25) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e-24), SC_(3.1415926535897932384626335136751017948385505649306e-24) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e-23), SC_(3.1415926535897932384625446872354919906109810591160e-23) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e-22), SC_(3.1415926535897932384616564228393939483352864153693e-22) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e-21), SC_(3.1415926535897932384527737788784135255783814177903e-21) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e-20), SC_(3.1415926535897932383639473392686092980134754308784e-20) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e-19), SC_(3.1415926535897932374756829431705670227788144495920e-19) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e-18), SC_(3.1415926535897932285930389821901443118720934199487e-18) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e-17), SC_(3.1415926535897931397665993723859213467937614455864e-17) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e-16), SC_(3.1415926535897922515022032743441060948982739088029e-16) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e-15), SC_(3.1415926535897833688582422939673934647266189937296e-15) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e-14), SC_(3.1415926535896945424186324943442560413318839066091e-14) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e-13), SC_(3.1415926535888062780225349125117696393347268403158e-13) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e-12), SC_(3.1415926535799236340616005340756885831699803736331e-12) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e-11), SC_(3.1415926534910971944564007385929431896486546006413e-11) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e-10), SC_(3.1415926526028327988188016713407935109104110982749e-10) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e-9), SC_(3.1415926437201888838826995251371676507148394412103e-9) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e-8), SC_(3.1415925548937538785102994823474670579278874210259e-8) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e-7), SC_(3.1415916666298182234172285804275105377159084331529e-7) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e-6), SC_(3.1415827840319013043684920305205420694740106954961e-6) }},{{ SC_(0.000031415926535897932384626433832795028841971693993751), SC_(0.000031414939621964641052828244109272729597989570861172) }},{{ SC_(0.00031415926535897932384626433832795028841971693993751), SC_(0.00031406061579842362125003023838529350597159230209458) }},{{ SC_(0.0031415926535897932384626433832795028841971693993751), SC_(0.0031317693004296877733926356188004473035977501714541) }},{{ SC_(0.031415926535897932384626433832795028841971693993751), SC_(0.030473027596269883517196555192955092247613270959259) }},{{ SC_(0.31415926535897932384626433832795028841971693993751), SC_(0.24571751376320572448656753973370462139374436325987) }}
188    }};
189    T tolerance = boost::math::tools::epsilon<T>() * 3;
190    if (std::numeric_limits<T>::digits10 > 40)
191       tolerance *= 3;  // arbitrary precision types have lower accuracy on exp(z).
192    for (unsigned i = 0; i < wolfram_test_small_neg.size(); ++i)
193    {
194       BOOST_CHECK_CLOSE_FRACTION(boost::math::lambert_w0(T(wolfram_test_small_neg[i][0])), T(wolfram_test_small_neg[i][1]), tolerance);
195    }
196 }
197 
198 template <class T>
wolfram_test_small_neg()199 void wolfram_test_small_neg()
200 {
201    //
202    // Spots near zero and negative http://www.wolframalpha.com/input/?i=TABLE%5B%5BN%5B-Pi+*+10%5Ei,+50%5D,+N%5BLambertW%5B-Pi+*+10%5Ei%5D,+50%5D%5D,+%7Bi,+-25,+-1%7D%5D
203    //
204    static const boost::array<boost::array<typename table_type<T>::type, 2>, 70/2> wolfram_test_small_neg =
205    {{
206       {{ SC_(-3.1415926535897932384626433832795028841971693993751e-25), SC_(-3.1415926535897932384626443702399429931330312828247e-25) }},{{ SC_(-3.1415926535897932384626433832795028841971693993751e-24), SC_(-3.1415926535897932384626532528839039735557882339126e-24) }},{{ SC_(-3.1415926535897932384626433832795028841971693993751e-23), SC_(-3.1415926535897932384627420793235137777833577489360e-23) }},{{ SC_(-3.1415926535897932384626433832795028841971693993751e-22), SC_(-3.1415926535897932384636303437196118200590533135692e-22) }},{{ SC_(-3.1415926535897932384626433832795028841971693993751e-21), SC_(-3.1415926535897932384725129876805922428160503997900e-21) }},{{ SC_(-3.1415926535897932384626433832795028841971693993751e-20), SC_(-3.1415926535897932385613394272903964703901652508759e-20) }},{{ SC_(-3.1415926535897932384626433832795028841971693993751e-19), SC_(-3.1415926535897932394496038233884387465457126495672e-19) }},{{ SC_(-3.1415926535897932384626433832795028841971693993751e-18), SC_(-3.1415926535897932483322477843688615495410754197010e-18) }},{{ SC_(-3.1415926535897932384626433832795028841971693993751e-17), SC_(-3.1415926535897933371586873941730937234835814431099e-17) }},{{ SC_(-3.1415926535897932384626433832795028841971693993751e-16), SC_(-3.1415926535897942254230834922158298617964738845526e-16) }},{{ SC_(-3.1415926535897932384626433832795028841971693993751e-15), SC_(-3.1415926535898031080670444726846311337086192655470e-15) }},{{ SC_(-3.1415926535897932384626433832795028841971693993751e-14), SC_(-3.1415926535898919345066542815166327311524009447840e-14) }},{{ SC_(-3.1415926535897932384626433832795028841971693993751e-13), SC_(-3.1415926535907801989027527842355365380542172227242e-13) }},{{ SC_(-3.1415926535897932384626433832795028841971693993751e-12), SC_(-3.1415926535996628428637792513133580846848848572500e-12) }},{{ SC_(-3.1415926535897932384626433832795028841971693993751e-11), SC_(-3.1415926536884892824781879109701525247983589696795e-11) }},{{ SC_(-3.1415926535897932384626433832795028841971693993751e-10), SC_(-3.1415926545767536790366733956272068630669876574730e-10) }},{{ SC_(-3.1415926535897932384626433832795028841971693993751e-9), SC_(-3.1415926634593976860614172823213018318134944055260e-9) }},{{ SC_(-3.1415926535897932384626433832795028841971693993751e-8), SC_(-3.1415927522858419002979913741894684038594384671969e-8) }},{{ SC_(-3.1415926535897932384626433832795028841971693993751e-7), SC_(-3.1415936405506984418084674995072645049396296346958e-7) }},{{ SC_(-3.1415926535897932384626433832795028841971693993751e-6), SC_(-3.1416025232407040026008819016148803316716797067967e-6) }},{{ SC_(-0.000031415926535897932384626433832795028841971693993751), SC_(-0.000031416913542850054076094590477471913042739704497976) }},{{ SC_(-0.00031415926535897932384626433832795028841971693993751), SC_(-0.00031425800793839694440655801311183879569843264709852) }},{{ SC_(-0.0031415926535897932384626433832795028841971693993751), SC_(-0.0031515090287677856656576839914749012339811781712486) }},{{ SC_(-0.031415926535897932384626433832795028841971693993751), SC_(-0.032452164493239992272463616095775075564894751832128) }},{{ SC_(-0.31415926535897932384626433832795028841971693993751), SC_(-0.53804834513759287053587977755877044660611017981968) }},
207       {{ SC_(-0.090099009900990099009900990099009900990099009900990), SC_(-0.099527797075226962190621767732039397602197803169897)}},{{ SC_(-0.080198019801980198019801980198019801980198019801980), SC_(-0.087534530933383521242151071722737877728489741787814) }},{{ SC_(-0.070297029702970297029702970297029702970297029702970), SC_(-0.075835379000403488962496062196568904002201151736290) }},{{ SC_(-0.060396039603960396039603960396039603960396039603960), SC_(-0.064414449758822413858363348099340678962612835311800) }},{{ SC_(-0.050495049504950495049504950495049504950495049504950), SC_(-0.053257171600878093079366736202964706966166164696873) }},{{ SC_(-0.040594059405940594059405940594059405940594059405941), SC_(-0.042350146588050412657332988380168720859403591863698) }},{{ SC_(-0.030693069306930693069306930693069306930693069306931), SC_(-0.031681024260949098136757222042165581145138786336298) }},{{ SC_(-0.020792079207920792079207920792079207920792079207921), SC_(-0.021238392251213645736199359110665662967213312773617) }},{{ SC_(-0.010891089108910891089108910891089108910891089108911), SC_(-0.011011681049909946810068329378571761407667575030714) }},{{ SC_(-0.00099009900990099009900990099009900990099009900990099), SC_(-0.00099108076440319890968631186785975507712384928918616) }}
208    }};
209    T tolerance = boost::math::tools::epsilon<T>() * 3;
210    if (std::numeric_limits<T>::digits10 > 40)
211       tolerance *= 3;  // arbitrary precision types have lower accuracy on exp(z).
212    for (unsigned i = 0; i < wolfram_test_small_neg.size(); ++i)
213    {
214       BOOST_CHECK_CLOSE_FRACTION(boost::math::lambert_w0(T(wolfram_test_small_neg[i][0])), T(wolfram_test_small_neg[i][1]), tolerance);
215    }
216 }
217 
218 template <class T>
wolfram_test_large(const boost::true_type &)219 void wolfram_test_large(const boost::true_type&)
220 {
221    //
222    // Spots near the singularity from http://www.wolframalpha.com/input/?i=TABLE%5B%5BN%5B-1%2Fe%2B2%5E-i,+50%5D,+N%5BLambertW%5B-1%2Fe+%2B+2%5E-i%5D,+50%5D%5D,+%7Bi,+2,+40%7D%5D
223    //
224    static const boost::array<boost::array<typename table_type<T>::type, 2>, 28/2> wolfram_test_large_data =
225    { {
226       {{ SC_(3.1415926535897932384626433832795028841971693993751e350), SC_(800.36444525326526998205084284403447902093784176640) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e400), SC_(915.35945025352715923124904626896745356022974283730) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e450), SC_(1030.3703481552571717312484086444052442055003737018) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e500), SC_(1145.3937726197879355969554296951287620979399652268) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e550), SC_(1260.4273249433458391941776841900870933799293511610) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e600), SC_(1375.4692354682341092954911299903937009237749971748) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e650), SC_(1490.5181612342761763990969379122584268166707632003) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e700), SC_(1605.5730589637597079362569020729894833435943718597) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e750), SC_(1720.6331020467166402802313799793443913873949058922) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e800), SC_(1835.6976244160526737141293452999638879204852786698) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e850), SC_(1950.7660814940759743605616247252782614446819652848) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e900), SC_(2065.8380223354646200773160641407055989098916114637) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e950), SC_(2180.9130693229593212006354812037286740424563145700) }},{{ SC_(3.1415926535897932384626433832795028841971693993751e1000), SC_(2295.9909030845346718801238821248991904602625884450) }}
227    } };
228    T tolerance = boost::math::tools::epsilon<T>() * 3;
229    if (std::numeric_limits<T>::digits10 > 40)
230       tolerance *= 3;  // arbitrary precision types have lower accuracy on exp(z).
231    for (unsigned i = 0; i < wolfram_test_large_data.size(); ++i)
232    {
233       BOOST_CHECK_CLOSE_FRACTION(boost::math::lambert_w0(T(wolfram_test_large_data[i][0])), T(wolfram_test_large_data[i][1]), tolerance);
234    }
235 }
236 template <class T>
wolfram_test_large(const boost::false_type &)237 void wolfram_test_large(const boost::false_type&){}
238 
239 template <class T>
wolfram_test_large()240 void wolfram_test_large()
241 {
242    wolfram_test_large<T>(boost::integral_constant<bool, (std::numeric_limits<T>::max_exponent10 > 1000)>());
243 }
244 
245 
246 template <class T>
wolfram_test_near_singularity()247 void wolfram_test_near_singularity()
248 {
249    //
250    // Spots near the singularity from http://www.wolframalpha.com/input/?i=TABLE%5B%5BN%5B-1%2Fe%2B2%5E-i,+50%5D,+N%5BLambertW%5B-1%2Fe+%2B+2%5E-i%5D,+50%5D%5D,+%7Bi,+2,+40%7D%5D
251    //
252    static const boost::array<boost::array<typename table_type<T>::type, 2>, 39> wolfram_test_near_singularity_data =
253    {{
254       { { SC_(-0.11787944117144233402427744294982403516769409179688), SC_(-0.13490446826612137099065142885543349308605449591189) } },{ { SC_(-0.24287944117144233402427744294982403516769409179688), SC_(-0.34187241316000575559631565516533717918703951393828) } },{ { SC_(-0.30537944117144233402427744294982403516769409179688), SC_(-0.50704532478540670242736394530166187052909039079642) } },{ { SC_(-0.33662944117144233402427744294982403516769409179688), SC_(-0.63562321628494791544895212508757067989859372121549) } },{ { SC_(-0.35225444117144233402427744294982403516769409179688), SC_(-0.73357201771558852140844624841371893543359405991894) } },{ { SC_(-0.36006694117144233402427744294982403516769409179688), SC_(-0.80685912552602238275976720505076149562188136941981) } },{ { SC_(-0.36397319117144233402427744294982403516769409179688), SC_(-0.86091151614390373770305184939107560322835214525382) } },{ { SC_(-0.36592631617144233402427744294982403516769409179688), SC_(-0.90033567669608907987528169545609510444951296636737) } },{ { SC_(-0.36690287867144233402427744294982403516769409179688), SC_(-0.92884889586304130900291705545970353898661233095513) } },{ { SC_(-0.36739115992144233402427744294982403516769409179688), SC_(-0.94934196763921122756108351994184213101752011076782) } },{ { SC_(-0.36763530054644233402427744294982403516769409179688), SC_(-0.96400324129495105632485735566132352543383271582526) } },{ { SC_(-0.36775737085894233402427744294982403516769409179688), SC_(-0.97445736712728703357755243595334553847237474201138) } },{ { SC_(-0.36781840601519233402427744294982403516769409179688), SC_(-0.98189372378619472154195350108189165241865132390473) } },{ { SC_(-0.36784892359331733402427744294982403516769409179688), SC_(-0.98717434434269671591894280580432721487757138768109) } },{ { SC_(-0.36786418238237983402427744294982403516769409179688), SC_(-0.99091955260257317141206161906086819616043312707614) } },{ { SC_(-0.36787181177691108402427744294982403516769409179688), SC_(-0.99357346775773151586057357459040504547191256911173) } },{ { SC_(-0.36787562647417670902427744294982403516769409179688), SC_(-0.99545290640175819861266174073519228782773422561472) } },{ { SC_(-0.36787753382280952152427744294982403516769409179688), SC_(-0.99678329264937600678258333756796350065436689760936) } },{ { SC_(-0.36787848749712592777427744294982403516769409179688), SC_(-0.99772473035978895659981485126201758865515569761514) } },{ { SC_(-0.36787896433428413089927744294982403516769409179688), SC_(-0.99839078411548014765525278348680286544429555739338) } },{ { SC_(-0.36787920275286323246177744294982403516769409179688), SC_(-0.99886193379608135520603487963907992157933985302350) } },{ { SC_(-0.36787932196215278324302744294982403516769409179688), SC_(-0.99919517626703684624524893082905669989578841060892) } },{ { SC_(-0.36787938156679755863365244294982403516769409179688), SC_(-0.99943085896775657378245957087668418410735469441835) } },{ { SC_(-0.36787941136911994632896494294982403516769409179688), SC_(-0.99959753415605033951327478977234592072050509074480) } },{ { SC_(-0.36787942627028114017662119294982403516769409179688), SC_(-0.99971540249082798050505534900918173321899800190957) } },{ { SC_(-0.36787943372086173710044931794982403516769409179688), SC_(-0.99979875358003464529770521637722571161846456343102) } },{ { SC_(-0.36787943744615203556236338044982403516769409179688), SC_(-0.99985769449598686744630754715710430111838645655608) } },{ { SC_(-0.36787943930879718479332041169982403516769409179688), SC_(-0.99989937341527312969776294577792175610005161268265) } },{ { SC_(-0.36787944024011975940879892732482403516769409179688), SC_(-0.99992884556078314715423832743355922518662235135757) } },{ { SC_(-0.36787944070578104671653818513732403516769409179688), SC_(-0.99994968586433278794146581248117772412549843583586) } },{ { SC_(-0.36787944093861169037040781404357403516769409179688), SC_(-0.99996442235919152892644019456912452486892832990114) } },{ { SC_(-0.36787944105502701219734262849669903516769409179688), SC_(-0.99997484272221444495021480907850566954322542216868) } },{ { SC_(-0.36787944111323467311081003572326153516769409179688), SC_(-0.99998221107553951227244139186618591264285119372063) } },{ { SC_(-0.36787944114233850356754373933654278516769409179688), SC_(-0.99998742131038091608107093454795869661238860012568) } },{ { SC_(-0.36787944115689041879591059114318341016769409179688), SC_(-0.99999110551424805741455916942650424910940130482916) } },{ { SC_(-0.36787944116416637641009401704650372266769409179688), SC_(-0.99999371064603396347995131962984747427523504609782) } },{ { SC_(-0.36787944116780435521718572999816387891769409179688), SC_(-0.99999555275622895023796382943893319302015254415029) } },{ { SC_(-0.36787944116962334462073158647399395704269409179688), SC_(-0.99999685532777825691586263781552103878671869687024) } },{ { SC_(-0.36787944117053283932250451471190899610519409179688), SC_(-0.99999777638786151731498560321162974199505119200634) } }
255    }};
256    T tolerance = boost::math::tools::epsilon<T>() * 3;
257    if (boost::math::tools::epsilon<T>() <= boost::math::tools::epsilon<long double>())
258       tolerance *= 5e5;
259    T endpoint = -boost::math::constants::exp_minus_one<T>();
260    for (unsigned i = 0; i < wolfram_test_near_singularity_data.size(); ++i)
261    {
262       if (wolfram_test_near_singularity_data[i][0] <= endpoint)
263          break;
264       else
265          BOOST_CHECK_CLOSE_FRACTION(boost::math::lambert_w0(T(wolfram_test_near_singularity_data[i][0])), T(wolfram_test_near_singularity_data[i][1]), tolerance);
266    }
267 }
268 
269 template <>
wolfram_test_near_singularity()270 void wolfram_test_near_singularity<float>()
271 {
272    //
273    // Spot values near the singularity with inputs truncated to float precision,
274    // from http://www.wolframalpha.com/input/?i=TABLE%5B%5BN%5BROUND%5B-1%2Fe%2B2%5E-i,+2%5E-23%5D,+50%5D,+N%5BLambertW%5BROUND%5B-1%2Fe+%2B+2%5E-i,+2%5E-23%5D%5D,+50%5D%5D,+%7Bi,+2,+40%7D%5D
275    //
276    static const boost::array<boost::array<float, 2>, 39> wolfram_test_near_singularity_data =
277    {{
278       {{ -0.11787939071655273437500000000000000000000000000000f, -0.13490440151978599948261696847702203722148729212591f }},{{ -0.24287939071655273437500000000000000000000000000000f, -0.34187230524883404685074938529655332889057132590877f }},{{ -0.30537939071655273437500000000000000000000000000000f, -0.50704515484245965628066570100405225451296978841169f }},{{ -0.33662939071655273437500000000000000000000000000000f, -0.63562295482810970976475066480034941107064440641758f }},{{ -0.35225439071655273437500000000000000000000000000000f, -0.73357162334066102207977288738307124189083069773180f }},{{ -0.36006689071655273437500000000000000000000000000000f, -0.80685854013946199386910756662972252220827924037205f }},{{ -0.36397314071655273437500000000000000000000000000000f, -0.86091065811941702413570870801021404654934249886505f }},{{ -0.36592626571655273437500000000000000000000000000000f, -0.90033443111682454984393817004965279949925483847744f }},{{ -0.36690282821655273437500000000000000000000000000000f, -0.92884710067602836873486989954484681592392882968841f }},{{ -0.36739110946655273437500000000000000000000000000000f, -0.94933939406123900376318336910404763737960907662666f }},{{ -0.36763525009155273437500000000000000000000000000000f, -0.96399956611859464483214118051190513364901860207328f }},{{ -0.36775732040405273437500000000000000000000000000000f, -0.97445213361280651797731195324654593603807971082292f }},{{ -0.36781835556030273437500000000000000000000000000000f, -0.98188628650256330812037232517657284107351472091741f }},{{ -0.36784887313842773437500000000000000000000000000000f, -0.98716379155663346207408852364078406478772014890806f }},{{ -0.36786413192749023437500000000000000000000000000000f, -0.99090459761086986284393759319956676727684106186028f }},{{ -0.36787176132202148437500000000000000000000000000000f, -0.99355229825129408828026714426677096743753950457546f }},{{ -0.36787557601928710937500000000000000000000000000000f, -0.99542297991285328482403963994064328331346049089419f }},{{ -0.36787748336791992187500000000000000000000000000000f, -0.99674107062291256263133271694520294422529881114769f }},{{ -0.36787843704223632812500000000000000000000000000000f, -0.99766536478294767461296564658785293377699068226332f }},{{ -0.36787891387939453125000000000000000000000000000000f, -0.99830783438342654552199009076049244789994050996944f }},{{ -0.36787915229797363281250000000000000000000000000000f, -0.99874733565614076859582844941545958416543067187493f }},{{ -0.36787927150726318359375000000000000000000000000000f, -0.99903989590053869025356285499889881633845057984872f }},{{ -0.36787939071655273437500000000000000000000000000000f, -0.99947635367299698033494423493356278945921228277354f }},{{ -0.36787939071655273437500000000000000000000000000000f, -0.99947635367299698033494423493356278945921228277354f }},{{ -0.36787939071655273437500000000000000000000000000000f, -0.99947635367299698033494423493356278945921228277354f }},{{ -0.36787939071655273437500000000000000000000000000000f, -0.99947635367299698033494423493356278945921228277354f }},{{ -0.36787939071655273437500000000000000000000000000000f, -0.99947635367299698033494423493356278945921228277354f }},{{ -0.36787939071655273437500000000000000000000000000000f, -0.99947635367299698033494423493356278945921228277354f }},{{ -0.36787939071655273437500000000000000000000000000000f, -0.99947635367299698033494423493356278945921228277354f }},{{ -0.36787939071655273437500000000000000000000000000000f, -0.99947635367299698033494423493356278945921228277354f }},{{ -0.36787939071655273437500000000000000000000000000000f, -0.99947635367299698033494423493356278945921228277354f }},{{ -0.36787939071655273437500000000000000000000000000000f, -0.99947635367299698033494423493356278945921228277354f }},{{ -0.36787939071655273437500000000000000000000000000000f, -0.99947635367299698033494423493356278945921228277354f }},{{ -0.36787939071655273437500000000000000000000000000000f, -0.99947635367299698033494423493356278945921228277354f }},{{ -0.36787939071655273437500000000000000000000000000000f, -0.99947635367299698033494423493356278945921228277354f }},{{ -0.36787939071655273437500000000000000000000000000000f, -0.99947635367299698033494423493356278945921228277354f }},{{ -0.36787939071655273437500000000000000000000000000000f, -0.99947635367299698033494423493356278945921228277354f }},{{ -0.36787939071655273437500000000000000000000000000000f, -0.99947635367299698033494423493356278945921228277354f }},{{ -0.36787939071655273437500000000000000000000000000000f, -0.99947635367299698033494423493356278945921228277354f }}
279    }};
280    float tolerance = boost::math::tools::epsilon<float>() * 16;
281    float endpoint = -boost::math::constants::exp_minus_one<float>();
282    for (unsigned i = 0; i < wolfram_test_near_singularity_data.size(); ++i)
283    {
284       if (wolfram_test_near_singularity_data[i][0] <= endpoint)
285          break;
286       else
287          BOOST_CHECK_CLOSE_FRACTION(boost::math::lambert_w0(wolfram_test_near_singularity_data[i][0]), wolfram_test_near_singularity_data[i][1], tolerance);
288    }
289 }
290 
291 template <>
wolfram_test_near_singularity()292 void wolfram_test_near_singularity<double>()
293 {
294    //
295    // Spot values near the singularity with inputs truncated to double precision,
296    // from http://www.wolframalpha.com/input/?i=TABLE%5B%5BN%5BROUND%5B-1%2Fe%2B2%5E-i,+2%5E-23%5D,+50%5D,+N%5BLambertW%5BROUND%5B-1%2Fe+%2B+2%5E-i,+2%5E-23%5D%5D,+50%5D%5D,+%7Bi,+2,+40%7D%5D
297    //
298    static const boost::array<boost::array<double, 2>, 39> wolfram_test_near_singularity_data =
299    {{
300       {{ -0.11787944117144233402427744294982403516769409179688, -0.13490446826612137099065142885543349308605449591189 }},{{ -0.24287944117144233402427744294982403516769409179688, -0.34187241316000575559631565516533717918703951393828 }},{{ -0.30537944117144233402427744294982403516769409179688, -0.50704532478540670242736394530166187052909039079642 }},{{ -0.33662944117144233402427744294982403516769409179688, -0.63562321628494791544895212508757067989859372121549 }},{{ -0.35225444117144233402427744294982403516769409179688, -0.73357201771558852140844624841371893543359405991894 }},{{ -0.36006694117144233402427744294982403516769409179688, -0.80685912552602238275976720505076149562188136941981 }},{{ -0.36397319117144233402427744294982403516769409179688, -0.86091151614390373770305184939107560322835214525382 }},{{ -0.36592631617144233402427744294982403516769409179688, -0.90033567669608907987528169545609510444951296636737 }},{{ -0.36690287867144233402427744294982403516769409179688, -0.92884889586304130900291705545970353898661233095513 }},{{ -0.36739115992144233402427744294982403516769409179688, -0.94934196763921122756108351994184213101752011076782 }},{{ -0.36763530054644233402427744294982403516769409179688, -0.96400324129495105632485735566132352543383271582526 }},{{ -0.36775737085894233402427744294982403516769409179688, -0.97445736712728703357755243595334553847237474201138 }},{{ -0.36781840601519233402427744294982403516769409179688, -0.98189372378619472154195350108189165241865132390473 }},{{ -0.36784892359331733402427744294982403516769409179688, -0.98717434434269671591894280580432721487757138768109 }},{{ -0.36786418238237983402427744294982403516769409179688, -0.99091955260257317141206161906086819616043312707614 }},{{ -0.36787181177691108402427744294982403516769409179688, -0.99357346775773151586057357459040504547191256911173 }},{{ -0.36787562647417670902427744294982403516769409179688, -0.99545290640175819861266174073519228782773422561472 }},{{ -0.36787753382280952152427744294982403516769409179688, -0.99678329264937600678258333756796350065436689760936 }},{{ -0.36787848749712592777427744294982403516769409179688, -0.99772473035978895659981485126201758865515569761514 }},{{ -0.36787896433428413089927744294982403516769409179688, -0.99839078411548014765525278348680286544429555739338 }},{{ -0.36787920275286323246177744294982403516769409179688, -0.99886193379608135520603487963907992157933985302350 }},{{ -0.36787932196215278324302744294982403516769409179688, -0.99919517626703684624524893082905669989578841060892 }},{{ -0.36787938156679755863365244294982403516769409179688, -0.99943085896775657378245957087668418410735469441835 }},{{ -0.36787941136911994632896494294982403516769409179688, -0.99959753415605033951327478977234592072050509074480 }},{{ -0.36787942627028114017662119294982403516769409179688, -0.99971540249082798050505534900918173321899800190957 }},{{ -0.36787943372086173710044931794982403516769409179688, -0.99979875358003464529770521637722571161846456343102 }},{{ -0.36787943744615203556236338044982403516769409179688, -0.99985769449598686744630754715710430111838645655608 }},{{ -0.36787943930879718479332041169982403516769409179688, -0.99989937341527312969776294577792175610005161268265 }},{{ -0.36787944024011975940879892732482403516769409179688, -0.99992884556078314715423832743355922518662235135757 }},{{ -0.36787944070578104671653818513732403516769409179688, -0.99994968586433278794146581248117772412549843583586 }},{{ -0.36787944093861169037040781404357403516769409179688, -0.99996442235919152892644019456912452486892832990114 }},{{ -0.36787944105502701219734262849669903516769409179688, -0.99997484272221444495021480907850566954322542216868 }},{{ -0.36787944111323467311081003572326153516769409179688, -0.99998221107553951227244139186618591264285119372063 }},{{ -0.36787944114233850356754373933654278516769409179688, -0.99998742131038091608107093454795869661238860012568 }},{{ -0.36787944115689041879591059114318341016769409179688, -0.99999110551424805741455916942650424910940130482916 }},{{ -0.36787944116416637641009401704650372266769409179688, -0.99999371064603396347995131962984747427523504609782 }},{{ -0.36787944116780435521718572999816387891769409179688, -0.99999555275622895023796382943893319302015254415029 }},{{ -0.36787944116962334462073158647399395704269409179688, -0.99999685532777825691586263781552103878671869687024 }},{{ -0.36787944117053283932250451471190899610519409179688, -0.99999777638786151731498560321162974199505119200634 }}
301    }};
302    double tolerance = boost::math::tools::epsilon<double>() * 5;
303    if (std::numeric_limits<double>::digits >= std::numeric_limits<long double>::digits)
304       tolerance *= 1e5;
305    else if (std::numeric_limits<double>::digits * 2 >= std::numeric_limits<long double>::digits)
306       tolerance *= 5e4;
307    double endpoint = -boost::math::constants::exp_minus_one<double>();
308    for (unsigned i = 0; i < wolfram_test_near_singularity_data.size(); ++i)
309    {
310       if (wolfram_test_near_singularity_data[i][0] <= endpoint)
311          break;
312       else
313          BOOST_CHECK_CLOSE_FRACTION(boost::math::lambert_w0(wolfram_test_near_singularity_data[i][0]), wolfram_test_near_singularity_data[i][1], tolerance);
314    }
315 }
316 
317 template <class RealType>
test_spots(RealType)318 void test_spots(RealType)
319 {
320   // (Unused Parameter value, arbitrarily zero, only communicates the floating point type).
321   // test_spots(0.F); test_spots(0.); test_spots(0.L);
322 
323   using boost::math::lambert_w0;
324   using boost::math::lambert_wm1;
325   using boost::math::constants::exp_minus_one;
326   using boost::math::constants::e;
327   using boost::math::policies::policy;
328 
329   /*  Example of an exception-free 'ignore_all' policy (possibly ill-advised?).
330   */
331   typedef policy <
332     boost::math::policies::domain_error<boost::math::policies::ignore_error>,
333     boost::math::policies::overflow_error<boost::math::policies::ignore_error>,
334     boost::math::policies::underflow_error<boost::math::policies::ignore_error>,
335     boost::math::policies::denorm_error<boost::math::policies::ignore_error>,
336     boost::math::policies::pole_error<boost::math::policies::ignore_error>,
337     boost::math::policies::evaluation_error<boost::math::policies::ignore_error>
338   > ignore_all_policy;
339 
340 //  Test some bad parameters to the function, with default policy and also with ignore_all policy.
341 #ifndef BOOST_NO_EXCEPTIONS
342   BOOST_CHECK_THROW(lambert_w0<RealType>(-1.), std::domain_error);
343   BOOST_CHECK_THROW(lambert_wm1<RealType>(-1.), std::domain_error);
344   if (std::numeric_limits<RealType>::has_quiet_NaN)
345   {
346      BOOST_CHECK_THROW(lambert_w0<RealType>(std::numeric_limits<RealType>::quiet_NaN()), std::domain_error); // Would be NaN.
347      //BOOST_CHECK_EQUAL(lambert_w0<RealType>(std::numeric_limits<RealType>::quiet_NaN(), ignore_all_policy()), std::numeric_limits<RealType>::quiet_NaN()); // Should be NaN.
348      // Fails as NaN != NaN by definition.
349      BOOST_CHECK(boost::math::isnan(lambert_w0<RealType>(std::numeric_limits<RealType>::quiet_NaN(), ignore_all_policy())));
350      //BOOST_MATH_CHECK_EQUAL(boost::math::lambert_w0<RealType>(std::numeric_limits<RealType>::infinity(), ignore_all_policy()), std::numeric_limits<RealType::infinity()); // infinity.
351   }
352 
353   // BOOST_CHECK_THROW(lambert_w0<RealType>(std::numeric_limits<RealType>::infinity()), std::domain_error); // Was if infinity should throw, now infinity.
354   BOOST_CHECK_THROW(lambert_w0<RealType>(-static_cast<RealType>(0.4)), std::domain_error); // Would be complex.
355 
356 #else // No exceptions, so set policy to ignore and check result is NaN.
357   BOOST_MATH_CHECK_EQUAL(boost::math::lambert_w0<RealType>(std::numeric_limits<RealType>::quiet_NaN(), ignore_all_policy()), std::numeric_limits<RealType::quiet_NaN()); // NaN.
358   BOOST_MATH_CHECK_EQUAL(boost::math::lambert_w0<RealType>(std::numeric_limits<RealType>::infinity(), ignore_all_policy()), std::numeric_limits<RealType::infinity()); // infinity.
359   BOOST_MATH_CHECK_EQUAL(boost::math::lambert_w0<RealType>(std::numeric_limits<RealType>::infinity(), ignore_all_policy()), std::numeric_limits<RealType::infinity()); // infinity.
360 #endif
361 
362   std::cout << "\nTesting type " << typeid(RealType).name() << std::endl;
363   int epsilons = 2;
364   if (std::numeric_limits<RealType>::digits > 53)
365   { // Multiprecision types.
366     epsilons *= 8; // (Perhaps needed because need slightly longer (55) reference values?).
367   }
368   RealType tolerance = boost::math::tools::epsilon<RealType>() * epsilons; // 2 eps as a fraction.
369   std::cout << "Tolerance " << epsilons << " * epsilon == " << tolerance << std::endl;
370 #ifndef BOOST_NO_CXX11_NUMERIC_LIMITS
371   std::cout << "Precision " << std::numeric_limits<RealType>::digits10 << " decimal digits, max_digits10 = " << std::numeric_limits <RealType>::max_digits10<< std::endl;
372   // std::cout.precision(std::numeric_limits<RealType>::digits10);
373   std::cout.precision(std::numeric_limits <RealType>::max_digits10);
374 #endif
375   std::cout.setf(std::ios_base::showpoint);  // show trailing significant zeros.
376   std::cout << "-exp(-1) = " << -exp_minus_one<RealType>() << std::endl;
377 
378   wolfram_test_near_singularity<RealType>();
379   wolfram_test_large<RealType>();
380   wolfram_test_small_neg<RealType>();
381   wolfram_test_small_pos<RealType>();
382   wolfram_test_moderate_values<RealType>();
383 
384   // Test at singularity.
385   // RealType test_value = BOOST_MATH_TEST_VALUE(RealType, -0.36787944117144232159552377016146086744581113103176783450783680169746149574489980335714727434591964374662732527);
386   RealType singular_value = -exp_minus_one<RealType>();
387   // -exp(-1) = -0.36787944117144232159552377016146086744581113103176783450783680169746149574489980335714727434591964374662732527
388   // lambert_w0[-0.367879441171442321595523770161460867445811131031767834] == -1
389   //           -0.36787945032119751
390   RealType minus_one_value = BOOST_MATH_TEST_VALUE(RealType, -1.);
391   //std::cout << "singular_value " << singular_value << ", expected Lambert W = " << minus_one_value << std::endl;
392 
393   BOOST_CHECK_CLOSE_FRACTION( // Check -exp(-1) = -0.367879450 = -1max
394     lambert_w0(singular_value),
395     minus_one_value,
396     tolerance);  // OK
397 
398   BOOST_CHECK_CLOSE_FRACTION(  // Check -exp(-1) ~= -0.367879450 == -1
399     lambert_w0(BOOST_MATH_TEST_VALUE(RealType, -0.36787944117144232159552377016146086744581113103176783450783680169746149574489980335714727434591964374662732527)),
400     BOOST_MATH_TEST_VALUE(RealType, -1.),
401     tolerance);
402 
403   BOOST_CHECK_CLOSE_FRACTION(  // Check -exp(-1) ~= -0.367879450 == -1
404     lambert_w0<RealType>(-exp_minus_one<RealType>()),
405     BOOST_MATH_TEST_VALUE(RealType, -1.),
406     tolerance);
407 
408   // Tests with some spot values computed using
409   // https://www.wolframalpha.com/input
410   // For example: N[lambert_w[1], 50] outputs:
411   // 0.56714329040978387299996866221035554975381578718651
412 
413   // At branch junction singularity.
414   BOOST_CHECK_CLOSE_FRACTION(  // Check -exp(-1) ~= -0.367879450 == -1
415     lambert_w0(BOOST_MATH_TEST_VALUE(RealType, -0.36787944117144232159552377016146086744581113103176783450783680169746149574489980335714727434591964374662732527)),
416     BOOST_MATH_TEST_VALUE(RealType, -1.),
417     tolerance);
418 
419     BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 0.1)),
420     BOOST_MATH_TEST_VALUE(RealType, 0.091276527160862264299895721423179568653119224051472),
421     // Output from https://www.wolframalpha.com/input/?i=lambert_w0(0.2)
422     tolerance);
423 
424   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 0.2)),
425     BOOST_MATH_TEST_VALUE(RealType, 0.16891597349910956511647490370581839872844691351073),
426     // Output from https://www.wolframalpha.com/input/?i=lambert_w0(0.2)
427     tolerance);
428 
429   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 0.5)),
430     BOOST_MATH_TEST_VALUE(RealType, 0.351733711249195826024909300929951065171464215517111804046),
431     // Output from https://www.wolframalpha.com/input/?i=lambert_w0(0.5)
432     tolerance);
433 
434   BOOST_CHECK_CLOSE_FRACTION(
435     lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 1.)),
436     BOOST_MATH_TEST_VALUE(RealType, 0.56714329040978387299996866221035554975381578718651),
437    // Output from https://www.wolframalpha.com/input/?i=lambert_w0(1)
438    tolerance);
439 
440   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 2.)),
441     BOOST_MATH_TEST_VALUE(RealType, 0.852605502013725491346472414695317466898453300151403508772),
442     // Output from https://www.wolframalpha.com/input/?i=lambert_w0(2.)
443     tolerance);
444 
445   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 3.)),
446     BOOST_MATH_TEST_VALUE(RealType, 1.049908894964039959988697070552897904589466943706341452932),
447     // Output from https://www.wolframalpha.com/input/?i=lambert_w0(3.)
448     tolerance);
449 
450   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 5.)),
451     BOOST_MATH_TEST_VALUE(RealType, 1.326724665242200223635099297758079660128793554638047479789),
452     // Output from https://www.wolframalpha.com/input/?i=lambert_w0(0.5)
453     tolerance);
454 
455   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 6.)),
456     BOOST_MATH_TEST_VALUE(RealType, 1.432404775898300311234078007212058694786434608804302025655),
457     // Output from https://www.wolframalpha.com/input/?i=lambert_w0(6)
458     tolerance);
459 
460   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 100.)),
461     BOOST_MATH_TEST_VALUE(RealType, 3.3856301402900501848882443645297268674916941701578),
462     // Output from https://www.wolframalpha.com/input/?i=lambert_w0(100)
463     tolerance);
464 
465   if (std::numeric_limits<RealType>::has_infinity)
466   {
467     BOOST_CHECK_THROW(lambert_w0(std::numeric_limits<RealType>::infinity()), std::overflow_error); // If should throw exception for infinity.
468     //BOOST_CHECK_EQUAL(lambert_w0(std::numeric_limits<RealType>::infinity()), +std::numeric_limits<RealType>::infinity()); // message is:
469     // Error in "test_types": class boost::exception_detail::clone_impl<struct boost::exception_detail::error_info_injector<class std::overflow_error> > :
470     // Error in function boost::math::lambert_w0<RealType>(<RealType>) : Argument z is infinite!
471     //BOOST_CHECK_EQUAL(lambert_w0(std::numeric_limits<RealType>::infinity()), +std::numeric_limits<RealType>::infinity()); // If infinity allowed.
472     BOOST_CHECK_THROW(lambert_wm1(std::numeric_limits<RealType>::infinity()), std::domain_error); // Infinity NOT allowed at all (not an edge case).
473   }
474   if (std::numeric_limits<RealType>::has_quiet_NaN)
475   { // Argument Z == NaN is always an throwable error for both branches.
476     // BOOST_CHECK_EQUAL(lambert_w0(std::numeric_limits<RealType>::quiet_NaN()), +std::numeric_limits<RealType>::infinity()); // message is:
477     // Error in function boost::math::lambert_w0<RealType>(<RealType>): Argument z is NaN!
478     BOOST_CHECK_THROW(lambert_w0(std::numeric_limits<RealType>::quiet_NaN()), std::domain_error);
479     BOOST_CHECK_THROW(lambert_wm1(std::numeric_limits<RealType>::quiet_NaN()), std::domain_error);
480   }
481 
482   // denorm - but might be == min or zero?
483   if (std::numeric_limits<RealType>::has_denorm == true)
484   { // Might also return infinity like z == 0?
485     BOOST_CHECK_THROW(lambert_wm1(std::numeric_limits<RealType>::denorm_min()), std::overflow_error);
486   }
487 
488     // Tests of Lambert W-1 branch.
489     BOOST_CHECK_CLOSE_FRACTION(  // Check -exp(-1) ~= -0.367879450 == -1 at the singularity branch point.
490     lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -0.36787944117144232159552377016146086744581113103176783450783680169746149574489980335714727434591964374662732527)),
491     BOOST_MATH_TEST_VALUE(RealType, -1.),
492     tolerance);
493 
494     // Near singularity and using series approximation.
495     // N[productlog(-1, -0.36), 50] = -1.2227701339785059531429380734238623131735264411311
496     BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -0.36)),
497       BOOST_MATH_TEST_VALUE(RealType, -1.2227701339785059531429380734238623131735264411311),
498     10 *   tolerance); // tolerance OK for quad
499     // -1.2227701339785059531429380734238623131735264411311
500     // -1.222770133978505953142938073423862313173526441131033
501 
502     // Just using series approximation (switch at -0.35).
503     // N[productlog(-0.351), 50] = -0.72398644140937651483634596143951001600417138085814
504     BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, -0.351)),
505       BOOST_MATH_TEST_VALUE(RealType, -0.72398644140937651483634596143951001600417138085814),
506       // 2 * tolerance); // Note 2 * tolerance for PB fukushima
507     // got -0.723986441409376931150560229265736446 without Halley
508     // exp -0.72398644140937651483634596143951001
509     // got -0.72398644140937651483634596143951029 with Halley
510      10 * tolerance); // expect -0.72398644140937651 float -0.723987103 needs 10 * tolerance
511      // 2 * tolerance is fine for double and up.
512     // Float is OK
513 
514     // Same for W-1 branch
515     BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -0.351)),
516       BOOST_MATH_TEST_VALUE(RealType, -1.3385736984773431852492145715526995809854973408320),
517       10 * tolerance); // 2 tolerance OK for quad
518 
519     // Near singularity and NOT using series approximation (switch at -0.35)
520     // N[productlog(-1, -0.34), 50]
521     BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -0.34)),
522       BOOST_MATH_TEST_VALUE(RealType, -1.4512014851325470735077533710339268100722032730024),
523      10 * tolerance); // tolerance OK for quad
524     //
525 
526     // Decreasing z until near zero (small z) .
527     //N[productlog(-1, -0.3), 50] = -1.7813370234216276119741702815127452608215583564545
528     BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -0.3)),
529      BOOST_MATH_TEST_VALUE(RealType, -1.7813370234216276119741702815127452608215583564545),
530     2 * tolerance);
531     //                               -1.78133702342162761197417028151274526082155835645446
532 
533     //N[productlog(-1, -0.2), 50] = -2.5426413577735264242938061566618482901614749075294
534   BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -0.2)),
535     BOOST_MATH_TEST_VALUE(RealType, -2.5426413577735264242938061566618482901614749075294),
536    2 * tolerance);
537 
538   BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -0.1)),
539     BOOST_MATH_TEST_VALUE(RealType, -3.577152063957297218409391963511994880401796257793),
540     tolerance);
541 
542      //N[productlog(-1, -0.01), 50] = -6.4727751243940046947410578927244880371043455902257
543   BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -0.01)),
544     BOOST_MATH_TEST_VALUE(RealType, -6.4727751243940046947410578927244880371043455902257),
545     tolerance);
546 
547   //  N[productlog(-1, -0.001), 50] = -9.1180064704027401212583371820468142742704349737639
548   BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -0.001)),
549     BOOST_MATH_TEST_VALUE(RealType, -9.1180064704027401212583371820468142742704349737639),
550     tolerance);
551 
552   //  N[productlog(-1, -0.000001), 50] = -16.626508901372473387706432163984684996461726803805
553   BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -0.000001)),
554     BOOST_MATH_TEST_VALUE(RealType, -16.626508901372473387706432163984684996461726803805),
555     tolerance);
556 
557   BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -1e-12)),
558     BOOST_MATH_TEST_VALUE(RealType, -31.067172842017230842039496250208586707880448763222),
559     tolerance);
560 
561   BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -1e-25)),
562     BOOST_MATH_TEST_VALUE(RealType, -61.686695602074505366866968627049381352503620377944),
563     tolerance);
564 
565   // z nearly too small.
566   BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -2e-26)),
567     BOOST_MATH_TEST_VALUE(RealType, -63.322302839923597803393585145387854867226970485197),
568     tolerance* 2);
569 
570   // z very nearly too small.  G(k=64) g[63] = -1.0264389699511303e-26 to using 1.027e-26
571   BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -1.027e-26)),
572     BOOST_MATH_TEST_VALUE(RealType, -63.999444896732265186957073549916026532499356695343),
573     tolerance);
574   // So -64 is the most negative value that can be determined using lookup.
575   // N[productlog(-1, -1.0264389699511303 * 10^-26 ), 50] -63.999999999999997947255011093606206983577811736472 == -64
576   // G[k=64] = g[63] = -1.0264389699511303e-26
577 
578   // z too small for G(k=64) g[63] = -1.0264389699511303e-26 to using 1.027e-26
579   //  N[productlog(-1, -10 ^ -26), 50]    = -31.067172842017230842039496250208586707880448763222
580   BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -1e-26)),
581     BOOST_MATH_TEST_VALUE(RealType, -64.026509628385889681156090340691637712441162092868),
582     tolerance); //                  -64.0265121
583 
584   if (std::numeric_limits<RealType>::has_infinity)
585   {
586     BOOST_CHECK_EQUAL(lambert_wm1(0), -std::numeric_limits<RealType>::infinity());
587   }
588   if (std::numeric_limits<RealType>::has_quiet_NaN)
589   {
590     // BOOST_CHECK_EQUAL(lambert_w0(std::numeric_limits<RealType>::quiet_NaN()), +std::numeric_limits<RealType>::infinity()); // message is:
591     // Error in function boost::math::lambert_w0<RealType>(<RealType>): Argument z is NaN!
592     BOOST_CHECK_THROW(lambert_wm1(std::numeric_limits<RealType>::quiet_NaN()), std::domain_error);
593   }
594 
595    // W0 Tests for too big and too small to use lookup table.
596    // Exactly W = 64, not enough to be OK for lookup.
597     BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 3.9904954117194348050619127737142206366920907815909119e+29)),
598     BOOST_MATH_TEST_VALUE(RealType, 64.0),
599     tolerance);
600 
601     // Just below z for F[64]
602     BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 3.99045411719434e+29)),
603      BOOST_MATH_TEST_VALUE(RealType, 63.999989810930513468726486827408823607175844852495), tolerance);
604     // Fails for quad_float -1.22277013397850595265
605     //                      -1.22277013397850595319
606 
607   // Just too big, so using log approx and Halley refinement.
608   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 4e+29)),
609     BOOST_MATH_TEST_VALUE(RealType, 64.002342375637950350970694519073803643686041499677),
610     tolerance);
611 
612   // Check at reduced precision.
613   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 4e+29), policy<digits2<11> >()),
614     BOOST_MATH_TEST_VALUE(RealType, 64.002342375637950350970694519073803643686041499677),
615     0.00002);  // 0.00001 fails.
616 
617   // Tests to ensure that all JM rational polynomials are being checked.
618 
619   // 1st polynomial if (z < 0.5)   // 0.05 < z < 0.5
620   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 0.49)),
621     BOOST_MATH_TEST_VALUE(RealType, 0.3465058086974944293540338951489158955895910665452626949),
622     tolerance);
623   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 0.051)),
624     BOOST_MATH_TEST_VALUE(RealType, 0.04858156174600359264950777241723801201748517590507517888),
625     tolerance);
626 
627   // 2st polynomial if 0.5 < z < 2
628   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 0.51)),
629     BOOST_MATH_TEST_VALUE(RealType, 0.3569144916935871518694242462560450385494399307379277704),
630     tolerance);
631 
632   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 1.9)),
633     BOOST_MATH_TEST_VALUE(RealType, 0.8291763302658400337004358009672187071638421282477162293),
634     tolerance);
635 
636   // 3rd polynomials 2 < z < 6
637   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 2.1)),
638     BOOST_MATH_TEST_VALUE(RealType, 0.8752187586805470099843211502166029752154384079916131962),
639     tolerance);
640 
641   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 5.9)),
642     BOOST_MATH_TEST_VALUE(RealType, 1.422521411785098213935338853943459424120416844150520831),
643     tolerance);
644 
645   // 4th polynomials 6 < z < 18
646   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 6.1)),
647     BOOST_MATH_TEST_VALUE(RealType, 1.442152194116056579987235881273412088690824214100254315),
648     tolerance);
649 
650   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 17.9)),
651     BOOST_MATH_TEST_VALUE(RealType, 2.129100923757568114366514708174691237123820852409339147),
652     tolerance);
653 
654   // 5th polynomials if (z < 9897.12905874)  // 2.8 < log(z) < 9.2
655   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 18.1)),
656     BOOST_MATH_TEST_VALUE(RealType, 2.136665501382339778305178680563584563343639180897328666),
657     tolerance);
658 
659   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 9897.)),
660     BOOST_MATH_TEST_VALUE(RealType, 7.222751047988674263127929506116648714752441161828893633),
661     tolerance);
662 
663   // 6th polynomials if (z < 7.896296e+13)  // 9.2 < log(z) <= 32
664   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 9999.)),
665     BOOST_MATH_TEST_VALUE(RealType, 7.231758181708737258902175236106030961433080976032516996),
666     tolerance);
667 
668   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 7.7e+13)),
669     BOOST_MATH_TEST_VALUE(RealType, 28.62069643025822480911439831021393125282095606713326376),
670     tolerance);
671 
672   // 7th polynomial // 32 < log(z) < 100
673   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 8.0e+18)),
674     BOOST_MATH_TEST_VALUE(RealType, 39.84107480517853176296156400093560722439428484537515586),
675     tolerance);
676 
677   // Largest 32-bit float. (Larger values for other types tested using max())
678   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 1.e38)),
679     BOOST_MATH_TEST_VALUE(RealType, 83.07844821316409592720410446942538465411465113447713574),
680     tolerance);
681 
682   // Using z small series function if z < 0.05  if (z < -0.051)  -0.27 < z < -0.051
683 
684   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, -0.28)),
685     BOOST_MATH_TEST_VALUE(RealType, -0.4307588745271127579165306568413721388196459822705155385),
686     tolerance);
687 
688   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, -0.25)),
689     BOOST_MATH_TEST_VALUE(RealType, -0.3574029561813889030688111040559047533165905550760120436),
690     tolerance);
691 
692   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, +0.25)),
693     BOOST_MATH_TEST_VALUE(RealType, 0.2038883547022401644431818313271398701493524772101596350),
694     tolerance);
695 
696   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, -0.051)), // just above 0.05 cutoff.
697     BOOST_MATH_TEST_VALUE(RealType, -0.05382002772543396036830469500362485089791914689728115249),
698     tolerance * 4);
699 
700   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, -0.05)), // at cutoff.
701     BOOST_MATH_TEST_VALUE(RealType, -0.05270598355154634795995650617915721289427674396592395160),
702     tolerance * 8);
703 
704   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 0.049)), // Just below cutoff.
705     BOOST_MATH_TEST_VALUE(RealType, 0.04676143671340832342497289393737051868103596756298863555),
706     tolerance * 4);
707 
708   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 0.01)),
709     BOOST_MATH_TEST_VALUE(RealType, 0.009901473843595011885336326816570107953627746494917415483),
710     tolerance);
711 
712   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, -0.01)),
713     BOOST_MATH_TEST_VALUE(RealType, -0.01010152719853875327292018767138623973670903993475235877),
714     tolerance);
715 
716   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, -0.049)),
717     BOOST_MATH_TEST_VALUE(RealType, -0.05159448479219405354564920228913331280713177046648170658),
718     tolerance * 8);
719 
720   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 1e-6)),
721     BOOST_MATH_TEST_VALUE(RealType, 9.999990000014999973333385416558666900096702096424344715e-7),
722     tolerance);
723 
724   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, -1e-6)),
725     BOOST_MATH_TEST_VALUE(RealType, -1.000001000001500002666671875010800023343107568372593753e-6),
726     tolerance);
727 
728   // Near Smallest float.
729   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 1e-38)),
730     BOOST_MATH_TEST_VALUE(RealType, 9.99999999999999999999999999999999999990000000000000000e-39),
731     tolerance);
732 
733   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, -1e-38)),
734     BOOST_MATH_TEST_VALUE(RealType, -1.000000000000000000000000000000000000010000000000000000e-38),
735     tolerance);
736 
737   // Similar 'too near zero' tests for W-1 branch.
738   // lambert_wm1(-1.0264389699511283e-26) = -64.000000000000000
739   // Exactly z for W=-64
740   BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -1.026438969951128225904695701851094643838952857740385870e-26)),
741     BOOST_MATH_TEST_VALUE(RealType, -64.000000000000000000000000000000000000),
742    2 * tolerance);
743 
744   // Just more negative than G[64 max] = wm1zs[63] so can't use lookup table.
745   BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -1.5e-27)),
746     BOOST_MATH_TEST_VALUE(RealType, -65.953279000145077719128800110134854577850889171784),
747     tolerance); //                  -65.9532776
748 
749   // Just less negative than G[64 max] = wm1zs[63] so can use lookup table.
750   BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -1.1e-26)),
751     BOOST_MATH_TEST_VALUE(RealType, -63.929686062157630858625440758283127600360210072859),
752     tolerance);
753 
754    // N[productlog(-1, -10 ^ -26), 50]    = -31.067172842017230842039496250208586707880448763222
755   BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -1e-26)),
756     BOOST_MATH_TEST_VALUE(RealType, -64.026509628385889681156090340691637712441162092868),
757     tolerance);
758 
759   // 1e-28 is too small
760   //  N[productlog(-1, -10 ^ -28), 50]    = -31.067172842017230842039496250208586707880448763222
761   BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -1e-28)),
762     BOOST_MATH_TEST_VALUE(RealType, -68.702163291525429160769761667024460023336801014578),
763     tolerance);
764 
765   // Check for overflow when using a double (including when using for approximate value for refinement for higher precision).
766 
767   // N[productlog(-1, -10 ^ -30), 50]    = -73.373110313822976797067478758120874529181611813766
768   //BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -1e30)),
769   //  BOOST_MATH_TEST_VALUE(RealType, -73.373110313822976797067478758120874529181611813766),
770   //  tolerance);
771   //unknown location : fatal error : in "test_types" :
772   //class boost::exception_detail::clone_impl<struct boost::exception_detail::error_info_injector<class std::domain_error> >
773   //  : Error in function boost::math::lambert_wm1<RealType>(<RealType>) :
774   //  Argument z = -1.00000002e+30 out of range(z < -exp(-1) = -3.6787944) for Lambert W - 1 branch!
775 
776   BOOST_CHECK_THROW(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -1e30)), std::domain_error);
777 
778   // Too negative
779   BOOST_CHECK_THROW(lambert_wm1(RealType(-0.5)), std::domain_error);
780 
781   // This fails for fixed_point type used for other tests because out of range?
782     //BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 1.0e6)),
783     //BOOST_MATH_TEST_VALUE(RealType, 11.383358086140052622000156781585004289033774706019),
784     //// Output from https://www.wolframalpha.com/input/?i=lambert_w0(1e6)
785     //// tolerance * 1000); // fails for fixed_point type exceeds 0.00015258789063
786     //  // 15.258789063
787     //  // 11.383346558
788     // tolerance * 100000);
789   // So need to use some spot tests for specific types, or use a bigger fixed_point type.
790 
791   // Check zero.
792   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 0.0)),
793     BOOST_MATH_TEST_VALUE(RealType, 0.0),
794     tolerance);
795   // these fail for cpp_dec_float_50
796   // 'boost::multiprecision::detail::expression<boost::multiprecision::detail::negate,boost::multiprecision::number<boost::multiprecision::backends::cpp_dec_float<50,int32_t,void>,boost::multiprecision::et_on>,void,void,void>'
797   // : no appropriate default constructor available
798   // TODO ???????????
799 
800  } // template <class RealType>void test_spots(RealType)
801 
BOOST_AUTO_TEST_CASE(test_types)802 BOOST_AUTO_TEST_CASE( test_types )
803 {
804   BOOST_MATH_CONTROL_FP;
805   // BOOST_TEST_MESSAGE output only appears if command line has --log_level="message"
806   // or call set_threshold_level function:
807   // boost::unit_test::unit_test_log.set_threshold_level(boost::unit_test_framework::log_messages);
808 
809   BOOST_TEST_MESSAGE("\nTest Lambert W function for several types.\n");
810   BOOST_TEST_MESSAGE(show_versions());  // Full version of Boost, STL and compiler info.
811 #ifndef BOOST_MATH_TEST_MULTIPRECISION
812   // Fundamental built-in types:
813   test_spots(0.0F); // float
814   test_spots(0.0); // double
815 #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
816   if (sizeof(long double) > sizeof(double))
817   { // Avoid pointless re-testing if double and long double are identical (for example, MSVC).
818     test_spots(0.0L); // long double
819   }
820   test_spots(boost::math::concepts::real_concept(0));
821 #endif
822 
823   #else // BOOST_MATH_TEST_MULTIPRECISION
824   // Multiprecision types:
825 #if BOOST_MATH_TEST_MULTIPRECISION == 1
826   test_spots(static_cast<boost::multiprecision::cpp_bin_float_double_extended>(0));
827 #endif
828 #if BOOST_MATH_TEST_MULTIPRECISION == 2
829   test_spots(static_cast<boost::multiprecision::cpp_bin_float_quad>(0));
830 #endif
831 #if BOOST_MATH_TEST_MULTIPRECISION == 3
832   test_spots(static_cast<boost::multiprecision::cpp_bin_float_50>(0));
833 #endif
834 #endif // ifdef BOOST_MATH_TEST_MULTIPRECISION
835 
836   #ifdef BOOST_MATH_TEST_FLOAT128
837    std::cout << "\nBOOST_MATH_TEST_FLOAT128 defined for float128 tests." << std::endl;
838 
839 #ifdef BOOST_HAS_FLOAT128
840   //  GCC and Intel only.
841   // Requires link to libquadmath library, see
842   // http://www.boost.org/doc/libs/release/libs/multiprecision/doc/html/boost_multiprecision/tut/floats/float128.html
843   // for example:
844   // C:\Program Files\mingw-w64\x86_64-7.2.0-win32-seh-rt_v5-rev1\mingw64\lib\gcc\x86_64-w64-mingw32\7.2.0\libquadmath.a
845 
846   using boost::multiprecision::float128;
847   std::cout << "BOOST_HAS_FLOAT128" << std::endl;
848 
849   std::cout.precision(std::numeric_limits<float128>::max_digits10);
850 
851   test_spots(static_cast<float128>(0));
852 #endif // BOOST_HAS_FLOAT128
853 #else
854   std::cout << "\nBOOST_MATH_TEST_FLOAT128 NOT defined so NO float128 tests." << std::endl;
855 #endif // #ifdef BOOST_MATH_TEST_FLOAT128
856 
857 } // BOOST_AUTO_TEST_CASE( test_types )
858 
859 
BOOST_AUTO_TEST_CASE(test_range_of_double_values)860 BOOST_AUTO_TEST_CASE( test_range_of_double_values )
861 {
862   using boost::math::constants::exp_minus_one;
863   using boost::math::lambert_w0;
864 
865   BOOST_TEST_MESSAGE("\nTest Lambert W function type double for range of values.");
866 
867   // Want to test almost largest value.
868   // test_value = (std::numeric_limits<RealType>::max)() / 4;
869   // std::cout << std::setprecision(std::numeric_limits<RealType>::max_digits10) << "Max value = " << test_value << std::endl;
870   // Can't use a test like this for all types because max_value depends on RealType
871   // and thus the expected result of lambert_w0 does too.
872   //BOOST_CHECK_CLOSE_FRACTION(lambert_w0<RealType>(test_value),
873   //  BOOST_MATH_TEST_VALUE(RealType, ???),
874   //  tolerance);
875   // So this section just tests a single type, say IEEE 64-bit double, for a range of spot values.
876 
877   typedef double RealType; // Some tests assume type is double.
878 
879   int epsilons = 1;
880   RealType tolerance = boost::math::tools::epsilon<RealType>() * epsilons; // 2 eps as a fraction.
881   std::cout << "Tolerance " << epsilons << " * epsilon == " << tolerance << std::endl;
882 
883 #ifndef BOOST_MATH_TEST_MULTIPRECISION
884   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 1.0e-6)),
885     BOOST_MATH_TEST_VALUE(RealType, 9.9999900000149999733333854165586669000967020964243e-7),
886     // Output from https://www.wolframalpha.com/input/ N[lambert_w[1e-6],50])
887     tolerance);
888   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 0.0001)),
889     BOOST_MATH_TEST_VALUE(RealType, 0.000099990001499733385405869000452213835767629477903460),
890     // Output from https://www.wolframalpha.com/input/ N[lambert_w[0.001],50])
891     tolerance);
892   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 0.001)),
893     BOOST_MATH_TEST_VALUE(RealType, 0.00099900149733853088995782787410778559957065467928884),
894     // Output from https://www.wolframalpha.com/input/ N[lambert_w[0.001],50])
895     tolerance);
896   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 0.01)),
897     BOOST_MATH_TEST_VALUE(RealType, 0.0099014738435950118853363268165701079536277464949174),
898     // Output from https://www.wolframalpha.com/input/ N[lambert_w[0.01],50])
899     tolerance * 25);  // <<< Needs a much bigger tolerance???
900   // 0.0099014738435951096 this test max_digits10
901   // 0.00990147384359511  digits10
902   // 0.0099014738435950118  wolfram
903   // 0.00990147384359501  wolfram  digits10
904   // 0.0099014738435950119 N[lambert_w[0.01],17]
905   // 0.00990147384359501   N[lambert_w[0.01],15] which really is more different than expected.
906   // 0.00990728209160670  approx
907   // 0.00990147384359511  previous
908 
909   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 0.05)),
910     BOOST_MATH_TEST_VALUE(RealType, 0.047672308600129374726388900514160870747062965933891),
911     // Output from https://www.wolframalpha.com/input/ N[lambert_w[0.01],50])
912     tolerance);
913 
914   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 0.1)),
915     BOOST_MATH_TEST_VALUE(RealType, 0.091276527160862264299895721423179568653119224051472),
916     // Output from https://www.wolframalpha.com/input/ N[lambert_w[1],50])
917     tolerance);
918 
919   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 1.)),
920     BOOST_MATH_TEST_VALUE(RealType, 0.56714329040978387299996866221035554975381578718651),
921     // Output from https://www.wolframalpha.com/input/ N[lambert_w[1],50])
922     tolerance);
923 
924   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 2.)),
925     BOOST_MATH_TEST_VALUE(RealType, 0.852605502013725491346472414695317466898453300151403508772),
926     // Output from https://www.wolframalpha.com/input/?i=lambert_w0(2.)
927     tolerance);
928 
929   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 3.)),
930     BOOST_MATH_TEST_VALUE(RealType, 1.049908894964039959988697070552897904589466943706341452932),
931     // Output from https://www.wolframalpha.com/input/?i=lambert_w0(3.)
932     tolerance);
933 
934   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 5.)),
935     BOOST_MATH_TEST_VALUE(RealType, 1.326724665242200223635099297758079660128793554638047479789),
936     // Output from https://www.wolframalpha.com/input/?i=lambert_w0(0.5)
937     tolerance);
938 
939   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 6.)),
940     BOOST_MATH_TEST_VALUE(RealType, 1.432404775898300311234078007212058694786434608804302025655),
941     // Output from https://www.wolframalpha.com/input/?i=lambert_w0(6)
942     tolerance);
943 
944   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 10.)),
945     BOOST_MATH_TEST_VALUE(RealType, 1.7455280027406993830743012648753899115352881290809),
946     // Output from https://www.wolframalpha.com/input/ N[lambert_w[10],50])
947     tolerance);
948 
949     BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 100.)),
950     BOOST_MATH_TEST_VALUE(RealType, 3.3856301402900501848882443645297268674916941701578),
951     // Output from https://www.wolframalpha.com/input/?i=lambert_w0(100)
952     tolerance);
953 
954   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 1000.)),
955     BOOST_MATH_TEST_VALUE(RealType, 5.2496028524015962271260563196973062825214723860596),
956     // Output from https://www.wolframalpha.com/input/?i=lambert_w0(1000)
957     tolerance);
958 
959   // This fails for fixed_point type used for other tests because out of range of the type?
960   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, 1.0e6)),
961     BOOST_MATH_TEST_VALUE(RealType, 11.383358086140052622000156781585004289033774706019),
962     // Output from https://www.wolframalpha.com/input/?i=lambert_w0(1e6)
963     tolerance); //
964 
965   // Tests for double only near the max and the singularity where Lambert_w estimates are less precise.
966   if (std::numeric_limits<RealType>::is_specialized)
967   { // is_specialized means that can use numeric_limits for tests.
968     // Check near std::numeric_limits<>::max() for type.
969     //std::cout << std::setprecision(std::numeric_limits<RealType>::max_digits10)
970     //  << (std::numeric_limits<double>::max)()          // == 1.7976931348623157e+308
971     //  << " " << (std::numeric_limits<double>::max)()/4 // == 4.4942328371557893e+307
972     //  << std::endl;
973 
974     // All these result in faulty error message
975     // unknown location : fatal error : in "test_range_of_values": class boost::exception_detail::clone_impl<struct boost::exception_detail::error_info_injector<class std::domain_error> >: Error in function boost::math::lambert_w0<RealType>(<RealType>): Argument z = %1 too large.
976     // I:\modular - boost\libs\math\test\test_lambert_w.cpp(456) : last checkpoint
977 
978     BOOST_CHECK_CLOSE_FRACTION(lambert_w0(1.7976931348623157e+308 ), // max_value for IEEE 64-bit double.
979       static_cast<double>(703.2270331047701868711791887193075929608934699575820028L),
980       // N[productlog[0, 1.7976931348623157*10^308 /2],50] == 702.53487067487671916110655783739076368512998658347
981       tolerance);
982 
983     BOOST_CHECK_CLOSE_FRACTION(lambert_w0(1.7976931348623157e+308 / 2), // max_value/2 for IEEE 64-bit double.
984       static_cast<double>(702.53487067487671916110655783739076368512998658347L),
985       // N[productlog[0, 1.7976931348623157*10^308 /2],50] == 702.53487067487671916110655783739076368512998658347
986       tolerance);
987 
988     BOOST_CHECK_CLOSE_FRACTION(lambert_w0(1.7976931348623157e+308 /4), // near max_value/4 for IEEE 64-bit double.
989       static_cast<double>(701.8427092142920014223182853764045476L),
990       // N[productlog(0, 1.7976931348623157* 10^308 /4 ), 37] =701.8427092142920014223182853764045476
991       // N[productlog(0, 0.25 * 1.7976931348623157*10^307), 37]
992       tolerance);
993 
994     BOOST_CHECK_CLOSE_FRACTION(lambert_w0(4.4942328371557893e+307), // max_value/4 for IEEE 64-bit double.
995       static_cast<double>(701.84270921429200143342782556643059L),
996       // N[lambert_w[4.4942328371557893e+307], 35]  == 701.8427092142920014334278255664305887
997       // as a double == 701.83341468208209
998       // Lambert computed 702.02379914670587
999       0.000003); // OK Much less precise at the max edge???
1000 
1001     BOOST_CHECK_CLOSE_FRACTION(lambert_w0((std::numeric_limits<double>::max)()), // max_value for IEEE 64-bit double.
1002       static_cast<double>(703.2270331047701868711791887193075930),
1003       // N[productlog(0, 1.7976931348623157* 10^308), 37] = 703.2270331047701868711791887193075930
1004       //                                                    703.22700325995515 lambert W
1005       //                                                    703.22703310477016  Wolfram
1006       tolerance * 2e8); // OK but much less accurate near max.
1007 
1008   // Compare precisions very close to the singularity.
1009     // This test value is one epsilon close to the singularity at -exp(-1) * z
1010     // (below which the result has a non-zero imaginary part).
1011     RealType test_value = -exp_minus_one<RealType>();
1012     test_value += (std::numeric_limits<RealType>::epsilon() * 1);
1013     BOOST_CHECK_CLOSE_FRACTION(lambert_w0(test_value),
1014       BOOST_MATH_TEST_VALUE(RealType, -0.99999996349975895),
1015       tolerance * 1000000000);
1016     // -0.99999996788201051
1017     // -0.99999996349975895
1018     // Would not expect to get a result closer than sqrt(epsilon)?
1019   } //  if (std::numeric_limits<RealType>::is_specialized)
1020 
1021   // Can only compare float_next for specific type T = double.
1022   // Comparison with Wolfram N[productlog(0,-0.36787944117144228 ), 17]
1023   // Note big loss of precision and big tolerance needed to pass.
1024   BOOST_CHECK_CLOSE_FRACTION(  // Check float_next(-exp(-1) )
1025     lambert_w0(BOOST_MATH_TEST_VALUE(double, -0.36787944117144228)),
1026     BOOST_MATH_TEST_VALUE(RealType, -0.99999998496215738),
1027     1e8 * tolerance); // diff 6.03558e-09 v 2.2204460492503131e-16
1028 
1029    BOOST_CHECK_CLOSE_FRACTION(  // Check  float_next(float_next(-exp(-1) ))
1030     lambert_w0(BOOST_MATH_TEST_VALUE(double, -0.36787944117144222)),
1031     BOOST_MATH_TEST_VALUE(RealType, -0.99999997649828679),
1032     5e7 * tolerance);// diff 2.30785e-09 v 2.2204460492503131e-16
1033 
1034    // Compare with previous PB/FK computations at double precision.
1035    using std::abs;
1036    RealType x = BOOST_MATH_TEST_VALUE(RealType, -0.36787944117144228);
1037    RealType w0 = lambert_w0(x);
1038    RealType w0_prime = boost::math::lambert_w0_prime(x);
1039    RealType mu = std::numeric_limits<RealType>::epsilon()/2;
1040    BOOST_CHECK_CLOSE_FRACTION(  // Check float_next(-exp(-1) )
1041     w0,
1042     BOOST_MATH_TEST_VALUE(RealType, -0.9999999849621573837115797120602890516186071783122773515945338502828025975466699519609633476854139977),
1043     2*mu*abs(x*w0_prime/w0)); // diff 6.03558e-09 v 2.2204460492503131e-16
1044 
1045    x = BOOST_MATH_TEST_VALUE(RealType, -0.36787944117144222);
1046    w0 = lambert_w0(x);
1047    w0_prime = boost::math::lambert_w0_prime(x);
1048    BOOST_CHECK_CLOSE_FRACTION(  // Check  float_next(float_next(-exp(-1) ))
1049     w0,
1050     BOOST_MATH_TEST_VALUE(RealType, -0.99999997419043196),
1051     2*mu*abs(x*w0_prime/w0));// diff 2.30785e-09 v 2.2204460492503131e-16
1052 
1053                // z increasingly close to singularity.
1054   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, -0.36)),
1055      BOOST_MATH_TEST_VALUE(RealType, -0.8060843159708177782855213616209920019974599683466713016),
1056      2 * tolerance); // -0.806084335
1057 
1058   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, -0.365)),
1059      BOOST_MATH_TEST_VALUE(RealType, -0.8798200914159538111724840007674053239388642469453350954),
1060      5 * tolerance); // Note 5 * tolerance
1061 
1062   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, -0.3678)),
1063      BOOST_MATH_TEST_VALUE(RealType, -0.9793607149578284774761844434886481686055949229547379368),
1064      15 * tolerance); // Note 15 * tolerance when this close to singularity.
1065 
1066                       // Just using series approximation (Fukushima switch at -0.35, but JM at 0.01 of singularity < -0.3679).
1067                       // N[productlog(-0.351), 50] = -0.72398644140937651483634596143951001600417138085814
1068                       // N[productlog(-0.351), 55] = -0.7239864414093765148363459614395100160041713808581379727
1069   BOOST_CHECK_CLOSE_FRACTION(lambert_w0(BOOST_MATH_TEST_VALUE(RealType, -0.351)),
1070      BOOST_MATH_TEST_VALUE(RealType, -0.72398644140937651483634596143951001600417138085814),
1071      10 * tolerance); // Note was 2 * tolerance
1072 
1073                       // Check value just not using near_singularity series approximation (and using rational polynomial instead).
1074   BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -0.3)),
1075      BOOST_MATH_TEST_VALUE(RealType, -1.7813370234216276119741702815127452608215583564545),
1076      // Output from https://www.wolframalpha.com/input/
1077      //N[productlog(-1, -0.3), 50] = -1.7813370234216276119741702815127452608215583564545
1078      tolerance);
1079 
1080   // Using table lookup and schroeder with decreasing z to zero.
1081   BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -0.2)),
1082      BOOST_MATH_TEST_VALUE(RealType, -2.5426413577735264242938061566618482901614749075294),
1083      // N[productlog[-1, -0.2],50] -2.5426413577735264242938061566618482901614749075294
1084      tolerance);
1085 
1086   BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -0.1)),
1087      BOOST_MATH_TEST_VALUE(RealType, -3.5771520639572972184093919635119948804017962577931),
1088      //N[productlog(-1, -0.1), 50] = -3.5771520639572972184093919635119948804017962577931
1089      tolerance);
1090 
1091   BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -0.001)),
1092      BOOST_MATH_TEST_VALUE(RealType, -9.1180064704027401212583371820468142742704349737639),
1093      //  N[productlog(-1, -0.001), 50] = -9.1180064704027401212583371820468142742704349737639
1094      tolerance);
1095 
1096   BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -0.000001)),
1097      BOOST_MATH_TEST_VALUE(RealType, -16.626508901372473387706432163984684996461726803805),
1098      //  N[productlog(-1, -0.000001), 50] = -16.626508901372473387706432163984684996461726803805
1099      tolerance);
1100 
1101   BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -1e-6)),
1102      BOOST_MATH_TEST_VALUE(RealType, -16.626508901372473387706432163984684996461726803805),
1103      //  N[productlog(-1, -10 ^ -6), 50] = -16.626508901372473387706432163984684996461726803805
1104      tolerance);
1105 
1106   BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -1.0e-26)),
1107      BOOST_MATH_TEST_VALUE(RealType, -64.026509628385889681156090340691637712441162092868),
1108      // Output from https://www.wolframalpha.com/input/
1109      // N[productlog(-1, -1 * 10^-26 ), 50] = -64.026509628385889681156090340691637712441162092868
1110      tolerance);
1111 
1112   BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -2e-26)),
1113      BOOST_MATH_TEST_VALUE(RealType, -63.322302839923597803393585145387854867226970485197),
1114      // N[productlog[-1, -2*10^-26],50] = -63.322302839923597803393585145387854867226970485197
1115      tolerance * 2);
1116 
1117   // Smaller than lookup table, so must use approx and Halley refinements.
1118   BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -1e-30)),
1119      BOOST_MATH_TEST_VALUE(RealType, -73.373110313822976797067478758120874529181611813766),
1120      //  N[productlog(-1, -10 ^ -30), 50]    = -73.373110313822976797067478758120874529181611813766
1121      tolerance);
1122 
1123   // std::numeric_limits<RealType>::min
1124 #ifndef BOOST_NO_CXX11_NUMERIC_LIMITS
1125   std::cout.precision(std::numeric_limits<RealType>::max_digits10);
1126 #endif
1127   std::cout << "(std::numeric_limits<RealType>::min)() " << (std::numeric_limits<RealType>::min)() << std::endl;
1128 
1129   BOOST_CHECK_CLOSE_FRACTION(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, -2.2250738585072014e-308)),
1130      BOOST_MATH_TEST_VALUE(RealType, -714.96865723796647086868547560654825435542227693935),
1131      // N[productlog[-1, -2.2250738585072014e-308],50] =  -714.96865723796647086868547560654825435542227693935
1132      tolerance);
1133 
1134   // For z = 0, W = -infinity
1135   if (std::numeric_limits<RealType>::has_infinity)
1136   {
1137      BOOST_CHECK_EQUAL(lambert_wm1(BOOST_MATH_TEST_VALUE(RealType, 0.)),
1138         -std::numeric_limits<RealType>::infinity());
1139   }
1140 
1141 #elif BOOST_MATH_TEST_MULTIPRECISION == 2
1142 
1143   // Comparison with Wolfram N[productlog(0,-0.36787944117144228 ), 17]
1144   // Using conversion from double to higher precision cpp_bin_float_quad
1145   using boost::multiprecision::cpp_bin_float_quad;
1146   BOOST_CHECK_CLOSE_FRACTION(  // Check float_next(-exp(-1) )
1147     lambert_w0(BOOST_MATH_TEST_VALUE(cpp_bin_float_quad, -0.36787944117144228)),
1148     BOOST_MATH_TEST_VALUE(cpp_bin_float_quad, -0.99999998496215738),
1149     tolerance); // OK
1150 
1151   BOOST_CHECK_CLOSE_FRACTION(  // Check  float_next(float_next(-exp(-1) ))
1152     lambert_w0(BOOST_MATH_TEST_VALUE(cpp_bin_float_quad, -0.36787944117144222)),
1153     BOOST_MATH_TEST_VALUE(cpp_bin_float_quad, -0.99999997649828679),
1154     tolerance);// OK
1155 #endif
1156 } // BOOST_AUTO_TEST_CASE(test_range_of_double_values)
1157 
1158