Searched refs:arr_x (Results 1 – 9 of 9) sorted by relevance
/third_party/mindspore/tests/st/ops/cpu/ |
D | test_tile_op.py | 35 arr_x = np.array([[0], [1], [2], [3]]).astype(np.int32) variable 43 print(arr_x) 44 output = tile(Tensor(arr_x)) 48 arr_x = np.array([[0], [1], [2], [3]]).astype(np.float64) variable 56 print(arr_x) 57 output = tile(Tensor(arr_x)) 61 arr_x = np.array([[0], [1], [2], [3]]).astype(np.bool_) variable 69 print(arr_x) 70 output = tile(Tensor(arr_x))
|
/third_party/mindspore/tests/st/ops/ascend/test_tbe_ops/ |
D | test_tile.py | 34 arr_x = np.array([[0], [1], [2], [3]]).astype(np.int32) variable 39 print(arr_x) 40 output = tile(Tensor(arr_x))
|
D | test_sqrt.py | 34 arr_x = np.array([1.0, 4.0, 9.0]).astype(np.float32) variable 39 output = sqrt(Tensor(arr_x)) 40 print(arr_x)
|
D | test_softmax.py | 34 arr_x = np.array([[5, 1]]).astype(np.float32) variable 39 output = softmax(Tensor(arr_x)) 40 print(arr_x)
|
D | test_split.py | 34 arr_x = np.random.randn(2, 4).astype(np.float32) variable 39 output = split(Tensor(arr_x)) 41 print(arr_x)
|
D | test_square.py | 34 arr_x = np.array([1.0, 4.0, 9.0]).astype(np.float32) variable 39 output = square(Tensor(arr_x)) 40 print(arr_x)
|
D | test_sub.py | 34 arr_x = np.random.randn(1, 3, 3, 4).astype(np.float32) variable 40 output = sub(Tensor(arr_x), Tensor(arr_y)) 41 print(arr_x)
|
D | test_pad.py | 37 arr_x = np.random.random(size=(2, 2)).astype(np.float32) variable 42 output = pad(Tensor(arr_x))
|
/third_party/mindspore/tests/ut/cpp/operator/ |
D | composite_test.cc | 260 AbstractTensorPtr arr_x = UTCompositeUtils::ArrayInt32Of({2, 3, 4}); in TEST_F() local 263 std::vector<AbstractAttribute> tensor_map{{"x", arr_x}, {"y", arr_y}, {"z", arr_z}}; in TEST_F() 287 AbstractTensorPtr arr_x = UTCompositeUtils::ArrayInt32Of({2, 3, 4}); in TEST_F() local 290 std::vector<AbstractAttribute> tensor_map{{"x", arr_x}, {"y", arr_y}, {"z", arr_z}}; in TEST_F()
|