• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<html>
2<head>
3<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
4<title>Riemann Zeta Function</title>
5<link rel="stylesheet" href="../../math.css" type="text/css">
6<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
7<link rel="home" href="../../index.html" title="Math Toolkit 2.12.0">
8<link rel="up" href="../zetas.html" title="Zeta Functions">
9<link rel="prev" href="../zetas.html" title="Zeta Functions">
10<link rel="next" href="../expint.html" title="Exponential Integrals">
11</head>
12<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
13<table cellpadding="2" width="100%"><tr>
14<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../boost.png"></td>
15<td align="center"><a href="../../../../../../index.html">Home</a></td>
16<td align="center"><a href="../../../../../../libs/libraries.htm">Libraries</a></td>
17<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
18<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
19<td align="center"><a href="../../../../../../more/index.htm">More</a></td>
20</tr></table>
21<hr>
22<div class="spirit-nav">
23<a accesskey="p" href="../zetas.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../zetas.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="../expint.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
24</div>
25<div class="section">
26<div class="titlepage"><div><div><h3 class="title">
27<a name="math_toolkit.zetas.zeta"></a><a class="link" href="zeta.html" title="Riemann Zeta Function">Riemann Zeta Function</a>
28</h3></div></div></div>
29<h5>
30<a name="math_toolkit.zetas.zeta.h0"></a>
31        <span class="phrase"><a name="math_toolkit.zetas.zeta.synopsis"></a></span><a class="link" href="zeta.html#math_toolkit.zetas.zeta.synopsis">Synopsis</a>
32      </h5>
33<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">special_functions</span><span class="special">/</span><span class="identifier">zeta</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
34</pre>
35<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span><span class="special">{</span>
36
37<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
38<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">zeta</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">z</span><span class="special">);</span>
39
40<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
41<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">zeta</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">z</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
42
43<span class="special">}}</span> <span class="comment">// namespaces</span>
44</pre>
45<p>
46        The return type of these functions is computed using the <a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>result
47        type calculation rules</em></span></a>: the return type is <code class="computeroutput"><span class="keyword">double</span></code> if T is an integer type, and T otherwise.
48      </p>
49<p>
50        The final <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a> argument is optional and can
51        be used to control the behaviour of the function: how it handles errors,
52        what level of precision to use etc. Refer to the <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">policy
53        documentation for more details</a>.
54      </p>
55<h5>
56<a name="math_toolkit.zetas.zeta.h1"></a>
57        <span class="phrase"><a name="math_toolkit.zetas.zeta.description"></a></span><a class="link" href="zeta.html#math_toolkit.zetas.zeta.description">Description</a>
58      </h5>
59<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
60<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">zeta</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">z</span><span class="special">);</span>
61
62<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
63<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">zeta</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">z</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
64</pre>
65<p>
66        Returns the <a href="http://mathworld.wolfram.com/RiemannZetaFunction.html" target="_top">zeta
67        function</a> of z:
68      </p>
69<div class="blockquote"><blockquote class="blockquote"><p>
70          <span class="inlinemediaobject"><img src="../../../equations/zeta1.svg"></span>
71
72        </p></blockquote></div>
73<div class="blockquote"><blockquote class="blockquote"><p>
74          <span class="inlinemediaobject"><img src="../../../graphs/zeta1.svg" align="middle"></span>
75
76        </p></blockquote></div>
77<div class="blockquote"><blockquote class="blockquote"><p>
78          <span class="inlinemediaobject"><img src="../../../graphs/zeta2.svg" align="middle"></span>
79
80        </p></blockquote></div>
81<h5>
82<a name="math_toolkit.zetas.zeta.h2"></a>
83        <span class="phrase"><a name="math_toolkit.zetas.zeta.accuracy"></a></span><a class="link" href="zeta.html#math_toolkit.zetas.zeta.accuracy">Accuracy</a>
84      </h5>
85<p>
86        The following table shows the peak errors (in units of epsilon) found on
87        various platforms with various floating point types, along with comparisons
88        to the <a href="http://www.gnu.org/software/gsl/" target="_top">GSL-1.9</a> and
89        <a href="http://www.netlib.org/cephes/" target="_top">Cephes</a> libraries. Unless
90        otherwise specified any floating point type that is narrower than the one
91        shown will have <a class="link" href="../relative_error.html#math_toolkit.relative_error.zero_error">effectively
92        zero error</a>.
93      </p>
94<div class="table">
95<a name="math_toolkit.zetas.zeta.table_zeta"></a><p class="title"><b>Table 8.76. Error rates for zeta</b></p>
96<div class="table-contents"><table class="table" summary="Error rates for zeta">
97<colgroup>
98<col>
99<col>
100<col>
101<col>
102<col>
103</colgroup>
104<thead><tr>
105<th>
106              </th>
107<th>
108                <p>
109                  GNU C++ version 7.1.0<br> linux<br> long double
110                </p>
111              </th>
112<th>
113                <p>
114                  GNU C++ version 7.1.0<br> linux<br> double
115                </p>
116              </th>
117<th>
118                <p>
119                  Sun compiler version 0x5150<br> Sun Solaris<br> long double
120                </p>
121              </th>
122<th>
123                <p>
124                  Microsoft Visual C++ version 14.1<br> Win32<br> double
125                </p>
126              </th>
127</tr></thead>
128<tbody>
129<tr>
130<td>
131                <p>
132                  Zeta: Random values greater than 1
133                </p>
134              </td>
135<td>
136                <p>
137                  <span class="blue">Max = 0.846ε (Mean = 0.0833ε)</span><br>
138                  <br> (<span class="emphasis"><em>&lt;cmath&gt;:</em></span> Max = 5.45ε (Mean = 1ε))
139                </p>
140              </td>
141<td>
142                <p>
143                  <span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
144                  2.1:</em></span> Max = 8.69ε (Mean = 1.03ε))
145                </p>
146              </td>
147<td>
148                <p>
149                  <span class="blue">Max = 0.846ε (Mean = 0.0833ε)</span>
150                </p>
151              </td>
152<td>
153                <p>
154                  <span class="blue">Max = 0.836ε (Mean = 0.093ε)</span>
155                </p>
156              </td>
157</tr>
158<tr>
159<td>
160                <p>
161                  Zeta: Random values less than 1
162                </p>
163              </td>
164<td>
165                <p>
166                  <span class="blue">Max = 7.03ε (Mean = 2.93ε)</span><br> <br>
167                  (<span class="emphasis"><em>&lt;cmath&gt;:</em></span> Max = 538ε (Mean = 59.3ε))
168                </p>
169              </td>
170<td>
171                <p>
172                  <span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
173                  2.1:</em></span> Max = 137ε (Mean = 13.8ε))
174                </p>
175              </td>
176<td>
177                <p>
178                  <span class="blue">Max = 70.1ε (Mean = 17.1ε)</span>
179                </p>
180              </td>
181<td>
182                <p>
183                  <span class="blue">Max = 6.84ε (Mean = 3.12ε)</span>
184                </p>
185              </td>
186</tr>
187<tr>
188<td>
189                <p>
190                  Zeta: Values close to and greater than 1
191                </p>
192              </td>
193<td>
194                <p>
195                  <span class="blue">Max = 0.995ε (Mean = 0.5ε)</span><br> <br>
196                  (<span class="emphasis"><em>&lt;cmath&gt;:</em></span> Max = 1.9e+06ε (Mean = 5.11e+05ε))
197                </p>
198              </td>
199<td>
200                <p>
201                  <span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
202                  2.1:</em></span> Max = 7.73ε (Mean = 4.07ε))
203                </p>
204              </td>
205<td>
206                <p>
207                  <span class="blue">Max = 0.995ε (Mean = 0.5ε)</span>
208                </p>
209              </td>
210<td>
211                <p>
212                  <span class="blue">Max = 0.994ε (Mean = 0.421ε)</span>
213                </p>
214              </td>
215</tr>
216<tr>
217<td>
218                <p>
219                  Zeta: Values close to and less than 1
220                </p>
221              </td>
222<td>
223                <p>
224                  <span class="blue">Max = 0.998ε (Mean = 0.508ε)</span><br> <br>
225                  (<span class="emphasis"><em>&lt;cmath&gt;:</em></span> Max = 8.53e+06ε (Mean = 1.87e+06ε))
226                </p>
227              </td>
228<td>
229                <p>
230                  <span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
231                  2.1:</em></span> Max = 0.991ε (Mean = 0.28ε))
232                </p>
233              </td>
234<td>
235                <p>
236                  <span class="blue">Max = 0.998ε (Mean = 0.508ε)</span>
237                </p>
238              </td>
239<td>
240                <p>
241                  <span class="blue">Max = 0.991ε (Mean = 0.375ε)</span>
242                </p>
243              </td>
244</tr>
245<tr>
246<td>
247                <p>
248                  Zeta: Integer arguments
249                </p>
250              </td>
251<td>
252                <p>
253                  <span class="blue">Max = 9ε (Mean = 3.06ε)</span><br> <br>
254                  (<span class="emphasis"><em>&lt;cmath&gt;:</em></span> Max = 70.3ε (Mean = 17.4ε))
255                </p>
256              </td>
257<td>
258                <p>
259                  <span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
260                  2.1:</em></span> Max = 3.75ε (Mean = 1.1ε))
261                </p>
262              </td>
263<td>
264                <p>
265                  <span class="blue">Max = 28ε (Mean = 5.62ε)</span>
266                </p>
267              </td>
268<td>
269                <p>
270                  <span class="blue">Max = 9ε (Mean = 3ε)</span>
271                </p>
272              </td>
273</tr>
274</tbody>
275</table></div>
276</div>
277<br class="table-break"><p>
278        The following error plot are based on an exhaustive search of the functions
279        domain, MSVC-15.5 at <code class="computeroutput"><span class="keyword">double</span></code>
280        precision, and GCC-7.1/Ubuntu for <code class="computeroutput"><span class="keyword">long</span>
281        <span class="keyword">double</span></code> and <code class="computeroutput"><span class="identifier">__float128</span></code>.
282      </p>
283<div class="blockquote"><blockquote class="blockquote"><p>
284          <span class="inlinemediaobject"><img src="../../../graphs/zeta__double.svg" align="middle"></span>
285
286        </p></blockquote></div>
287<div class="blockquote"><blockquote class="blockquote"><p>
288          <span class="inlinemediaobject"><img src="../../../graphs/zeta__80_bit_long_double.svg" align="middle"></span>
289
290        </p></blockquote></div>
291<div class="blockquote"><blockquote class="blockquote"><p>
292          <span class="inlinemediaobject"><img src="../../../graphs/zeta____float128.svg" align="middle"></span>
293
294        </p></blockquote></div>
295<h5>
296<a name="math_toolkit.zetas.zeta.h3"></a>
297        <span class="phrase"><a name="math_toolkit.zetas.zeta.testing"></a></span><a class="link" href="zeta.html#math_toolkit.zetas.zeta.testing">Testing</a>
298      </h5>
299<p>
300        The tests for these functions come in two parts: basic sanity checks use
301        spot values calculated using <a href="http://functions.wolfram.com/webMathematica/FunctionEvaluation.jsp?name=Zeta" target="_top">Mathworld's
302        online evaluator</a>, while accuracy checks use high-precision test values
303        calculated at 1000-bit precision with <a href="http://shoup.net/ntl/doc/RR.txt" target="_top">NTL::RR</a>
304        and this implementation. Note that the generic and type-specific versions
305        of these functions use differing implementations internally, so this gives
306        us reasonably independent test data. Using our test data to test other "known
307        good" implementations also provides an additional sanity check.
308      </p>
309<h5>
310<a name="math_toolkit.zetas.zeta.h4"></a>
311        <span class="phrase"><a name="math_toolkit.zetas.zeta.implementation"></a></span><a class="link" href="zeta.html#math_toolkit.zetas.zeta.implementation">Implementation</a>
312      </h5>
313<p>
314        All versions of these functions first use the usual reflection formulas to
315        make their arguments positive:
316      </p>
317<div class="blockquote"><blockquote class="blockquote"><p>
318          <span class="inlinemediaobject"><img src="../../../equations/zeta3.svg"></span>
319
320        </p></blockquote></div>
321<p>
322        The generic versions of these functions are implemented using the series:
323      </p>
324<div class="blockquote"><blockquote class="blockquote"><p>
325          <span class="inlinemediaobject"><img src="../../../equations/zeta6.svg"></span>
326
327        </p></blockquote></div>
328<p>
329        When the significand (mantissa) size is recognised (currently for 53, 64
330        and 113-bit reals, plus single-precision 24-bit handled via promotion to
331        double) then a series of rational approximations <a class="link" href="../sf_implementation.html#math_toolkit.sf_implementation.rational_approximations_used">devised
332        by JM</a> are used.
333      </p>
334<p>
335        For 0 &lt; z &lt; 1 the approximating form is:
336      </p>
337<div class="blockquote"><blockquote class="blockquote"><p>
338          <span class="inlinemediaobject"><img src="../../../equations/zeta4.svg"></span>
339
340        </p></blockquote></div>
341<p>
342        For a rational approximation <span class="emphasis"><em>R(1-z)</em></span> and a constant
343        <span class="emphasis"><em>C</em></span>:
344      </p>
345<p>
346        For 1 &lt; z &lt; 4 the approximating form is:
347      </p>
348<div class="blockquote"><blockquote class="blockquote"><p>
349          <span class="inlinemediaobject"><img src="../../../equations/zeta5.svg"></span>
350
351        </p></blockquote></div>
352<p>
353        For a rational approximation <span class="emphasis"><em>R(n-z)</em></span> and a constant
354        <span class="emphasis"><em>C</em></span> and integer <span class="emphasis"><em>n</em></span>:
355      </p>
356<p>
357        For z &gt; 4 the approximating form is:
358      </p>
359<div class="blockquote"><blockquote class="blockquote"><p>
360          <span class="serif_italic">ζ(z) = 1 + e<sup>R(z - n)</sup></span>
361        </p></blockquote></div>
362<p>
363        For a rational approximation <span class="emphasis"><em>R(z-n)</em></span> and integer <span class="emphasis"><em>n</em></span>,
364        note that the accuracy required for <span class="emphasis"><em>R(z-n)</em></span> is not full
365        machine-precision, but an absolute error of: /ε<span class="emphasis"><em>R(0)</em></span>.
366        This saves us quite a few digits when dealing with large <span class="emphasis"><em>z</em></span>,
367        especially when ε is small.
368      </p>
369<p>
370        Finally, there are some special cases for integer arguments, there are closed
371        forms for negative or even integers:
372      </p>
373<div class="blockquote"><blockquote class="blockquote"><p>
374          <span class="inlinemediaobject"><img src="../../../equations/zeta7.svg"></span>
375
376        </p></blockquote></div>
377<div class="blockquote"><blockquote class="blockquote"><p>
378          <span class="inlinemediaobject"><img src="../../../equations/zeta8.svg"></span>
379
380        </p></blockquote></div>
381<div class="blockquote"><blockquote class="blockquote"><p>
382          <span class="inlinemediaobject"><img src="../../../equations/zeta9.svg"></span>
383
384        </p></blockquote></div>
385<p>
386        and for positive odd integers we simply cache pre-computed values as these
387        are of great benefit to some infinite series calculations.
388      </p>
389</div>
390<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
391<td align="left"></td>
392<td align="right"><div class="copyright-footer">Copyright © 2006-2019 Nikhar
393      Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
394      Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Matthew Pulver, Johan
395      Råde, Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg,
396      Daryle Walker and Xiaogang Zhang<p>
397        Distributed under the Boost Software License, Version 1.0. (See accompanying
398        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
399      </p>
400</div></td>
401</tr></table>
402<hr>
403<div class="spirit-nav">
404<a accesskey="p" href="../zetas.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../zetas.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="../expint.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
405</div>
406</body>
407</html>
408