• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<html>
2<head>
3<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
4<title>Trapezoidal Quadrature</title>
5<link rel="stylesheet" href="../math.css" type="text/css">
6<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
7<link rel="home" href="../index.html" title="Math Toolkit 2.12.0">
8<link rel="up" href="../quadrature.html" title="Chapter 13. Quadrature and Differentiation">
9<link rel="prev" href="../quadrature.html" title="Chapter 13. Quadrature and Differentiation">
10<link rel="next" href="gauss.html" title="Gauss-Legendre quadrature">
11</head>
12<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
13<table cellpadding="2" width="100%"><tr>
14<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../boost.png"></td>
15<td align="center"><a href="../../../../../index.html">Home</a></td>
16<td align="center"><a href="../../../../../libs/libraries.htm">Libraries</a></td>
17<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
18<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
19<td align="center"><a href="../../../../../more/index.htm">More</a></td>
20</tr></table>
21<hr>
22<div class="spirit-nav">
23<a accesskey="p" href="../quadrature.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../quadrature.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="gauss.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
24</div>
25<div class="section">
26<div class="titlepage"><div><div><h2 class="title" style="clear: both">
27<a name="math_toolkit.trapezoidal"></a><a class="link" href="trapezoidal.html" title="Trapezoidal Quadrature">Trapezoidal Quadrature</a>
28</h2></div></div></div>
29<h4>
30<a name="math_toolkit.trapezoidal.h0"></a>
31      <span class="phrase"><a name="math_toolkit.trapezoidal.synopsis"></a></span><a class="link" href="trapezoidal.html#math_toolkit.trapezoidal.synopsis">Synopsis</a>
32    </h4>
33<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">quadrature</span><span class="special">/</span><span class="identifier">trapezoidal</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
34<span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span><span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">quadrature</span> <span class="special">{</span>
35
36<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">F</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">Real</span><span class="special">&gt;</span>
37<span class="keyword">auto</span> <span class="identifier">trapezoidal</span><span class="special">(</span><span class="identifier">F</span> <span class="identifier">f</span><span class="special">,</span> <span class="identifier">Real</span> <span class="identifier">a</span><span class="special">,</span> <span class="identifier">Real</span> <span class="identifier">b</span><span class="special">,</span>
38                 <span class="identifier">Real</span> <span class="identifier">tol</span> <span class="special">=</span> <span class="identifier">sqrt</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="identifier">Real</span><span class="special">&gt;::</span><span class="identifier">epsilon</span><span class="special">()),</span>
39                 <span class="identifier">size_t</span> <span class="identifier">max_refinements</span> <span class="special">=</span> <span class="number">12</span><span class="special">,</span>
40                 <span class="identifier">Real</span><span class="special">*</span> <span class="identifier">error_estimate</span> <span class="special">=</span> <span class="keyword">nullptr</span><span class="special">,</span>
41                 <span class="identifier">Real</span><span class="special">*</span> <span class="identifier">L1</span> <span class="special">=</span> <span class="keyword">nullptr</span><span class="special">);</span>
42
43<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">F</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">Real</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
44<span class="keyword">auto</span> <span class="identifier">trapezoidal</span><span class="special">(</span><span class="identifier">F</span> <span class="identifier">f</span><span class="special">,</span> <span class="identifier">Real</span> <span class="identifier">a</span><span class="special">,</span> <span class="identifier">Real</span> <span class="identifier">b</span><span class="special">,</span> <span class="identifier">Real</span> <span class="identifier">tol</span><span class="special">,</span> <span class="identifier">size_t</span> <span class="identifier">max_refinements</span><span class="special">,</span>
45                 <span class="identifier">Real</span><span class="special">*</span> <span class="identifier">error_estimate</span><span class="special">,</span> <span class="identifier">Real</span><span class="special">*</span> <span class="identifier">L1</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;</span> <span class="identifier">pol</span><span class="special">);</span>
46
47<span class="special">}}}</span> <span class="comment">// namespaces</span>
48</pre>
49<h4>
50<a name="math_toolkit.trapezoidal.h1"></a>
51      <span class="phrase"><a name="math_toolkit.trapezoidal.description"></a></span><a class="link" href="trapezoidal.html#math_toolkit.trapezoidal.description">Description</a>
52    </h4>
53<p>
54      The functional <code class="computeroutput"><span class="identifier">trapezoidal</span></code>
55      calculates the integral of a function <span class="emphasis"><em>f</em></span> using the surprisingly
56      simple trapezoidal rule. If we assume only that the integrand is twice continuously
57      differentiable, we can prove that the error of the composite trapezoidal rule
58      is ��(h<sup>2</sup>). Hence halving the interval only cuts the error by about a fourth,
59      which in turn implies that we must evaluate the function many times before
60      an acceptable accuracy can be achieved.
61    </p>
62<p>
63      However, the trapezoidal rule has an astonishing property: If the integrand
64      is periodic, and we integrate it over a period, then the trapezoidal rule converges
65      faster than any power of the step size <span class="emphasis"><em>h</em></span>. This can be
66      seen by examination of the <a href="https://en.wikipedia.org/wiki/Euler-Maclaurin_formula" target="_top">Euler-Maclaurin
67      summation formula</a>, which relates a definite integral to its trapezoidal
68      sum and error terms proportional to the derivatives of the function at the
69      endpoints and the Bernoulli numbers. If the derivatives at the endpoints are
70      the same or vanish, then the error very nearly vanishes. Hence the trapezoidal
71      rule is essentially optimal for periodic integrands.
72    </p>
73<p>
74      Other classes of integrands which are integrated efficiently by this method
75      are the C<sub>0</sub><sup>∞</sup>(∝) <a href="https://en.wikipedia.org/wiki/Bump_function" target="_top">bump
76      functions</a> and bell-shaped integrals over the infinite interval. For
77      details, see <a href="http://epubs.siam.org/doi/pdf/10.1137/130932132" target="_top">Trefethen's</a>
78      SIAM review.
79    </p>
80<p>
81      In its simplest form, an integration can be performed by the following code
82    </p>
83<pre class="programlisting"><span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">quadrature</span><span class="special">::</span><span class="identifier">trapezoidal</span><span class="special">;</span>
84<span class="keyword">auto</span> <span class="identifier">f</span> <span class="special">=</span> <span class="special">[](</span><span class="keyword">double</span> <span class="identifier">x</span><span class="special">)</span> <span class="special">{</span> <span class="keyword">return</span> <span class="number">1</span><span class="special">/(</span><span class="number">5</span> <span class="special">-</span> <span class="number">4</span><span class="special">*</span><span class="identifier">cos</span><span class="special">(</span><span class="identifier">x</span><span class="special">));</span> <span class="special">};</span>
85<span class="keyword">double</span> <span class="identifier">I</span> <span class="special">=</span> <span class="identifier">trapezoidal</span><span class="special">(</span><span class="identifier">f</span><span class="special">,</span> <span class="number">0.0</span><span class="special">,</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">constants</span><span class="special">::</span><span class="identifier">two_pi</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;());</span>
86</pre>
87<p>
88      The integrand must accept a real number argument, but can return a complex
89      number. This is useful for contour integrals (which are manifestly periodic)
90      and high-order numerical differentiation of analytic functions. An example
91      using the integral definition of the complex Bessel function is shown here:
92    </p>
93<pre class="programlisting"><span class="keyword">auto</span> <span class="identifier">bessel_integrand</span> <span class="special">=</span> <span class="special">[&amp;</span><span class="identifier">n</span><span class="special">,</span> <span class="special">&amp;</span><span class="identifier">z</span><span class="special">](</span><span class="keyword">double</span> <span class="identifier">theta</span><span class="special">)-&gt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;</span>
94<span class="special">{</span>
95    <span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;</span> <span class="identifier">z</span><span class="special">{</span><span class="number">2</span><span class="special">,</span> <span class="number">3</span><span class="special">};</span>
96    <span class="keyword">using</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">cos</span><span class="special">;</span>
97    <span class="keyword">using</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">sin</span><span class="special">;</span>
98    <span class="keyword">return</span> <span class="identifier">cos</span><span class="special">(</span><span class="identifier">z</span><span class="special">*</span><span class="identifier">sin</span><span class="special">(</span><span class="identifier">theta</span><span class="special">)</span> <span class="special">-</span> <span class="number">2</span><span class="special">*</span><span class="identifier">theta</span><span class="special">)/</span><span class="identifier">pi</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;();</span>
99<span class="special">};</span>
100
101<span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">quadrature</span><span class="special">::</span><span class="identifier">trapezoidal</span><span class="special">;</span>
102<span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;</span> <span class="identifier">Jnz</span> <span class="special">=</span> <span class="identifier">trapezoidal</span><span class="special">(</span><span class="identifier">bessel_integrand</span><span class="special">,</span> <span class="number">0.0</span><span class="special">,</span> <span class="identifier">pi</span><span class="special">&lt;</span><span class="identifier">Real</span><span class="special">&gt;());</span>
103</pre>
104<p>
105      Other special functions which are efficiently evaluated in the complex plane
106      by trapezoidal quadrature are modified Bessel functions and the complementary
107      error function. Another application of complex-valued trapezoidal quadrature
108      is computation of high-order numerical derivatives; see Lyness and Moler for
109      details.
110    </p>
111<p>
112      Since the routine is adaptive, step sizes are halved continuously until a tolerance
113      is reached. In order to control this tolerance, simply call the routine with
114      an additional argument
115    </p>
116<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">I</span> <span class="special">=</span> <span class="identifier">trapezoidal</span><span class="special">(</span><span class="identifier">f</span><span class="special">,</span> <span class="number">0.0</span><span class="special">,</span> <span class="identifier">two_pi</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;(),</span> <span class="number">1e-6</span><span class="special">);</span>
117</pre>
118<p>
119      The routine stops when successive estimates of the integral <code class="computeroutput"><span class="identifier">I1</span></code>
120      and <code class="computeroutput"><span class="identifier">I0</span></code> differ by less than
121      the tolerance multiplied by the estimated L<sub>1</sub> norm of the function. A good choice
122      for the tolerance is √ε, which is the default. If the integrand is periodic,
123      then the number of correct digits should double on each interval halving. Hence,
124      once the integration routine has estimated that the error is √ε, then the actual
125      error should be ~ε. If the integrand is <span class="bold"><strong>not</strong></span>
126      periodic, then reducing the error to √ε takes much longer, but is nonetheless
127      possible without becoming a major performance bug.
128    </p>
129<p>
130      A question arises as to what to do when successive estimates never pass below
131      the tolerance threshold. The stepsize would be halved repeatedly, generating
132      an exponential explosion in function evaluations. As such, you may pass an
133      optional argument <code class="computeroutput"><span class="identifier">max_refinements</span></code>
134      which controls how many times the interval may be halved before giving up.
135      By default, this maximum number of refinement steps is 12, which should never
136      be hit in double precision unless the function is not periodic. However, for
137      higher-precision types, it may be of interest to allow the algorithm to compute
138      more refinements:
139    </p>
140<pre class="programlisting"><span class="identifier">size_t</span> <span class="identifier">max_refinements</span> <span class="special">=</span> <span class="number">15</span><span class="special">;</span>
141<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">I</span> <span class="special">=</span> <span class="identifier">trapezoidal</span><span class="special">(</span><span class="identifier">f</span><span class="special">,</span> <span class="number">0.0L</span><span class="special">,</span> <span class="identifier">two_pi</span><span class="special">&lt;</span><span class="keyword">long</span> <span class="keyword">double</span><span class="special">&gt;(),</span> <span class="number">1e-9L</span><span class="special">,</span> <span class="identifier">max_refinements</span><span class="special">);</span>
142</pre>
143<p>
144      Note that the maximum allowed compute time grows exponentially with <code class="computeroutput"><span class="identifier">max_refinements</span></code>. The routine will not throw
145      an exception if the maximum refinements is achieved without the requested tolerance
146      being attained. This is because the value calculated is more often than not
147      still usable. However, for applications with high-reliability requirements,
148      the error estimate should be queried. This is achieved by passing additional
149      pointers into the routine:
150    </p>
151<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">error_estimate</span><span class="special">;</span>
152<span class="keyword">double</span> <span class="identifier">L1</span><span class="special">;</span>
153<span class="keyword">double</span> <span class="identifier">I</span> <span class="special">=</span> <span class="identifier">trapezoidal</span><span class="special">(</span><span class="identifier">f</span><span class="special">,</span> <span class="number">0.0</span><span class="special">,</span> <span class="identifier">two_pi</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;(),</span> <span class="identifier">tolerance</span><span class="special">,</span> <span class="identifier">max_refinements</span><span class="special">,</span> <span class="special">&amp;</span><span class="identifier">error_estimate</span><span class="special">,</span> <span class="special">&amp;</span><span class="identifier">L1</span><span class="special">);</span>
154<span class="keyword">if</span> <span class="special">(</span><span class="identifier">error_estimate</span> <span class="special">&gt;</span> <span class="identifier">tolerance</span><span class="special">*</span><span class="identifier">L1</span><span class="special">)</span>
155<span class="special">{</span>
156     <span class="keyword">double</span> <span class="identifier">I</span> <span class="special">=</span> <span class="identifier">some_other_quadrature_method</span><span class="special">(</span><span class="identifier">f</span><span class="special">,</span> <span class="number">0</span><span class="special">,</span> <span class="identifier">two_pi</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;());</span>
157<span class="special">}</span>
158</pre>
159<p>
160      The final argument is the L<sub>1</sub> norm of the integral. This is computed along with
161      the integral, and is an essential component of the algorithm. First, the L<sub>1</sub> norm
162      establishes a scale against which the error can be measured. Second, the L<sub>1</sub> norm
163      can be used to evaluate the stability of the computation. This can be formulated
164      in a rigorous manner by defining the <span class="bold"><strong>condition number
165      of summation</strong></span>. The condition number of summation is defined by
166    </p>
167<div class="blockquote"><blockquote class="blockquote"><p>
168        <span class="serif_italic"><span class="emphasis"><em>κ(S<sub>n</sub>) := Σ<sub>i</sub><sup>n</sup> |x<sub>i</sub>|/|Σ<sub>i</sub><sup>n</sup> x<sub>i</sub>|</em></span></span>
169      </p></blockquote></div>
170<p>
171      If this number of ~10<sup>k</sup>, then <span class="emphasis"><em>k</em></span> additional digits are expected
172      to be lost in addition to digits lost due to floating point rounding error.
173      As all numerical quadrature methods reduce to summation, their stability is
174      controlled by the ratio ∫ |f| dt/|∫ f dt |, which is easily seen
175      to be equivalent to condition number of summation when evaluated numerically.
176      Hence both the error estimate and the condition number of summation should
177      be analyzed in applications requiring very high precision and reliability.
178    </p>
179<p>
180      As an example, we consider evaluation of Bessel functions by trapezoidal quadrature.
181      The Bessel function of the first kind is defined via
182    </p>
183<div class="blockquote"><blockquote class="blockquote"><p>
184        <span class="serif_italic"><span class="emphasis"><em>J<sub>n</sub>(x) = 1/2Π ∫<sub>-Π</sub><sup>Π</sup> cos(n
185        t - x sin(t)) dt</em></span></span>
186      </p></blockquote></div>
187<p>
188      The integrand is periodic, so the Euler-Maclaurin summation formula guarantees
189      exponential convergence via the trapezoidal quadrature. Without careful consideration,
190      it seems this would be a very attractive method to compute Bessel functions.
191      However, we see that for large <span class="emphasis"><em>n</em></span> the integrand oscillates
192      rapidly, taking on positive and negative values, and hence the trapezoidal
193      sums become ill-conditioned. In double precision, <span class="emphasis"><em>x = 17</em></span>
194      and <span class="emphasis"><em>n = 25</em></span> gives a sum which is so poorly conditioned
195      that zero correct digits are obtained.
196    </p>
197<p>
198      The final <a class="link" href="../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a> argument is optional and can
199      be used to control the behaviour of the function: how it handles errors, what
200      level of precision to use etc. Refer to the <a class="link" href="../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">policy documentation
201      for more details</a>.
202    </p>
203<p>
204      References:
205    </p>
206<p>
207      Trefethen, Lloyd N., Weideman, J.A.C., <span class="emphasis"><em>The Exponentially Convergent
208      Trapezoidal Rule</em></span>, SIAM Review, Vol. 56, No. 3, 2014.
209    </p>
210<p>
211      Stoer, Josef, and Roland Bulirsch. <span class="emphasis"><em>Introduction to numerical analysis.
212      Vol. 12.</em></span>, Springer Science &amp; Business Media, 2013.
213    </p>
214<p>
215      Higham, Nicholas J. <span class="emphasis"><em>Accuracy and stability of numerical algorithms.</em></span>
216      Society for industrial and applied mathematics, 2002.
217    </p>
218<p>
219      Lyness, James N., and Cleve B. Moler. <span class="emphasis"><em>Numerical differentiation of
220      analytic functions.</em></span> SIAM Journal on Numerical Analysis 4.2 (1967):
221      202-210.
222    </p>
223<p>
224      Gil, Amparo, Javier Segura, and Nico M. Temme. <span class="emphasis"><em>Computing special
225      functions by using quadrature rules.</em></span> Numerical Algorithms 33.1-4
226      (2003): 265-275.
227    </p>
228</div>
229<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
230<td align="left"></td>
231<td align="right"><div class="copyright-footer">Copyright © 2006-2019 Nikhar
232      Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
233      Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Matthew Pulver, Johan
234      Råde, Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg,
235      Daryle Walker and Xiaogang Zhang<p>
236        Distributed under the Boost Software License, Version 1.0. (See accompanying
237        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
238      </p>
239</div></td>
240</tr></table>
241<hr>
242<div class="spirit-nav">
243<a accesskey="p" href="../quadrature.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../quadrature.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="gauss.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
244</div>
245</body>
246</html>
247